Studies on least tern foraging requirements done in support of dredging and maritime construction in Oakland Harbor

U.S.Navy studies, ~ 20 yrs

Scaled Data

50' Biological Opinion

called for a study of least tern foraging at paired sites that "strongly show and do not show turbidity, as induced by [the project]."

"Statistical Design"

"The analysis of results shall not presume no effect of dredging and test the "alternative" hypothesis of an effect at a 95 percent confidence level; rather the study shall report the statistical confidence level of the noeffect and effect hypotheses given the observed data."

Foraging Baseline

Location	Sector	6/4	6/6	6/9	6/11	6/20	6/25	6/30	7/9	7/11	7/14	7/18	7/23	Total dives
south far	1			3	2	28			9		3			45
south far	2		2		2			2						6
south far	3									4				4
south far	5				5			14						19
south far	6			7			1	67		1				76
south near	4			1	22	10				1				34
south near	7		17	14	9		1	22		2	37	2		104
south near	8	2	179	7	1	6	12	5					1	213
south near	14		35	3	1	27	2			21				89
west	9				1	16	30	1						48
west	10					17	3			1				21
Inner Harb.	12	2				1		2		1	1			7
Inner Harb.	13					1	2	4	2	1				10
Inner Harb.	15					2		1	6		3			12
Middle Harb.	16	7						6		1	2			16
Outer Harb.	17						1	14	4					19
Tota	al dives	11	233	35	43	108	52	138	21	33	46	2	1	723

Dropped fish collections

Purpose of Studies

Investigate tern foraging needs

Species

Amounts

Prey distribution

Prey habitat requirements

Objectives:

- •Get out of the office
- Quantify chick provisioning
- Estimate atherinopsid abundance
- Design efficient sampling
- Describe pattern of foraging effort
- Foraging vs. turbidity
 - Monitoring Design for MHEA

Chick Provisioning

Fish fate	Number of Prey Items	Percent of Prey Items
Accepted by chick	1,468	89.2%
Dropped by chick	64	3.9%
Refused by chick	26	1.6%
Withheld from chick	43	2.6%
Unknown	44	2.7%
Total	1,645	100.00%

;	Speci	es composi	tion b	pased	on c	hick	fecal	sampl	e ana	lyses	(all	indigestible	e parts	included	I); T	able 30 i	n the repo	rt

		Year			
Prey Family	2002	2003	2004	TOTAL	% frequency
Clupeidae / Engraulididae	46	56	30	132	52.38
Salmonidae	0	2	1	3	1.19
Atherinopsidae	77	77	85	239	94.84
Syngnathidae	0	1	0	1	0.4
Scorpaenidae	0	0	1	1	0.4
Hexagrammidae	3	0	0	3	1.19
Embiotocidae	2	0	5	7	2.78
Gobiidae	4	0	7	11	4.37
Total # samples analyzed	81	84	87	252	

More chick provisioning

- Most inter-annual variance explained by chick age structure
- 0.7 fish/chick/hr x 14 hr x 400 chicks ≈ 4,000 fish per day
- Biomass estimates ≈ 50 kg/yr (wet)

2003-2004 least tern sightings

2003 Purse Seine

Jacksmelt and Tosmelt, all sizes

2003 Length Frequencies by Net

Avg. Surface Temp. (C°)

Atherinopsids spawn throughout tern season

2005 central 50% Atherinopsid I.f.

2004 Purse Seine

2005 Sampling Sites

"Offshore" Topsmelt SPL, OH

2005 Topsmelt, Beach Seine

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

2003-2004 tern results

- Nestling diet dominated by small silversides
- Small silversides found almost exclusively in shoal water
- Tern foraging significantly correlated
- (-) with depth but not with turbidity

Forage base accounting

Table 1. Comparative diverates and calculated fish captures, 2005 estimates

Location	Area (acres)	d	lives/acre/hr	fish per day*
MHEA		166	0.005	8
Seaplane Lagoon study area		39	0.275	100
Alameda Point South study area		40	0.154	57
San Leandro Bay sudy area		53	0.178	89
Bailey's "Primary Foraging Area"		400	0.202	756
Remainder of foraging area***		24000	0.005	1121
Total				2120

Total

Table 2. Comparative dive rates and calculated fish captures, 2005 estimates.

Location	Area (acres)		dives/acre/hr	fish per day*
MHEA		166	0.005	8
Seaplane Lagoon study area		39	0.275	100
Alameda Point South study area		40	0.154	57
San Leandro Bay sudy area		53	0.178	89
3 x Bailey's "Primary Foraging Area"		1200	0.202	2268
Remainder of foraging area***		23200	0.005	1083
Total				3605

FIGURE 3. SPOT CHECK FORAGING. 23 = Spot Check foraging (bird-visits) Albany Foraging areas identified Berkelev Emeryville Harina miles Bay Bridge Toll Plaza Farm Crown Beach Island Doolittle Pond Oakland Airport Roberts Landing

^{*} asumes a success rate of 0.67

^{**} estimated from Bailey's (1992) Figure 3

^{***} based on minimum total foraging area as estimated by Ehrler et al. (2006), assuming the same foraging rate as MHEA

Conclusions-Science

Terns

- Historic "data" on tern foraging patterns flawed
- Terns range over >> 100 km²
- Dive rate data emphasize importance of shoals
- Dredged channels and berths are littleused by terns or their main prey

Fish

- Atherinopsids most available /appropriate to Alameda least terns
- Beaches support larval + juvenile atherinopsids
- San Leandro Bay warm, shallow, appears to be nursery area

Conclusions-Dredging

- Work Windows are an appropriate management tool in the absence of sitespecific information
- Site-specific information is useful only when resource agency personnel are willing to consider it