Mr. Robert Lawrence U.S. Army Corps of Engineers 1455 Market Street San Francisco, CA 94103

August 12, 2010

Dear Mr. Lawrence:

On behalf of Mr. Edward Keller of the U.S. Army Corps of Engineers, I have enclosed two (2) copies of the report "Sampling and Analysis Results for Sediment Samples Collected from the San Rafael Channel." In addition, one copy of this report has been sent to the other DMMO participating agency representatives.

If you have any questions, please give me a call at (707) 207-7760. I look forward to hearing from you.

Sincerely,

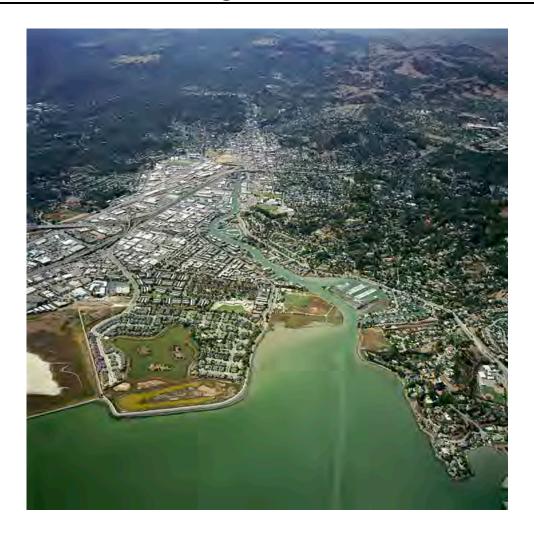
Jeffrey Cotsifas President **Special Projects Director**

Brian Ross, U.S. EPA cc (w/enc):

Brenda Goeden, BCDC Beth Christian, SFRWQCB

Vicki Frey, CDFG

David Woodbury, NMFS


Donn Oetzel, SLC Edward Keller, USACE

This testing was performed under Lab Order 16087. The test results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report, and only relate to the sample(s) tested. This report shall not be reproduced, except in full, without the written consent of Pacific EcoRisk.

CENTRAL VALLEY

SAMPLING AND ANALYSIS RESULTS FOR SEDIMENT SAMPLES COLLECTED FROM THE SAN RAFAEL CHANNEL FINAL REPORT

August 11, 2010

PACIFIC ECORISK
ENVIRONMENTAL CONSCIPING A TISTING

Prepared for

U.S. Army Corps of Engineers 455 Market Street, Suite 1574H San Francisco, CA 94103-1398 Prepared by

Pacific EcoRisk 2250 Cordelia Road Fairfield, CA 94534

Table of Contents

I	Page
1. INTRODUCTION	1
1.1 Project Description	1
1.2 Objectives of the Sediment Investigation	2
1.3 Overview of Field Activities and Lab Analyses	
1.4 Organization of this Document	
2. FIELD SEDIMENT SAMPLE COLLECTION	
2.1 Collection of San Rafael Channel Sediment Cores	7
2.1.1 Field Equipment Decontamination Procedure	7
2.1.2 On-Board Sample Processing and Labeling	
2.2 Collection of Site Water	
2.3 Collection of San Pablo (SF-10) and Alcatraz (SF-11) Reference Sediments	17
3. SAMPLE PROCESSING	
3.1 Homogenization and Compositing of Sediments	19
3.2 Sample Shipping	
3.2.1 Chain-of-Custody (COC) Protocol	
4. METHODS	
4.1 Sediment Analytical Chemistry Procedures	21
4.2 Modified Elutriate Test (MET) Procedures	
4.3 Biological Testing Procedures	24
4.3.1 Source of Natural Seawater	24
4.3.2 Sediment Porewater Characterization	24
4.3.2.1 Purging of Sediment Porewater Ammonia for the Amphipod and Polychaet	e
Tests	25
4.3.3 Solid-Phase Sediment Toxicity Testing with Ampelisca abdita	
4.3.3.1 Reference Toxicant Testing of the Ampelisca abdita	
4.3.4 Solid-Phase Sediment Toxicity Testing with Neanthes arenaceodentata	27
4.3.4.1 Reference Toxicant Testing of the Neanthes arenaceodentata	27
4.3.5 Water Column Toxicity Test Procedures	
4.3.5.1 Standard Elutriate Test (SET) Procedures	
4.3.5.2 Sediment Elutriate Toxicity Testing with Mytilus galloprovincialis	
4.3.5.2.1 Preparation of Bivalve Embryos	
4.3.5.2.2 Mytilus Embryo Development Toxicity Test Procedures	
4.3.5.2.3 Reference Toxicant Testing of the <i>Mytilus</i> Embryos	
4.3.6 MET Sediment Elutriate Toxicity Testing with Americamysis bahia	
4.3.6.1 Reference Toxicant Testing of the Americamysis bahia	
4.4 Data Analysis and Interpretation	
4.4.1 Sediment Chemistry and Conventional Data Analyses	
4.4.2 Benthic Toxicity Test Data	31
4.5 Water Column (Sediment Elutriate or Liquid Suspended Phase) Toxicity Test Data	
4.5.1 Dilution Model Calculations	32

Table of Contents (*continued***)**

	Page
5. RESULTS OF LABORATORY ANALYSES	34
5.1 Results of Conventional and Chemical Analyses	
5.1.1 Sediment Analytical Chemistry Results	
5.1.2 Modified Elutriate Test Chemistry Analyses	
5.2 Biological Testing Results	
5.2.1 Effects of the San Rafael Channel Sediments on Ampelisca abdita	
5.2.1.1 Reference Toxicant Toxicity to Ampelisca abdita	
5.2.2 Effects of the San Rafael Channel Sediments on Neanthes arenaceodentata	
5.2.2.1 Reference Toxicant Toxicity to Neanthes arenaceodentata	48
5.2.3 Toxicity of the San Rafael Channel Sediment SET Elutriates to Mytilus	
galloprovincialis	49
5.2.3.1 Reference Toxicant Toxicity to Mytilus galloprovincialis Embryos	
5.2.4 Toxicity of the San Rafael Channel Sediment Elutriates to Americamysis bahia.	
5.2.4.1 Reference Toxicant Toxicity to Americamysis bahia	
6. QUALITY CONTROL REVIEW	
6.1 Conventional and Chemical Analytical Quality Control Summary	56
6.2 Biological Testing Quality Lab Control Summary	
7. SUMMARY	
8. REFERENCES	61

Appendices

Appendix A	Sampling Field Logs and Data Sheets
Appendix B	Analytical Chemistry Laboratory Data Report Submitted by Columbia Analytical Services
Appendix C	Analytical Chemistry Laboratory Data Report Submitted by CalScience Environmental Laboratories, Inc.
Appendix D	Analytical Chemistry Results for 'Information Only' Sediment Samples
Appendix E	Sediment Porewater Water Quality Analyses and Overlying Water Ammonia Analyses Performed in Support of Bioassay Testing
Appendix F	Test Data and Summary of Statistics for the Evaluation of the Toxicity of the San Rafael Channel Sediments to the Amphipod, <i>Ampelisca abdita</i>
Appendix G	Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Amphipod, <i>Ampelisca abdita</i>
Appendix H	Test Data and Summary of Statistics for the Evaluation of the Toxicity of the San Rafael Channel Sediments to the Polychaete, <i>Neanthes arenaceodentata</i>
Appendix I	Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Polychaete, <i>Neanthes arenaceodentata</i>
Appendix J	Test Data and Summary of Statistics for the Evaluation of the Toxicity of the San Rafael Channel Sediment SET Sediment Elutriates to Bivalve (Mytilus galloprovincialis) Embryos
Appendix K	SET Elutriate Suitability Concentration Determination Calculations
Appendix L	Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the <i>Mytilus galloprovincialis</i> Embryos
Appendix M	Test Data and Summary of Statistics for the Evaluation of the Toxicity of the San Rafael Channel Modified Elutriate Test (MET) Sediment Elutriates to Mysids (<i>Americamysis bahia</i>)
Appendix N	Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Mysid, <i>Americamysis bahia</i>
Appendix O	Bioassay Standard Test Conditions

List of Figures

P	Page
Figure 1-1. Location Map: San Rafael Channel, San Rafael, CA	4
Figure 1-2. Vicinity Map: San Rafael Channel	
Figure 1-3. San Rafael Channel Composite Sample Areas #1-8	
Figure 2-1. San Rafael Channel Sample Locations SRC-2010-1-1 through SRC-2010-1-4	
Figure 2-2. San Rafael Channel Sample Locations SRC-2010-1-3 through SRC-2010-2-3	
Figure 2-3. San Rafael Channel Sample Locations SRC-2010-2-3 through SRC-2010-3-4	
Figure 2-4. San Rafael Channel Sample Locations SRC-2010-3-3 through SRC-2010-4-4	11
Figure 2-5. San Rafael Channel Sample Locations SRC-2010-5-1 through SRC-2010-5-6	
Figure 2-6. San Rafael Channel Sample Locations SRC-2010-5-5 through SRC-2010-7-1	13
Figure 2-7. San Rafael Channel Sample Locations SRC-2010-6-4 through SRC-2010-8-4	14
List of Tables	
	Page
Table 2-1a. Sampling station locations and core depths - Maintenance Depth Sections.	_
Table 2-1a. Sampling station locations and core depths - 'Information Only' Section	
Table 2-1c. Sampling station locations and core penetration depths – Z-Layer Section	
Table 2-2. Reference Site Sample Locations	
Table 4-1. Standard List of Analytes, Methods, Targeted and Achieved Reporting Limits	
Table 4-2. List of Hamilton Analytes, Methods and Targeted Reporting Limits	
Table 4-3. List of Analytes for MET Elutriate, Methods, and Targeted Reporting Limits	
Table 4-4. Sediment porewater initial water quality characteristics.	
Table 5-1a. San Rafael Channel 2010 Sediment Chemistries – Composite Sample Areas 1-6	23
Maintenance Depth Core Section Composites	35
Table 5-1b. San Rafael Channel 2010 Sediment Chemistries – Composite Sample Area 7	
Maintenance Depth and Z-Layer Core Section Composites and Individual Core	
Maintenance Depth Sections	38
Table 5-1c. San Rafael Channel 2010 Sediment Chemistries – Composite Sample Area 8	
Maintenance Depth and Z-Layer Core Section Composites and Individual Core	
Maintenance Depth Sections	41
Table 5-2. Compounds Measured Above San Francisco Bay Ambient Levels or HWRP	
Acceptance Criteria	
Table 5-3. Modified Elutriate Test Chemistry Results	45
Table 5-4. Ampelisca abdita survival in the San Rafael Channel test sediments	46
Table 5-5. Reference toxicant testing: Effects of KCl on Ampelisca abdita (7/10/10)	47
Table 5-6. Summary of Reference Toxicant Database for Ampelisca abdita	47
Table 5-7. Neanthes arenaceodentata survival in the San Rafael Channel test sediments	48
Table 5-8. Reference toxicant testing: Effects of KCl on Neanthes arenaceodentata	49
Table 5-9. Summary of Reference Toxicant Database for Neanthes arenaceodentata	49
Table 5-10. Effects of San Rafael Channel SET sediment elutriates on Mytilus galloprovincia	lis
	49

Table 5-11. Effects of SF-10 sediment elutriate on Mytilus galloprovincialis	50
Table 5-12. Effects of SF-11 sediment elutriate on Mytilus galloprovincialis	50
Table 5-13. Effects of SRC-2010-1 sediment elutriate on Mytilus galloprovincialis	50
Table 5-14. Effects of SRC-2010-2 sediment elutriate on Mytilus galloprovincialis	51
Table 5-15. Effects of SRC-2010-3 sediment elutriate on Mytilus galloprovincialis	51
Table 5-16. Effects of SRC-2010-4 sediment elutriate on Mytilus galloprovincialis	51
Table 5-17. Effects of SRC-2010-5 sediment elutriate on Mytilus galloprovincialis	52
Table 5-18. Effects of SRC-2010-6 sediment elutriate on Mytilus galloprovincialis	52
Table 5-19. Effects of SRC-2010-7 sediment elutriate on Mytilus galloprovincialis	52
Table 5-20. Effects of SRC-2010-8 sediment elutriate on Mytilus galloprovincialis	53
Table 5-21. Reference toxicant testing: Effects of KCl on Mytilus galloprovincialis	53
Table 5-22. Summary of Reference Toxicant Database for Mytilus galloprovincialis	53
Table 5-23. Effects of San Rafael Channel MET elutriates on Americamysis bahia.	54
Table 5-24. Reference toxicant testing: Effects of KCl on Americamysis bahia.	54
Table 5-25. Summary of Reference Toxicant Database for Americamysis bahia.	55
Table 6-1. Standard List of Analytes, Methods, and Targeted Reporting Limits	58
Table 6-2. List of Hamilton Analytes, Methods, and Targeted Reporting Limits	59
Table 6-3. List of Analytes for Modified Elutriate Tests, Methods, and Targeted Reporting	
Limits	59
Table 7-1. Recommended Suitability Determinations for San Rafael Channel test sediments	60

List of Acronyms

ASTM American Society for Testing and Materials

ATF Across the Flats

Bay San Francisco Bay

BCDC Bay Conservation and Development Commission

CAS Columbia Analytical Services

COC Chain-of-custody **D.O.** dissolved oxygen

DDT dichlorodiphenyltrichloroethane

DGPS Differential global positioning systemDMMO Dredged Material Management Office

EC effect concentration

ESC Elutriate Suitability Concentrations

ft foot

g/L grams per liter

GPS Global positioning system
HDPE high-density polyethylene

HWRP Hamilton Wetland Restoration Project

ITM Inland Testing ManualKCl potassium chloride

L liter

LC lethal concentration (e.g., LC50)
LTMS Long Term Management Strategy

MDL method detection limit

MET Modified Elutriate Test

mg/kg milligram/kilogram

mg/L milligrams per liter

mL milliliters

MLLW Mean lower low water
MRL method reporting limits
ng/kg nanogram per kilogram

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

PER Pacific EcoRisk

List of Acronyms (continued)

QA/QC Quality assurance/quality control

RPD Relative percent difference

RWQCB Regional Water Quality Control Board

SAP Sampling and analysis plan

SET Standard Elutriate Test

SF-10 San Pablo Bay disposal siteSF-11 Alcatraz Island disposal siteSLC State Lands Commission

SOP Standard operating procedures

SUAD Suitable for undefined aquatic disposal

TEG Oceanographic Services

TOC Total organic carbon

TPH Total petroleum hydrocarbon

TSS total suspended solids

USACE U.S. Army Corps of Engineers

USEPA U.S. Environmental Protection Agency

wt weight

μ**g/kg** microgram per kilogram

Pacific EcoRisk Vii

1. INTRODUCTION

As part of their Operations and Maintenance Program, the United States Army Corps of Engineers (USACE) is planning to dredge accumulated sediment from within the San Rafael Channel (Figures 1-1 and 1-2) to restore navigation depths in the channel. The USACE has contracted Pacific EcoRisk (PER) to perform pre-dredge sampling and analysis in support of a determination of suitability for placement of dredged San Rafael Channel sediments at the Hamilton Wetland Restoration Project (HWRP) or at the San Pablo Bay (SF-10) and Alcatraz Island (SF-11) in-Bay sites. This Data Report has been prepared to provide the required characterization of these sediments.

1.1 Project Description

The San Rafael Channel is located within the City of San Rafael in Marin County, approximately 17 miles north of San Francisco. The San Rafael Channel can effectively be divided into two portions: the Inner Canal portion is located along the entire length of San Rafael Creek, and the 'Across the Flats' (ATF) portion extends out into the Bay from the mouth of the San Rafael Creek (Figure 1-2). The Inner Canal portion of the channel is authorized as a channel 60 ft wide, ~ 1.6 miles long from the mouth of the creek to Grand Street in San Rafael, with a depth of -6 ft mean lower low water (MLLW). This portion of the channel also has a turning basin at the San Rafael Yacht Club that is 100 ft wide, 200 ft long and -6 ft MLLW. The ATF portion of the channel is authorized as a channel 100 ft wide, ~ 2.4 miles long from the mouth of the creek out into the Bay, with a depth of -8 ft MLLW. In addition to the project depths, this project has an allowable over-depth of -2 ft.

The volume of shoaling in the channel was estimated based on the surveys performed in April 2009, and was presented in a previously approved Sampling and Analysis Plan (USACE 2010). The Inner Canal portion of the channel has an estimated volume of 25,000 cubic yards (yds³) above the project depth of -6 ft MLLW and has an estimated volume of 14,000 yds³ for each foot of over-depth, for an estimated total of 53,000 yds³. The ATF portion of the channel has an estimated volume of 138,000 yds³ above the project depth of -8 ft MLLW and has an estimated volume of 44,000 yds³ for each foot of over-depth, for an estimated total of 226,000 yds³.

A total of 35 sediment cores were collected over eight Composite Sample Areas. In addition to the samples collected for making a suitability determination, the USACE also collected deeper samples for informational purposes only. These deeper samples characterized the two ft of sediment beneath the allowable over-depth material (this was sediment from -8 to -10 ft MLLW for the Inner Canal portion of the project, and sediments from -10 to -12 ft MLLW for the ATF portion of the project). Lastly, a "Z" layer sample was collected to assess the post-dredged mudline (-8 to -8.5 feet MLLW) in the area of the Inner Canal portion of the channel represented by Composite Samples #7 and #8.

1.2 Objectives of the Sediment Investigation

The purpose of this pre-dredge sampling and analysis effort is to determine the suitability of sediment to be dredged from the San Rafael Channel for placement at HWRP or at the SF-10 or SF-11 in-Bay sites. The procedures for sediment sample collection, sample processing and preparation, physical and chemical analyses, biological testing and data analyses were presented in a previously approved SAP San Rafael Channel FY 2010 Operations and Maintenance Sampling and Analysis Plan (USACE 2010), and approved Master SAP Master Sampling and Analysis Plan USACE SF-District O&M Dredging (USACE 2004)

Guidance concerning necessary sampling and analytical protocols, quality assurance/quality control (QA/QC) procedures, and data interpretation can be found in:

- Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. Testing Manual (ITM; USEPA/USACE 1998);
- USACE (1985) Technical Note EEDP 04-2. Interim Guidance for Predicting Quality of Effluent Discharged from Confined Dredged Material Disposal Areas During Dredging Operations. U.S. Army Engineer Waterways Experiment Station, Environmental Laboratory, June 1985;
- Public Notice 01-1: Guidelines for Implementing the Inland Testing Manual in the San Francisco Bay Region;
- Public Notice 93-2: Testing Guidelines for Dredged Material Disposal at San Francisco Bay Sites; and the Dredged Material Management Office (DMMO) review process; and
- Beneficial Reuse of Dredged Materials Sediment Screening and Testing Guidelines. Draft Staff Report. Central Valley Regional Water Quality Control Board. May 2000.

The specific objectives of the SAP scope-of-work are as follows:

- Collect core samples from within the designated sampling areas following field protocol detailed in the SAP; and
- Conduct chemical and biological analyses to determine whether sediments are suitable for wetland beneficial reuse or suitable for unconfined aquatic disposal (SUAD).

1.3 Overview of Field Activities and Lab Analyses

The Inner Canal and ATF portions of the channel were each divided into 4 "Composite Sample Areas" for a total eight Composite Sample Areas (Figure 3). A total of 35 sediment cores were collected via vibracore from within these eight Composite Sample Areas (Figures 2-1 through 2-7). For each Composite Sample Area, each sediment core was partitioned into appropriate sections (maintenance depth and the deeper 'information only' core sections). For cores from Composite Sample Areas 7 and 8, a 'Z-Layer' section consisting of the 0.5 ft of sediment immediately below the maintenance depth section (i.e., 8.0-8.5 ft MLLW) was collected; for these cores, the 'information only' sections were collected from immediately below the Z-layer section. Each resultant sediment core section was individually homogenized and a sub-sample of

the homogenized sediment was archived for subsequent analyses of the individual core section sediment, if needed. For each of the core section types from within each Composite Sample Area, proportionate amounts of the homogenized sediments were composited into a composite sample as described in the SAP (USACE 2010).

Samples of the maintenance depth composited sediments, Z-layer composited sediments, and 'information only' composited sediments for each Composite Sample Area were submitted for chemical and conventional analyses and/or biological testing and per the approved SAP (USACE 2010); note – biological testing was only performed on the maintenance depth core section materials. In addition, samples of the homogenized sediment from the maintenance depth section of the individual cores from Composite Sample Areas 7 and 8 were also submitted for analyses. The remainder of the samples were archived appropriately for subsequent analysis, if needed.

The results of these sediment analyses were used to determine the suitability of the proposed sediments for unconfined aquatic disposal. Suitability for disposal with respect to analytical chemistry will be determined by comparison to San Francisco Bay Ambient Levels (SFRWQCB 1998), reference site sediments, HWRP site-specific requirements, and the DMMO review process; biological testing results were compared to disposal site reference sediments.

1.4 Organization of this Document

Sample collection and handling procedures are discussed in Sections 2 and 3. Testing program methods are described in Section 4. Chemical analyses and bioassay results are provided in Section 5. A Quality Control (QC) summary is provided in Section 6. Section 7 presents the conclusions regarding suitability of the material for placement at the HWRP site or the SF-10 and SF-11 in-Bay disposal sites, and references are provided in Section 8. Appendices A-O contain supporting documentation for this study.

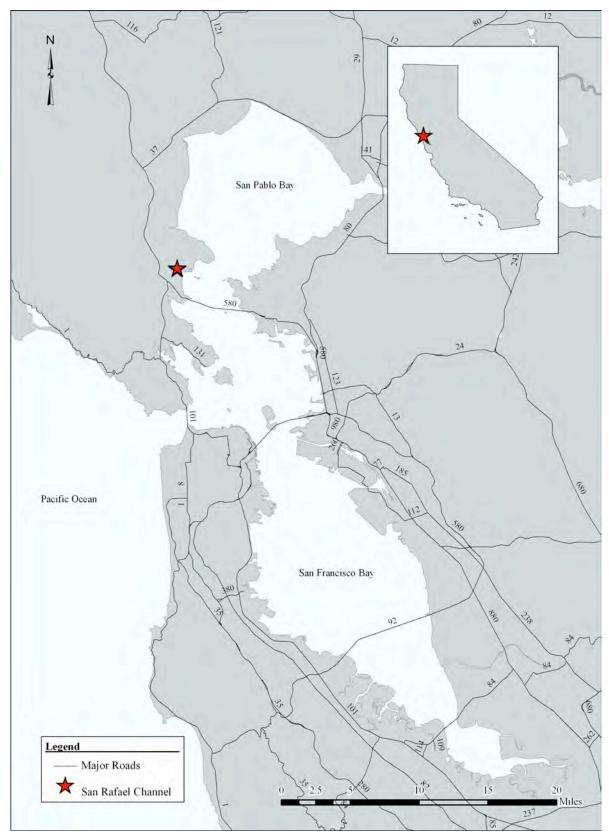


Figure 1-1. Location Map: San Rafael Channel, San Rafael, CA

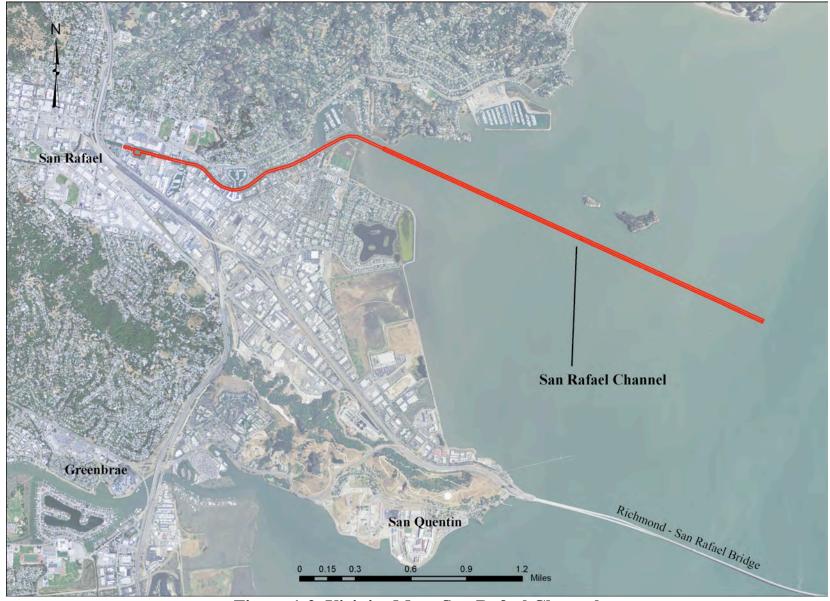


Figure 1-2. Vicinity Map: San Rafael Channel

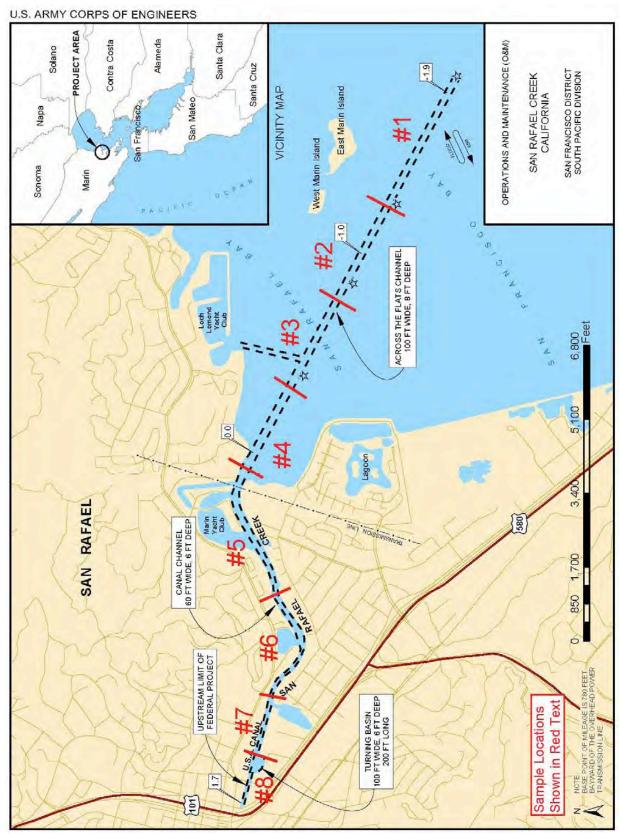


Figure 1-3. San Rafael Channel Composite Sample Areas #1-8

2. FIELD SEDIMENT SAMPLE COLLECTION

2.1 Collection of San Rafael Channel Sediment Cores

All sediments were collected in accordance with the SAP (USACE 2010). Sediment sampling was performed from June 8 to June 11, 2010, under the direction of Mr. Jeffrey Cotsifas of Pacific EcoRisk. Monterey Canyon Research Vessels provided the sampling vessel and on-board positioning system; TEG Oceanographic Services provided the vibracore sampling equipment. PER also provided additional Field Scientists to assist in sediment core collection.

Sediment cores were collected from 35 designated sites (Figures 2-1 through 2-7; Table 2-1). Final site positions were determined with a differential global positioning system (DGPS) and are accurate to ± 3 m. Table 2-1 lists station identifiers, DGPS coordinates for all core locations, mudline elevations, and core penetration depths for all stations; field logs are presented in Appendix A. With the exception of sediment core SRC-2010-2-3 that was relocated ~50 ft from the original station location in order to achieve project depth plus over-depth requirements, there were no deviations from the SAP (USACE 2010). It should be noted that Composite Area #8 (sediment cores SRC-2010-8-1 through SRC-2010-8-4) contained a high degree of organic debris at the mudline and each of the sediment cores had a strong petroleum odor.

2.1.1 Field Equipment Decontamination Procedure

The deck of the vessel was rinsed clean with site water between stations. All sampling equipment coming in contact with collected sediments was decontaminated between stations using the following procedures:

- 1. Rinse with site water and wash with scrub brush until free of sediment;
- 2. Wash with phosphate-free biodegradable soap solution; and
- 3. Rinse with site water taken from 3 ft. below the surface.

Any sampling equipment that could not be properly cleaned was not used for subsequent sampling activities.

2.1.2 On-Board Sample Processing and Labeling

Individual cores were extruded on board the sampling vessel and placed into a clean substrate lined with a food-grade polyethylene bag. The top section of the core liner was removed and the physical characteristics of each core were noted on the individual sediment core collection log. The samples were then partitioned into their appropriate sections (maintenance depth, Z-layer, and 'information only' core sections) and placed into separate food-grade polyethylene bags. Each individual sediment core section sediment sample was assigned a unique alphanumeric identifier as described in the SAP (USACE 2010). While aboard the vessel and during transportation to the PER lab facility, samples were temporarily stored on ice (or frozen "blue ice") within insulated coolers.

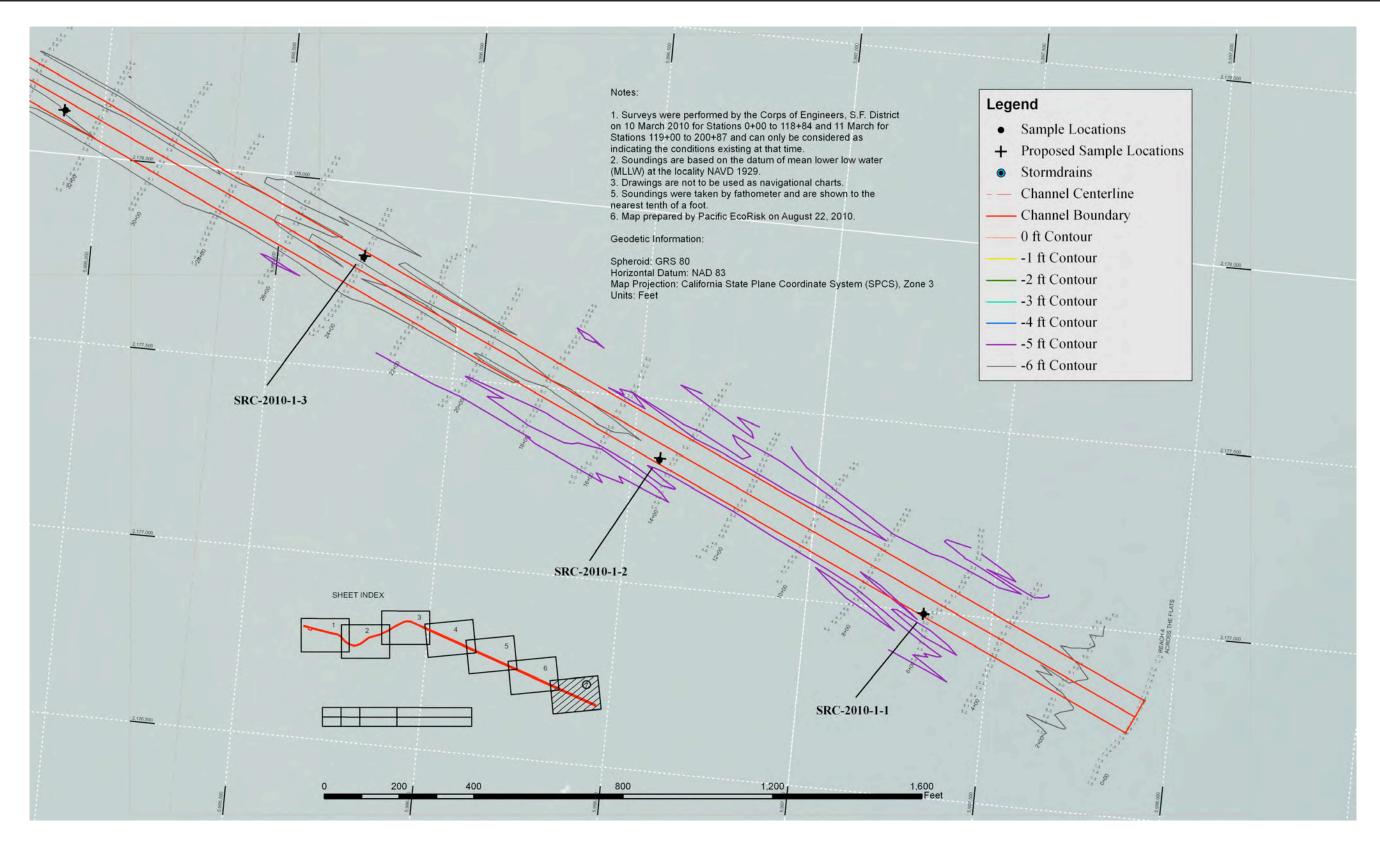
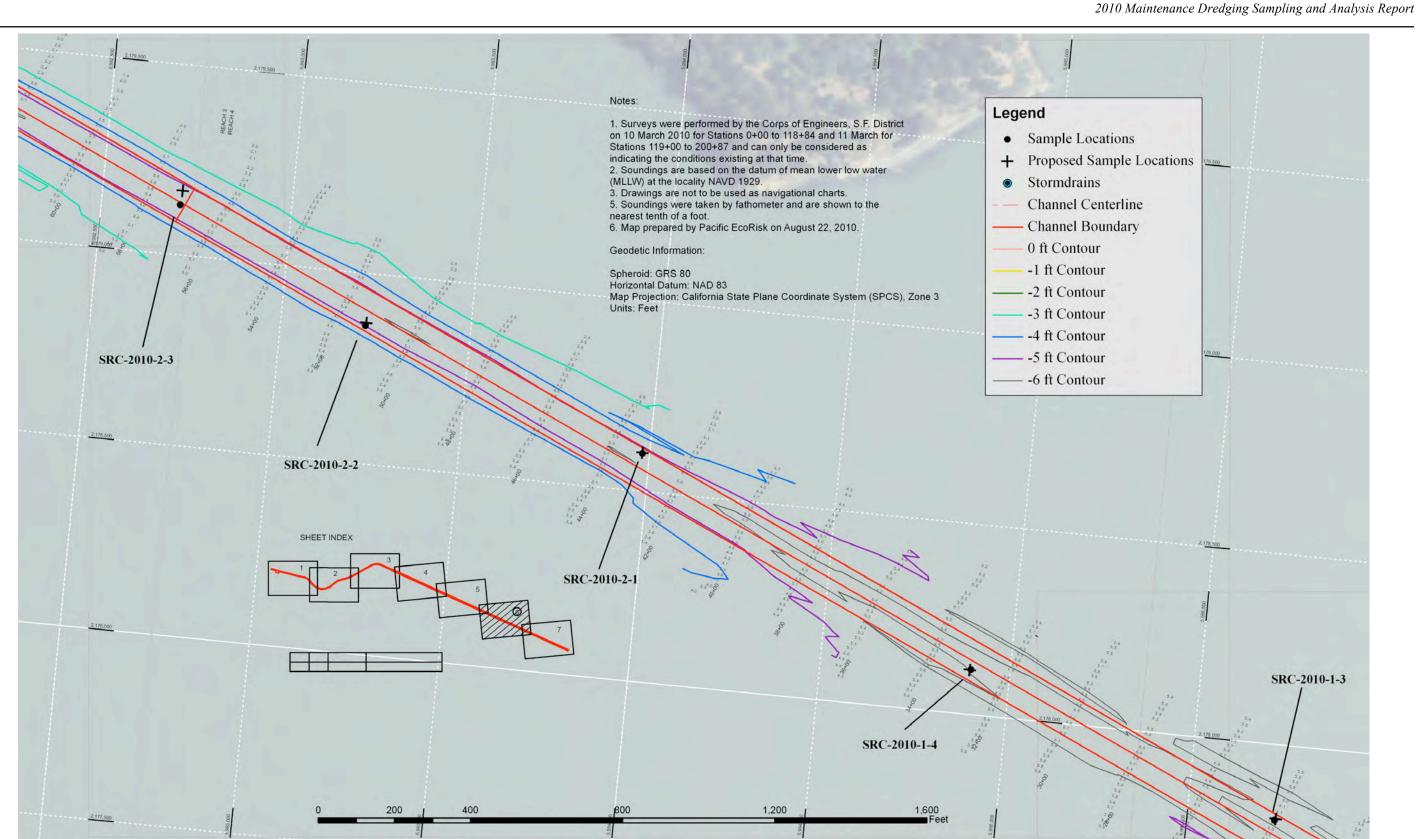



Figure 2-1. San Rafael Channel Sample Locations SRC-2010-1-1 through SRC-2010-1-4

San Rafael Channel

Figure 2-2. San Rafael Channel Sample Locations SRC-2010-1-3 through SRC-2010-2-3

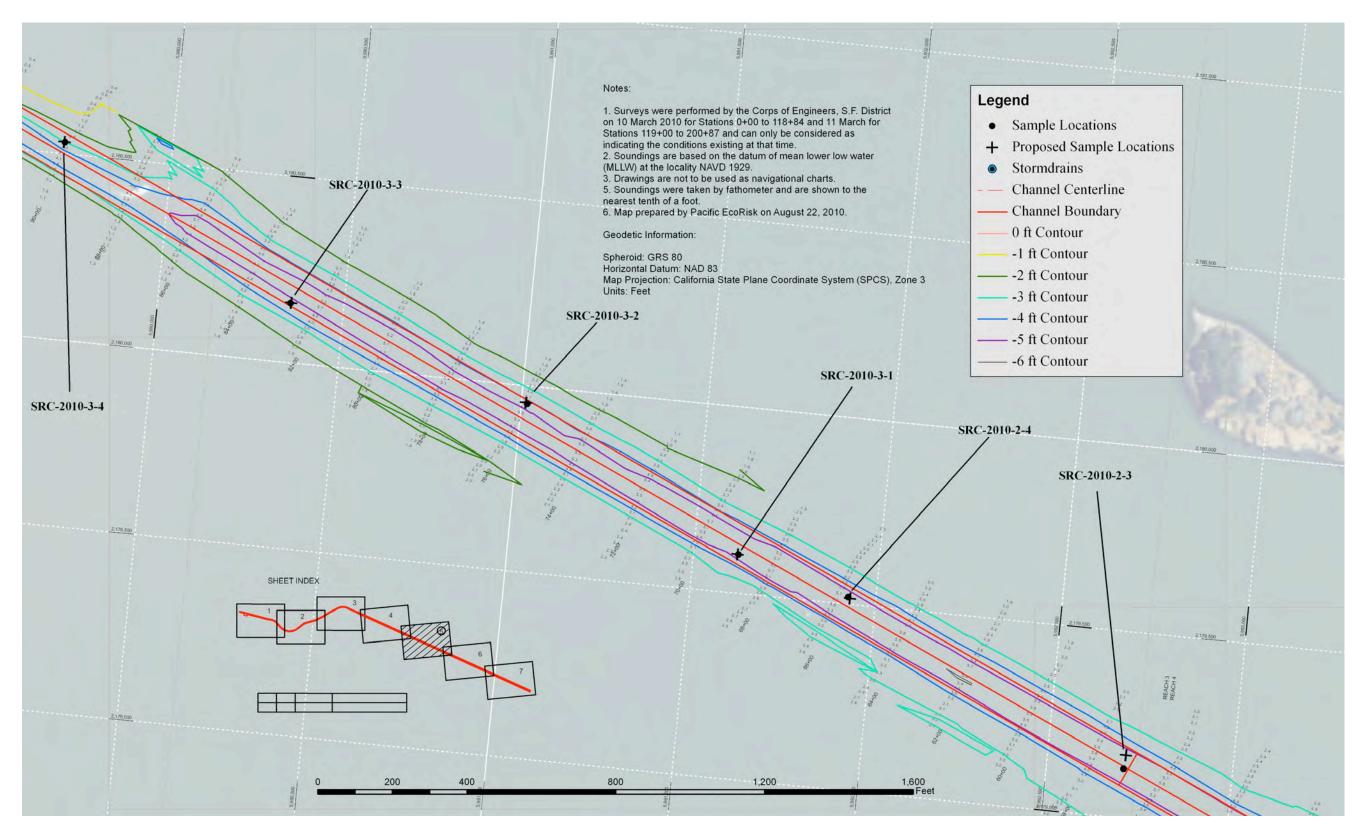


Figure 2-3. San Rafael Channel Sample Locations SRC-2010-2-3 through SRC-2010-3-4

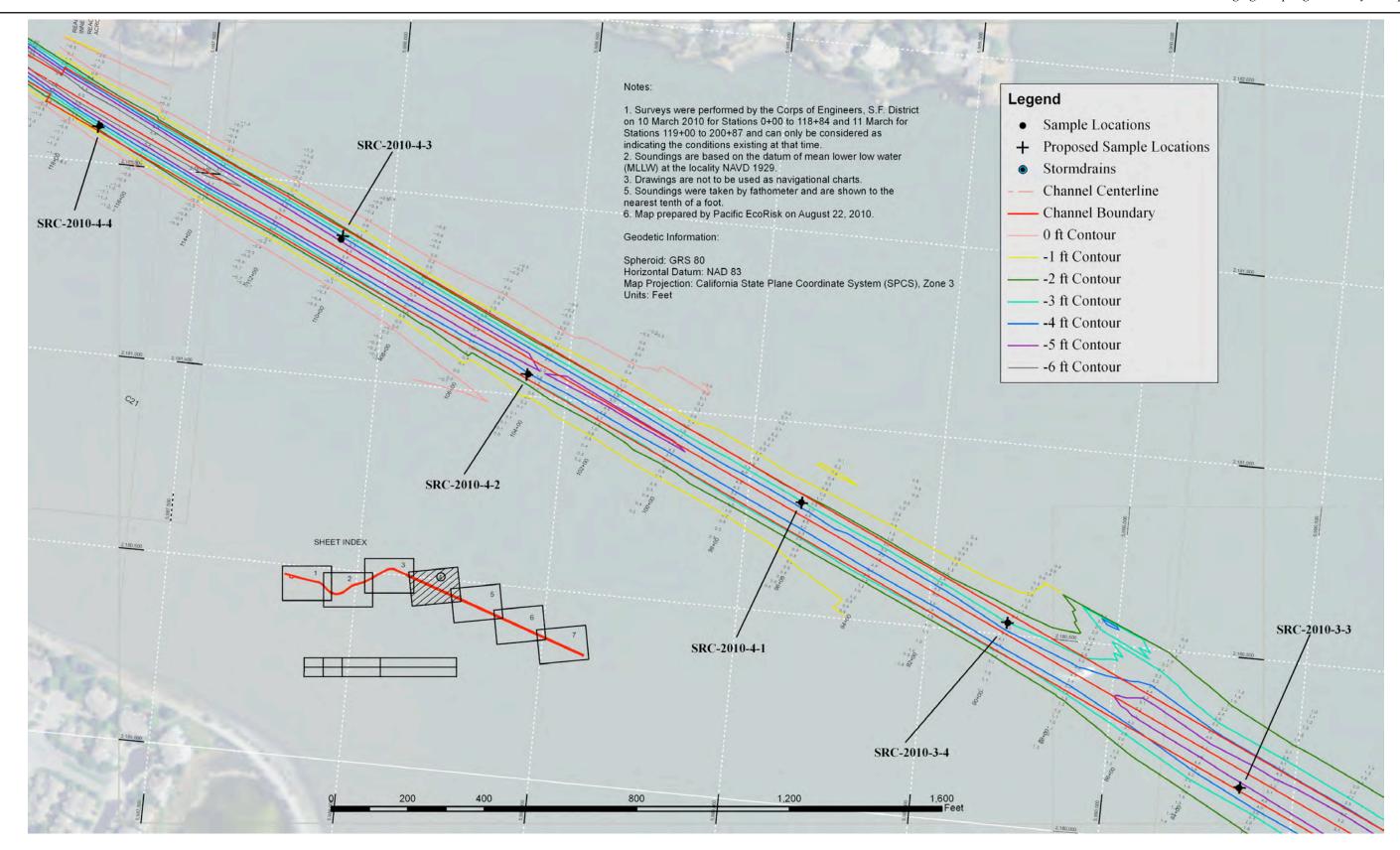


Figure 2-4. San Rafael Channel Sample Locations SRC-2010-3-3 through SRC-2010-4-4

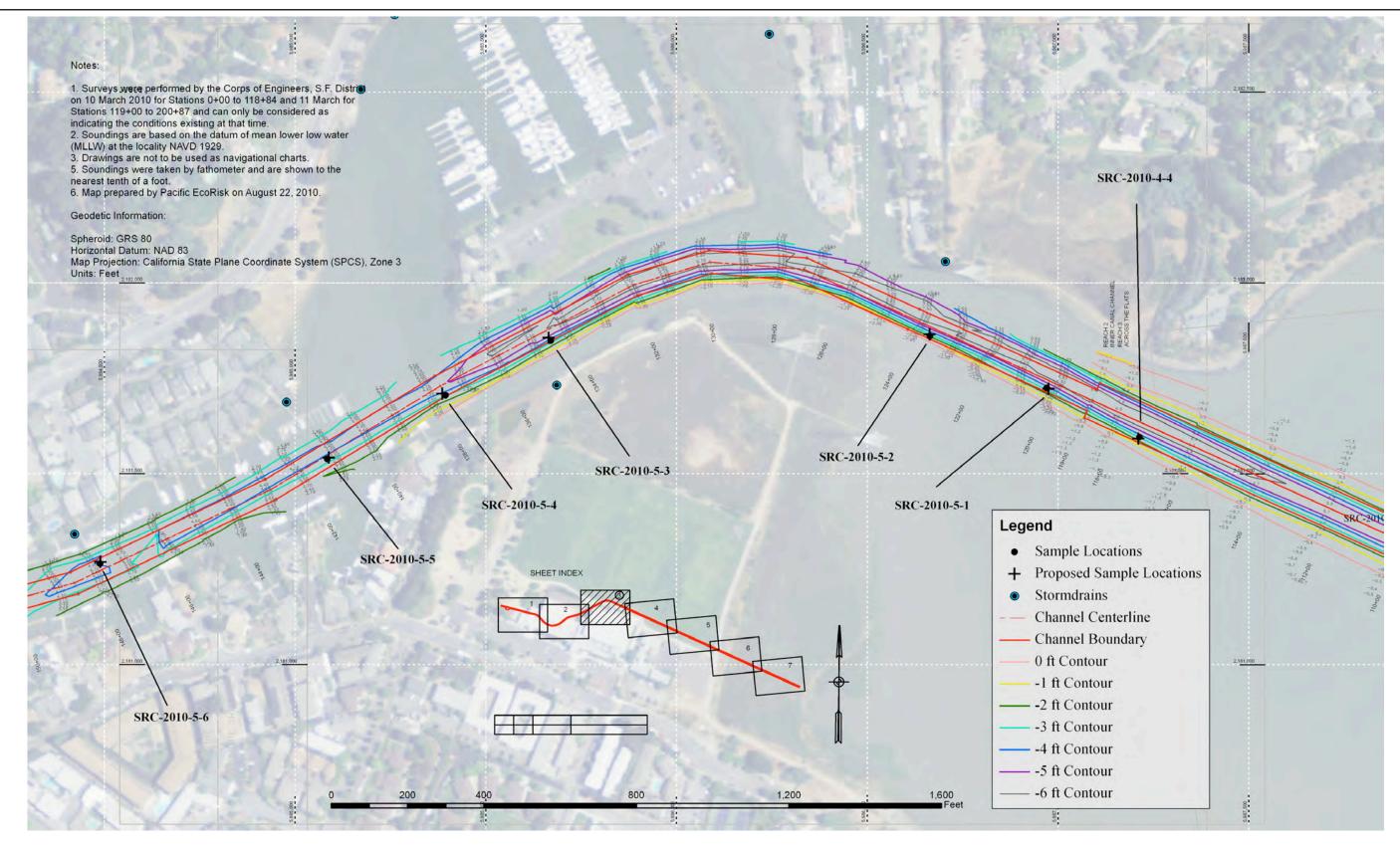


Figure 2-5. San Rafael Channel Sample Locations SRC-2010-5-1 through SRC-2010-5-6

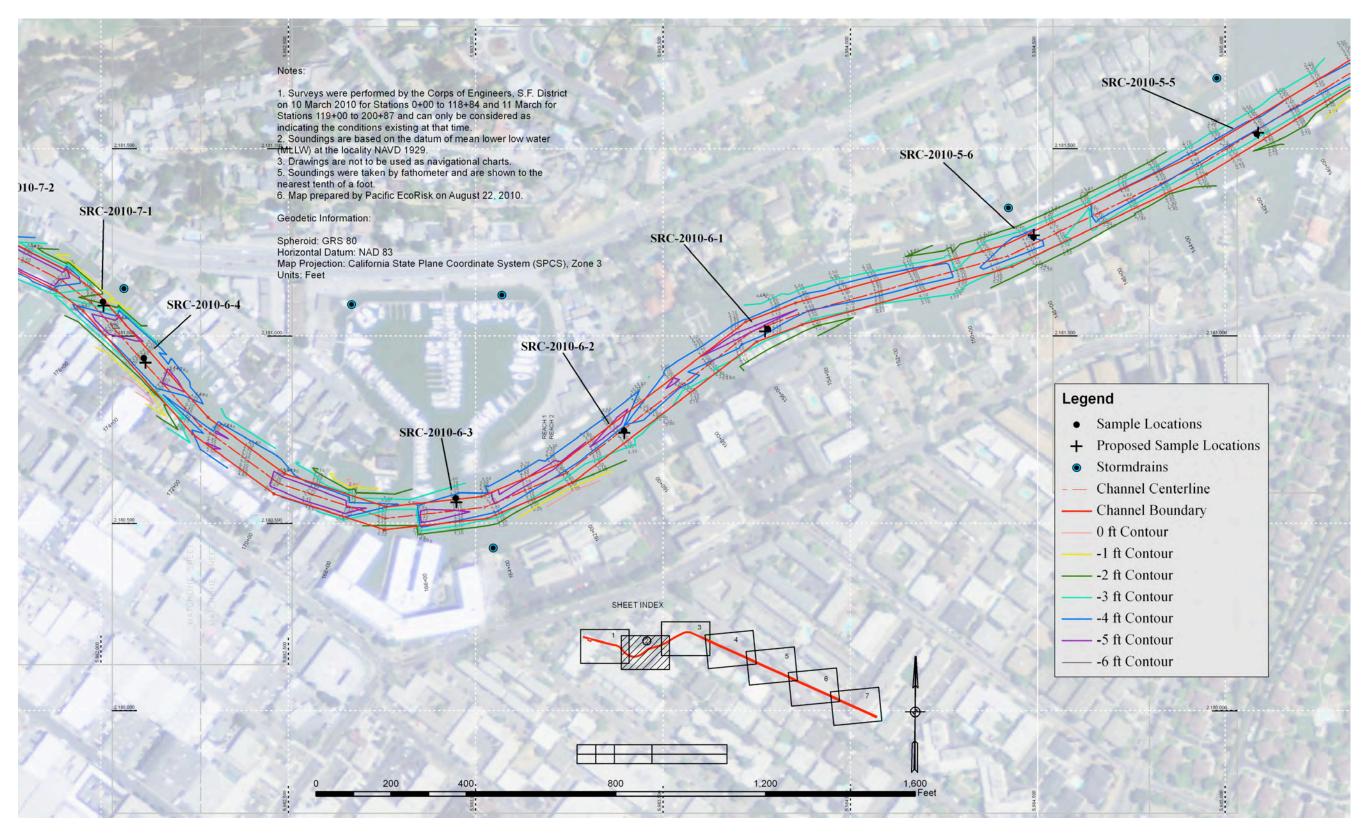


Figure 2-6. San Rafael Channel Sample Locations SRC-2010-5-5 through SRC-2010-7-1

San Rafael Channel

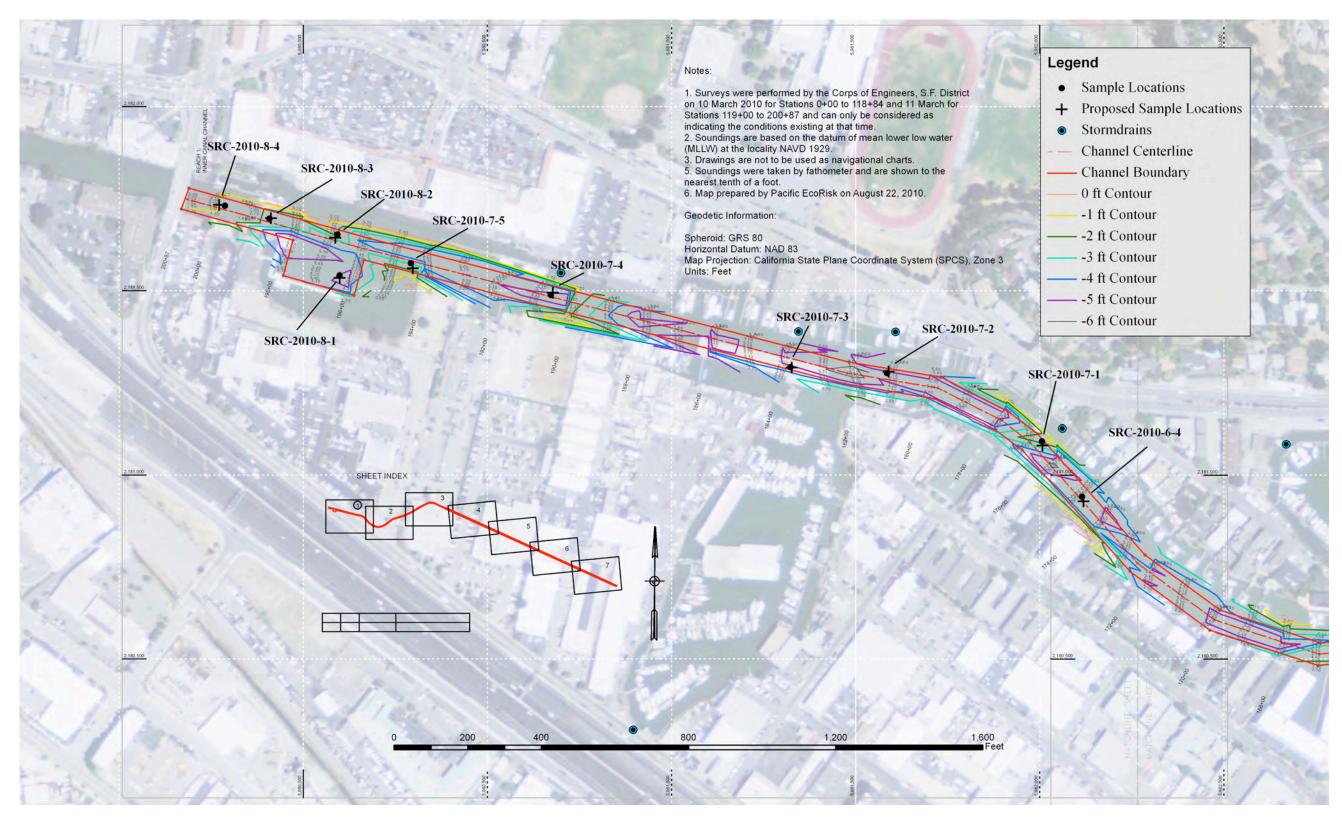


Figure 2-7. San Rafael Channel Sample Locations SRC-2010-6-4 through SRC-2010-8-4

Table 2-1a. Sampling station locations and core depths - Maintenance Depth Sections.

SAMPLE ID	Latitude ^A (N)	Longitude ^A (W)	Mudline Elevation	Core Section	Maintenance Core Section
GINNII EE IE	(deg-dec min)	(deg-dec min)	(ft MLLW)	Length (ft)	Depth (ft MLLW)
SRC-2010-1-1	37°57.4468'	122°27.4544'	-4.9	5.1	-10
SRC-2010-1-2	37°57.5008'	122°27.6109'	-5.5	4.5	-10
SRC-2010-1-3	37°57.5744'	122°27.7880'	-5.4	4.6	-10
SRC-2010-1-4	37°57.6236'	122°27.9629'	-5.7	4.3	-10
SRC-2010-2-1	37°57.6998'	122°28.1555'	-5.3	4.7	-10
SRC-2010-2-2	37°57.7405'	122°28.3144'	-4.9	5.1	-10
SRC-2010-2-3	37°57.7830'	122°28.4229'	-5.7	4.3	-10
SRC-2010-2-4	37°57.8441'	122°28.5872'	-5.7	4.3	-10
SRC-2010-3-1	37°57.8571'	122°28.6511'	-5.3	4.7	-10
SRC-2010-3-2	37°57.9123'	122°28.7784'	-4.1	5.9	-10
SRC-2010-3-3	37°57.9442'	122°28.9166'	-4.2	5.8	-10
SRC-2010-3-4	37°58.0032'	122°29.0527'	-2.5	7.5	-10
SRC-2010-4-1	37°58.0442'	122°29.1723'	-2.9	7.1	-10
SRC-2010-4-2	37°58.0852'	122°29.3285'	-4.2	5.8	-10
SRC-2010-4-3	37°58.1334'	122°29.4386'	-3.5	6.5	-10
SRC-2010-4-4	37°58.1698'	122°29.5767'	-3.3	6.7	-10
SRC-2010-5-1	37°58.1902'	122°29.6279'	-3.4	4.6	-8
SRC-2010-5-2	37°58.2115'	122°29.6923'	-3.6	4.4	-8
SRC-2010-5-3	37°58.2060'	122°29.8990'	-3.6	4.4	-8
SRC-2010-5-4	37°58.1815'	122°29.9558'	-2.4	5.6	-8
SRC-2010-5-5	37°58.1529'	122°30.0195'	-2.9	5.1	-8
SRC-2010-5-6	37°58.1056'	122°30.1423'	-4.5	3.5	-8
SRC-2010-6-1	37°58.0627'	122°30.2888'	-3.5	4.5	-8
SRC-2010-6-2	37°58.0165'	122°30.3673'	-3.3	4.7	-8
SRC-2010-6-3	37°57.9853'	122°30.4600'	-4.0	4.0	-8
SRC-2010-6-4	37°58.0439'	122°30.6349'	-4.6	3.4	-8
SRC-2010-7-1	37°58.0683'	122°30.6583'	-5.0	3.0	-8
SRC-2010-7-2	37°58.0973'	122°30.7466'	-5.4	2.6	-8
SRC-2010-7-3	37°58.0990'	122°30.8012'	-3.8	4.2	-8
SRC-2010-7-4	37°58.1290'	122°30.9375'	-4.7	3.3	-8
SRC-2010-7-5	37°58.1418'	122°31.0170'	-3.7	4.9	-8
SRC-2010-8-1	37°58.1357'	122°31.0571'	-4.5	3.5	-8
SRC-2010-8-2	37°58.1526'	122°31.0598'	-3.3	1.0	-8
SRC-2010-8-3	37°58.1605'	122°31.0974'	-1.7	6.3	-8
SRC-2010-8-4	37°58.1658'	122°31.1227'	-0.1	7.9	-8

A State Plane Coordinate System, California Zone 3, NAD 83.

Table 2-1b. Sampling station locations and core depths – 'Information Only' Section.

SAMPLE ID	Latitude ^A (N) (deg-dec min)	Longitude ^A (W) (deg-dec min)	Top of 'Information Only' Section (ft MLLW)	Core Section Length (ft)	'Information Only' Core Depth (ft MLLW)
SRC-2010-1-1-B	37°57.4468'	122°27.4544'	-10	2.0	-12
SRC-2010-1-2-B	37°57.5008'	122°27.6109'	-10	2.0	-12
SRC-2010-1-3-B	37°57.5744'	122°27.7880'	-10	2.0	-12
SRC-2010-1-4-B	37°57.6236'	122°27.9629'	-10	2.0	-12
SRC-2010-2-1-B	37°57.6998'	122°28.1555'	-10	2.0	-12
SRC-2010-2-2-B	37°57.7405'	122°28.3144'	-10	2.0	-12
SRC-2010-2-3-B	37°57.7830'	122°28.4229'	-10	2.0	-12
SRC-2010-2-4-B	37°57.8441'	122°28.5872'	-10	2.0	-12
SRC-2010-3-1-B	37°57.8571'	122°28.6511'	-10	2.0	-12
SRC-2010-3-2-B	37°57.9123'	122°28.7784'	-10	2.0	-12
SRC-2010-3-3-B	37°57.9442'	122°28.9166'	-10	2.0	-12
SRC-2010-3-4-B	37°58.0032'	122°29.0527'	-10	2.0	-12
SRC-2010-4-1-B	37°58.0442'	122°29.1723'	-10	2.0	-12
SRC-2010-4-2-B	37°58.0852'	122°29.3285'	-10	2.0	-12
SRC-2010-4-3-B	37°58.1334'	122°29.4386'	-10	2.0	-12
SRC-2010-4-4-B	37°58.1698'	122°29.5767'	-10	2.0	-12
SRC-2010-5-1-B	37°58.1902'	122°29.6279'	-8	2.0	-10
SRC-2010-5-2-B	37°58.2115'	122°29.6923'	-8	2.0	-10
SRC-2010-5-3-B	37°58.2060'	122°29.8990'	-8	2.0	-10
SRC-2010-5-4-B	37°58.1815'	122°29.9558'	-8	2.0	-10
SRC-2010-5-5-B	37°58.1529'	122°30.0195'	-8	2.0	-10
SRC-2010-5-6-B	37°58.1056'	122°30.1423'	-8	2.0	-10
SRC-2010-6-1-B	37°58.0627'	122°30.2888'	-8	2.0	-10
SRC-2010-6-2-B	37°58.0165'	122°30.3673'	-8	2.0	-10
SRC-2010-6-3-B	37°57.9853'	122°30.4600'	-8	2.0	-10
SRC-2010-6-4-B	37°58.0439'	122°30.6349'	-8	2.0	-10
SRC-2010-7-1-B	37°58.0683'	122°30.6583'	-8.5	1.5	-10
SRC-2010-7-2-B	37°58.0973'	122°30.7466'	-8.5	1.5	-10
SRC-2010-7-3-B	37°58.0990'	122°30.8012'	-8.5	1.5	-10
SRC-2010-7-4-B	37°58.1290'	122°30.9375'	-8.5	1.5	-10
SRC-2010-7-5-B	37°58.1418'	122°31.0170'	-8.5	1.5	-10
SRC-2010-8-1-B	37°58.1357'	122°31.0571'	-8.5	1.5	-10
SRC-2010-8-2-B	37°58.1526'	122°31.0598'	-8.5	1.5	-10
SRC-2010-8-3-B	37°58.1605'	122°31.0974'	-8.5	1.5	-10
SRC-2010-8-4-B	37°58.1658'	122°31.1227'	-8.5	1.5	-10

^A State Plane Coordinate System, California Zone 3, NAD 83.

			<u> </u>		
SAMPLE ID	Latitude ^A (N) (deg-dec min)	Longitude ^A (W) (deg-dec min)	Top of 'Z- Layer' Section (ft MLLW)	Core Length (ft)	Z-Layer Core Depth (ft MLLW)
SRC-2010-7-1-Z	37°58.0683'	122°30.6583'	-8	0.5	-8.5
SRC-2010-7-2-Z	37°58.0973'	122°30.7466'	-8	0.5	-8.5
SRC-2010-7-3-Z	37°58.0990'	122°30.8012'	-8	0.5	-8.5
SRC-2010-7-4-Z	37°58.1290'	122°30.9375'	-8	0.5	-8.5
SRC-2010-7-5-Z	37°58.1418'	122°31.0170'	-8	0.5	-8.5
SRC-2010-8-1-Z	37°58.1357'	122°31.0571'	-8	0.5	-8.5
SRC-2010-8-2-Z	37°58.1526'	122°31.0598'	-8	0.5	-8.5
SRC-2010-8-3-Z	37°58.1605'	122°31.0974'	-8	0.5	-8.5
SRC-2010-8-4-Z	37°58.1658'	122°31.1227'	-8	0.5	-8.5

Table 2-1c. Sampling station locations and core penetration depths – Z-Layer Section.

2.2 Collection of Site Water

Ambient surface water was collected from within the San Rafael Channel for use in preparing the sediment elutriates for biological testing. Briefly, site water was collected from approximately 3 ft. below the surface using a battery-operated peristaltic pump fitted with tygon tubing. Site water was "pre-pumped" through the tubing for approximately 3 minutes before the sample was collected. Water was then pumped into a 20-L polypropylene carboy, with the carboy being pre-rinsed 3 times with site water before the site water sample was collected. After the site water samples were collected, the carboys were sealed, labeled, and stored on ice, until delivered to the bioassay laboratory.

2.3 Collection of San Pablo (SF-10) and Alcatraz (SF-11) Reference Sediments

PER collected reference sediments from the San Pablo (SF-10) and Alcatraz (SF-11) disposal sites on June 15, 2010. The reference sediments were collected as grab samples, using a pipe dredge sampler. The DGPS coordinates for the reference sediment sample collections are listed in Table 2-2.

Sample ID	Latitude ^A (N) (deg-dec min)	Longitude ^A (W) (deg-dec min)
SF10-2010-01	38° 00.4032'	122° 25.1730'
SF10-2010-02	38° 00.5940'	122° 24.8958'
SF10-2010-03	38° 00.3600'	122° 25.0120'
SF10-2010-04	38° 00.5120'	122° 24.7814'
SF-11 (Station H)	37° 48.8280'	122° 25.5765'

Table 2-2. Reference Site Sample Locations.

^A State Plane Coordinate System, California Zone 3, NAD 83.

^A State Plane Coordinate System, California Zone 3, NAD 83.

All sediment and water samples were maintained on ice until transported to the PER testing lab for processing. Upon receipt at PER, all samples were logged in and placed in cold storage at ≤4°C in the dark until needed. Field log sheets are presented in Appendix A. There were no unusual circumstances encountered during the fieldwork, and no major deviations from the SAP (PER 2010).

3. SAMPLE PROCESSING

3.1 Homogenization and Compositing of Sediments

Homogenization and compositing of individual sediment cores was performed at the PER laboratory facility in Fairfield, CA. Each of the sediment cores were partitioned into appropriate sections (maintenance material, Z-layer, and 'information only' core sections) on board the sampling vessel as per the SAP (USACE 2010); upon receipt at the PER lab, all samples were stored at ≤4°C until used in the testing program.

For each Composite Sample Area, the sediment core sections from each individual core were individually homogenized in a stainless-steel bowl or high-density polyethylene (HDPE) container. A 500-mL sub-sample of the homogenized sediment from each individual core section was archived to allow for additional chemical analyses, if necessary (archived samples will be stored frozen at $-20 \pm 10^{\circ}$ C for up to one [1] year after sample collection). For each of the core section types, representative portions of the remaining homogenized sediment from each of the core sections were composited and re-homogenized to form a homogenized composite sample. A 500-mL aliquot of each homogenized composite sample was archived as described above. A "Z-layer" section was collected for Composite Sample Areas 7 and 8 cores.

Appropriate volumes of each Composite Sample Area core section composite sample were collected into sample containers for submittal to analytical laboratories for physical and chemical analyses. Sample labels were filled out with an indelible-ink pen and affixed to the sample containers. Each label contained the project number, sample identification number, preservation technique, requested analyses, date and time of collection and preparation, and initials of the person preparing the sample. To protect the information on the sample labels, clear tape was placed around the labeled sample containers. The sample containers were then be placed into a sample freezer and frozen until shipped, with the exception of sediment samples slated for grain size analysis, which will be stored at \leq 4°C.

Appropriate volumes of the Composite Sample Area core section composite sediments were stored at $\leq 4^{\circ}$ C for subsequent biological testing, as appropriate. The remaining sediments from each of the individual cores were also stored at $\leq 4^{\circ}$ C.

The SF-10 and SF-11 reference sediments were also homogenized and similarly processed.

All sediment was processed following procedures outlined in the SAP (USACE 2010), with no deviations.

Samples of the maintenance depth composited sediments, Z-layer composited sediments, and 'information only' composited sediments were submitted for chemical and conventional analyses

and biological testing as per the approved SAP (USACE 2010). For Composite Sample Areas 7 and 8, samples of the composited maintenance depth core section <u>for the individual cores</u> were also submitted for analyses. The remainder of the samples were archived appropriately for subsequent analysis, if needed.

3.2 Sample Shipping

Prior to shipping to the analytical laboratory, sample containers were wrapped in bubble wrap and securely packed inside a cooler with ice packs or crushed ice. A temperature blank was included in each cooler. The original signed chain-of-custody (COC) forms were placed in a sealed plastic bag and taped to the inside lid of the cooler. Appropriate packaging tape was wrapped completely around the cooler. A *This Side Up* arrow label was attached on each side of the cooler, a *Glass-Handle with Care* label was attached to the top of the cooler, and the cooler was sealed with custody seals on both the front and the back lid seams.

Sediment samples were shipped by overnight delivery. The sub-contracting analytical laboratories are not to dispose of any samples for this project unless notified by PER in writing.

3.2.1 Chain-of-Custody (COC) Protocol

COC procedures were followed for all samples throughout the collection, handling, and analyses activities. The Sampling and Analysis Project Manager, or a designee, was responsible for all sample tracking and COC procedures. This person was responsible for final sample inventory, maintenance of sample custody documentation, and completion of COC forms prior to transferring samples to the analytical laboratory. A COC form accompanied each cooler of samples to the respective analytical laboratories. Each custodian of the samples signed the COC form; copies of the COC forms are retained in the project file.

4. METHODS

4.1 Sediment Analytical Chemistry Procedures

All sediment chemical and conventional analyses were conducted as per the SAP (USACE 2010) and in accordance with USACE/EPA guidelines (USACE/EPA 1998). The methods and targeted method reporting limits (MRL) for analyses of bulk sediment and sediment elutriate samples are provided in Tables 4-1 through 4-3. All sediment analytical results are presented on a dry weight basis (e.g., mg/kg or μ g/kg, dry wt). Matrix spikes and sample duplicate analyses were performed on the site samples. All samples were maintained according to the appropriate holding times and temperatures for each analysis as per the SAP (USACE 2010).

4.2 Modified Elutriate Test (MET) Procedures

Preparation of MET elutriates for toxicity testing was initiated on July 6, 2010. All elutriate samples were prepared as described in USACE, 1985. All elutriates samples were prepared at a sediment slurry concentration of 150 g/L dry sediment wt basis (the dry weight basis of each homogenized sediment was determined by oven-drying a known volume of sediment. The resulting dry weight concentration of each sediment was used to calculate the volume of sediment and water that would be required to prepare an elutriate slurry at a sediment concentration of 150 g/L dry wt basis). Each elutriate slurry was prepared by mixing site water and sediment for 5 minutes, followed with vigorous aeration for 1 hr in a 4-L graduated cylinder, after which the slurry was allowed to settle for 24-hrs. After the settling period, the elutriate supernatant for each sample was collected from the cylinder by siphoning at a point midway between the water surface and settled sediment interface using clean silicone tubing. Extreme care was taken not to re-suspend any of the settled material. Aliquots of each MET elutriate were placed into pre-cleaned bottles provided by CAS and shipped, on ice and under chain-of-custody, on July 7, 2010. MET elutriate bioassay testing was initiated on July 7, 2010. All elutriate chemistry results are presented on a wet weight basis for the 100% elutriate (e.g., μ g/L). Matrix spikes and sample duplicate analyses were performed on one of the site samples. All samples were maintained according to the appropriate holding times and temperatures for each analysis as per the SAP (USACE 2010).

Table 4-1. Standard List of Analytes, Methods, Targeted and Achieved Reporting Limits.

Analyte	Method Used	SAP Targeted MRL
Metals		
Arsenic	EPA 6020	2 mg/kg
Cadmium	EPA 6020	0.3 mg/kg
Chromium	EPA 6020	5 mg/kg
Copper	EPA 6020	5 mg/kg
Lead	EPA 6020	5 mg/kg
Mercury	EPA 7471A	0.02 mg/kg
Nickel	EPA 6020	5 mg/kg
Selenium	EPA 7742	0.1 mg/kg
Silver	EPA 6020	0.2 mg/kg
Zinc	EPA 6020	1 mg/kg
Pesticides		
Aldrin	EPA 8081B	2 μg/kg
a- <i>BHC</i>	EPA 8081B	$2 \mu g/kg$
b-BHC	EPA 8081B	2 μg/kg
g-BHC (Lindane)	EPA 8081B	2 μg/kg
d-BHC	EPA 8081B	2 μg/kg
Chlordane	EPA 8081B	20 μg/kg
2,4'-DDD	EPA 8081B	2 μg/kg
2,4'-DDE	EPA 8081B	2 μg/kg
2,4'-DDT	EPA 8081B	2 μg/kg
4,4'-DDD	EPA 8081B	2 μg/kg
4,4'-DDE	EPA 8081B	2 μg/kg
4,4'-DDT	EPA 8081B	$2 \mu g/kg$
Total DDT	EPA 8081B	$2 \mu g/kg$
Dieldrin	EPA 8081B	$2 \mu \text{g/kg}$
Endosulfan I	EPA 8081B	$2 \mu g/kg$
Endosulfan II	EPA 8081B	$2 \mu \text{g/kg}$
Endosulfan sulfate	EPA 8081B	$2 \mu g/kg$
Endrin	EPA 8081B	2 μg/kg
Endrin aldehyde	EPA 8081B	$2 \mu g/kg$
Heptachlor	EPA 8081B	$2 \mu g/kg$
Heptachlor epoxide	EPA 8081B	2 μg/kg
Toxaphene	EPA 8081B	20 μg/kg
Total Organotins	Krone 1989	10 μg/kg
Total PAHs	EPA 8270C	20 μg/kg
Total PCBs	EPA 8082	20 μg/kg
Grain Size	ASTM 1992	<u>+</u> 0.1%
Total Solids	EPA 160.3	<u>+</u> 0.1%
Total Organic Carbon (TOC)	EPA 415.1	<u>+</u> 0.1%

Table 4-2. List of Hamilton Analytes, Methods, and Targeted Reporting Limits.

Analyte	Method Used	SAP Targeted MRL
Metals		
Barium	EPA 6020	190 mg/kg
Beryllium	EPA 6020	1.03 mg/kg
Boron	EPA 6020	36.9 mg/kg
Cobalt	EPA 6020	27.6 mg/kg
Manganese	EPA 6020	943 mg/kg
Vanadium	EPA 6020	118 mg/kg
Organics		
Pentachlorophenol	EPA 8270-GPC	17 μg/kg
Phenol	EPA 8270-GPC	130 μg/kg
TPH – diesel/motor oil	EPA 8015	144,000 μg/kg
TPH – gasoline/JP-4	EPA 8015	12,000 μg/kg
BHCs total	EPA 8081	0.99 μg/kg
Chlordane	EPA 8081	$1.1 \mu\mathrm{g/kg}$
Dieldrin	EPA 8081	$0.72 \mu\mathrm{g/kg}$
Heptachlor	EPA 8081	0.3 μg/kg
Heptachlor epoxide	EPA 8081	0.3 μg/kg
Methoxychlor	EPA 8081	90 μg/kg
Dioxins (total TCDD TEQ)	EPA 8290	$0.02 \mu\mathrm{g/kg}$

Table 4-3. List of Analytes for MET Elutriate, Methods, and Targeted Reporting Limits.

Analyte	Method Used	SAP Targeted MRL
Total Suspended Solids	EPA	5 mg/L
Arsenic	EPA 6020	1 μg/L
Cadmium	EPA 6020	$0.25 \mu\mathrm{g/L}$
Chromium	EPA 6020	1 μg/L
Copper	EPA 6020	1 μg/L
Lead	EPA 6020	$0.25 \mu\mathrm{g/L}$
Mercury	EPA 7471A	$0.005 \mu\mathrm{g/L}$
Nickel	EPA 6020	5 μg/L
Selenium	EPA 7742	0.5 μg/L
Zinc	EPA 6020	10 μg/L

4.3 Biological Testing Procedures

Biological testing was only performed for the maintenance depth core section materials. The methods used in conducting these evaluations followed established guidelines:

- Method E1367-99. Standard Guide for conducting 10-day static toxicity tests with marine and estuarine amphipods (ASTM 1999);
- Method E724-98. Standard Guide for conducting static acute toxicity tests starting with embryos of four species of seawater bivalve mollusk. (ASTM 1999);
- Method E1611-00. Standard Guide for conducting sediment tests with marine and estuarine polychaetous annelids. (ASTM 2000);
- Methods for Assessing the Toxicity of Sediment-Associated Contaminants with Estuarine and Marine Amphipods (US EPA 1994);
- U.S. EPA (1994) 'Methods for Assessing the Toxicity of Sediment-Associated Contaminants with Estuarine and Marine Amphipods', EPA-600/R-94/025. U.S. EPA, Env. Research Laboratory, Narragansett, RI.;
- U.S. EPA (1994) 'Methods for Assessing the Toxicity of Sediment-Associated Contaminants with Estuarine and Marine Amphipods', EPA-600/R-94/025. U.S. EPA, Env. Research Laboratory, Narragansett, RI.

4.3.1 Source of Natural Seawater

The natural seawater used in these tests was obtained from the UC Davis Granite Canyon Marine Laboratory, and is characterized as "pristine"; this water was stored at the PER laboratory in a 3000-gallon insulated HDPE tank at 4°C. This seawater was 0.45- μ m filtered and then adjusted to the desired test salinity (e.g., 30 ppt) via addition of Type 1 lab water (reverse-osmosis, deionized water) prior to use in these tests (these diluted natural seawaters are referred to using the adjusted salinity level [e.g., '30 ppt seawater']).

4.3.2 Sediment Porewater Characterization

Prior to the initiation of the sediment tests, the San Rafael composited, homogenized maintenance depth core section sediments were removed from refrigerated storage, and each sample was re-homogenized in a large stainless steel bowl. Aliquots of the re-homogenized maintenance depth core section composite sediments were centrifuged at 2,500 g for 15 minutes; the resulting supernatant porewaters were carefully collected and analyzed for routine water quality characteristics (Table 4-4).

Sample ID	рН	Salinity (ppt)	Total Ammonia	Total Sulfide
			(mg/L N)	(mg/L)
San Pablo (SF-10)	7.03	27.9	2.3	0.033
Alcatraz (SF-11)	7.48	28.5	<1.0	0.318
SRC-2010-1	7.76	25.1	25.6	0.117
SRC-2010-2	7.81	23.8	37.9	0.047
SRC-2010-3	7.85	23.7	27.9	0.044
SRC-2010-4	7.94	22.7	27.2	0.043
SRC-2010-5	7.87	23.9	27.3	0.042
SRC-2010-6	8.01	23.6	20.6	0.054
SRC-2010-7	7.90	24.9	23.2	0.073
SRC-2010-8	7.77	24.8	33.4	0.051

Table 4-4. Sediment porewater initial water quality characteristics.

4.3.2.1 Purging of Sediment Porewater Ammonia for the Amphipod and Polychaete Tests

Due to the measurement of elevated sediment porewater ammonia concentrations in each composite sample that exceeded the US ACOE guidelines-recommended threshold of 15 mg/L, these sediments were purged of ammonia as per DMMO guidelines (PN01-01) by daily replacement of the overlying water with fresh 28 ppt seawater coupled with aeration until the porewater total ammonia levels were below 15 mg/L. The tests were initiated when analysis of the sediment porewater indicated that the total ammonia concentration for the site sediments were below 15 mg/L.

4.3.3 Solid-Phase Sediment Toxicity Testing with Ampelisca abdita

An initial set of tests were initiated on July 10, 2010; the test organisms used in this testing exhibited a unacceptable degree of mortality in the reference toxicant test, precluding the ability to determine the sensitivity of the test organisms. As a result, the sediments were re-tested with a new batch of organisms from a different supplier. This re-testing was initiated on August 1, 2010.

The *Ampelisca abdita* used in the re-tests were obtained from a commercial supplier (Brezina and Associates, Dillon, CA). The *Ampelisca* were maintained at a salinity of 28 ppt prior to shipment to the testing lab; upon receipt, the test organisms were held in 28 ppt seawater at 20°C.

On the day preceding test initiation, the test replicates were set-up. There were 5 replicates each for the composite samples and reference sites, each replicate consisting of a 1 L glass beaker to which approximately 4 cm depth of homogenized sediment was added. The overlying water consisted of 28 ppt seawater carefully poured into each test replicate so as to minimize disturbance of the sediment. Test replicates were similarly established for the Control treatment,

which consisted of a homogenized mixture of previously collected clean reference site sediments that is maintained "under culture" at the PER Lab. These test replicates were maintained in a temperature-controlled room at 20°C under continuous illumination from fluorescent lighting. Each test replicate was gently aerated.

The following day, and immediately prior to test initiation, routine water quality characteristics (temperature, pH, D.O., and salinity) were determined for the overlying water in each test replicate; in addition, a small sample of the overlying water was collected from each replicate and composited for each treatment for determination of the total ammonia in the overlying water at that treatment. The tests were then initiated with the random allocation of 20 randomly selected *Ampelisca* into each replicate container (aeration was shut off until the amphipods reburied themselves, approximately 1 hr after their introduction). Each day, for the next 9 days, the temperature, pH, D.O., and salinity of the overlying water were measured in one test replicate for each treatment.

After 10 days exposure, routine water quality characteristics (temperature, pH, D.O., and salinity) were again determined for each test replicate; in addition, a small sample of the overlying water was collected from each replicate and composited for each treatment for determination of the total ammonia in the overlying water at that treatment. Then, the contents of each replicate beaker were sieved and examined, and the surviving amphipods were collected and counted. The resulting survival data were statistically analyzed using the CETIS® statistical software (TidePool Scientific, McKinleyville, CA). The results of these tests are summarized in Section 5.2.1.

4.3.3.1 Reference Toxicant Testing of the Ampelisca abdita

In order to assess the sensitivity of the organisms used in these tests to chemical stress, a concurrent reference toxicant test was performed. The reference toxicant test was performed as a 96-hr static waterborne exposure using test solutions consisting of 30 ppt seawater spiked with potassium chloride (KCl) at test concentrations of 0.25, 0.5, 1, 2, and 4 g/L.

There were 2 replicates at each treatment, each replicate consisting of 400 mL of test solution in a 600 mL HDPE beaker. The test was initiated by randomly allocating 10 amphipods into each replicate beaker. The beakers were placed in a temperature-controlled room at 20°C under continual darkness. Each replicate container was examined daily, and the number of live amphipods in each was recorded at this time. Routine water quality characteristics (D.O., pH, and temperature) of the treatment waters were measured and recorded for one randomly selected replicate per treatment each day.

After ~96 hrs, the number of live amphipods in each replicate beaker was determined. The resulting test response data were statistically analyzed to determine key dose-response point estimates (e.g., EC50); all statistical analyses were made using the CETIS® software. These response endpoints were then compared to the typical response range established by the mean ±

2 SD of the point estimates generated by the 20 most recent previous reference toxicant tests performed by this lab. The results of these tests are summarized in Section 5.2.1.1.

4.3.4 Solid-Phase Sediment Toxicity Testing with Neanthes arenaceodentata

The *Neanthes arenaceodentata* used in these tests were obtained from a commercial supplier (Don Reisch, Long Beach, CA), and were maintained at a salinity of 30 ppt prior to shipment to the testing lab; upon receipt, the test organisms were held in 30 ppt seawater at 20°C.

These tests were initiated on July 11, 2010. There were 5 replicates for the each maintenance depth core section composite, each replicate consisting of a 1 L glass beaker to which approximately 200 mL (approximately 2.5 cm depth) of composited, homogenized sediment was added. The overlying water consisted of 30 ppt seawater; approximately 800 mL of this water was carefully poured into each test replicate so as to minimize disturbance of the sediment. Test replicates were similarly established for the Control treatment, which consisted of a homogenized mixture of previously collected clean reference site sediments that is maintained "under culture" at the PER Lab. These test replicates were then placed in a temperature-controlled room at 20°C, under cool white fluorescent lighting on a 12L:12D photoperiod. Each test replicate was gently aerated.

The following day, and immediately prior to test initiation, routine water quality characteristics (temperature, pH, D.O., and salinity) were determined for the overlying water in each test replicate; in addition, a small sample of the overlying water was collected from each replicate and composited for each treatment for determination of the total ammonia in the overlying water at that treatment. The tests were then initiated with the random allocation of 10 randomly selected *Neanthes* into each replicate container (aeration was shut off until the polychaetes reburied themselves, approximately 1 hr after their introduction). Each day, for the next 9 days, the temperature, pH, D.O., and salinity of the overlying water were measured in one test replicate for each treatment.

After 10 days exposure, routine water quality characteristics (temperature, pH, D.O., and salinity) were again determined for each test replicate; in addition, a small sample of the overlying water was collected from each replicate and composited for each treatment for determination of the total ammonia in the overlying water at that treatment. Then, the contents of each replicate beaker were sieved and examined, and the surviving polychaetes were collected and counted. The resulting survival data were statistically analyzed using the CETIS® statistical software. The results of these tests are summarized in Section 5.2.2.

4.3.4.1 Reference Toxicant Testing of the Neanthes arenaceodentata

In order to assess the sensitivity of the organisms used in these tests to chemical stress, a concurrent reference toxicant test was performed. The reference toxicant test consists of a static

acute 96-hr survival toxicity test of waterborne KCl, at test treatment concentrations of 0.25, 0.5, 1, 2, and 4, g/L.

There were 2 replicates at each treatment, each replicate consisting of 400 mL of test media in a 600 mL HDPE beaker. The test was initiated by randomly allocating 5 polychaetes into each replicate beaker. The beakers were placed in a temperature-controlled room at 20°C under continual darkness. Each replicate container was examined daily, and the number of live polychaetes in each was recorded at this time. Routine water quality characteristics (D.O., pH and temperature) of the treatment waters were measured and recorded for one randomly selected replicate per treatment each day.

After \sim 96 hrs, the number of live organisms in each replicate beaker was determined. The resulting test response data were statistically analyzed to determine key dose-response point estimates (e.g., EC50); all statistical analyses were made using the CETIS® software. These response endpoints were then compared to the typical response range established by the mean \pm 2 SD of the point estimates generated by the 20 most recent previous reference toxicant tests performed by this lab. The results of these tests are summarized in Section 5.2.2.1.

4.3.5 Water Column Toxicity Test Procedures

4.3.5.1 Standard Elutriate Test (SET) Procedures

SET elutriate preparation for the toxicity testing was initiated on July 7, 2010. All SET elutriate samples were prepared as described in USACE, 1998. Sediment elutriates were prepared by mixing each composited, homogenized maintenance depth core section sediment with site water at a 1:4 ratio on a stir plate for 30 minutes. After mixing, the resultant sediment slurries were allowed to settle for 1 hour. The resulting supernatants comprised the 100% SET elutriate test solutions.

4.3.5.2 Sediment Elutriate Toxicity Testing with Mytilus galloprovincialis

The sediment elutriate toxicity test with *Mytilus* embryos consists of a 48 hr static bioassay in which *Mytilus* embryos are exposed to site sediment elutriates, and the effects on embryo survival and development determined. The specific procedures used in these tests are described below. The sediment elutriate toxicity tests with *Mytilus* embryos were initiated on July 7, 2010.

4.3.5.2.1 Preparation of Bivalve Embryos - The adult *Mytilus* used to provide the embryos for the sediment elutriate tests were obtained from a commercial supplier (Dave Gutoff, San Diego, CA); upon receipt in the laboratory, the adult bivalves were placed in small tanks of 30 ppt seawater at 12°C where they were held until used to produce embryos later that same day.

The adult bivalves were rinsed thoroughly with 30 ppt seawater and then placed into holding tanks containing 30 ppt seawater at 20°C in order to induce spawning; spawning individuals were

subsequently placed into separate beakers containing 30 ppt seawater in order to isolate and collect gametes.

Samples of the gametes from spawning males and females were collected and evaluated for quality by visual inspection. For males exhibiting good sperm viability, overlying waters (containing the sperm) from the beakers containing spawning males were decanted off and pooled. The overlying waters (containing eggs) from the females exhibiting the best egg quality were also pooled, and then concentrated (or diluted) to provide an egg suspension of ~ 50 eggs/mL.

Fertilization of the eggs was accomplished by addition of sperm at a density of 10⁵ to 10⁷ sperm/mL. The resulting embryos were then placed in a temperature-controlled room at 15°C until being used for inoculation of test solutions (inoculation was initiated within 4 hrs of fertilization).

4.3.5.2.2 *Mytilus* Embryo Development Toxicity Test Procedures - The Lab Control/dilution water for these bioassays consisted of 30 ppt seawater. The Lab Control/dilution water and the 100% sediment elutriate solutions were used to prepare fresh test solutions at test treatment concentrations of 1, 10, 25, 50, and 100% elutriate for each of the composited maintenance depth core section sediments. Routine water quality characteristics (pH, D.O., and salinity) were measured for each treatment test solution prior to distribution into the test vials.

There were 5 replicates at each treatment level, each replicate consisting of 10 mL of test solution in a 20 mL glass scintillation vial. An extra replicate vial was established at each treatment for determination of final water quality characteristics; additional Lab Control treatment "observation" vials were established for confirmation of appropriate embryo development prior to test termination. Each test was initiated by randomly inoculating approximately 150-300 fertilized *Mytilus* embryos into each vial. The vials were randomly positioned in a temperature-controlled room at 16°C under a 16L:8D photoperiod.

After $48 \ (\pm 2)$ hrs, the Lab Control treatment "observation" vials were examined to confirm that the test organisms had achieved an acceptable degree of embryo development, after which the test was terminated. Routine water quality characteristics were determined for the 'water quality' replicates at test termination. The embryos in the test vials were immediately preserved with the addition of $0.5 \ \text{mL}$ of a 5% glutaraldehyde solution in filtered seawater.

The contents of each vial were later examined microscopically and the number of embryos that survived and developed normally or abnormally were determined. The resulting survival and development data were then statistically analyzed and key dose-response EC point estimates determined for each site sediment elutriate using the CETIS® statistical software. The results of these tests are summarized in Section 5.2.3.

4.3.5.2.3 Reference Toxicant Testing of the *Mytilus* Embryos - In order to assess the sensitivity of the mussel embryos to toxic stress, a reference toxicant test was performed. This reference toxicant test was performed similarly to the water column toxicity test, except that test solutions consisted of Lab Control water (30 ppt seawater) spiked with KCl at concentrations of 0.5, 1, 2, 3, and 4 g/L. The resulting test response data were analyzed to determine key doseresponse point estimates (e.g., EC50); all statistical analyses were made using the CETIS® software. These response endpoints were then compared to the typical response range established by the mean ± 2 SD of the point estimates generated by the 20 most recent previous reference toxicant tests performed by this lab. The results of this test are summarized in Section 5.2.3.1.

4.3.6 MET Sediment Elutriate Toxicity Testing with Americamysis bahia

The sediment MET elutriate toxicity test with *Americamysis bahia* consists of a 96-hr static bioassay in which mysids are exposed to the sediment MET elutriates, and the effects on mysid survival determined. The specific procedures used in this test are described below. These sediment MET elutriate tests were initiated on July 7, 2010.

The *Americamysis bahia* used in the sediment MET elutriate tests were obtained from a commercial supplier (Aquatic BioSystems, Fort Collins, CO); upon receipt in the laboratory, the mysids were maintained in small tanks of 30 ppt seawater at 20°C, and were fed brine shrimp nauplii *ad libitum*.

The Lab Control water for this test was prepared by salting up Type 1 lab water to a salinity of 25 ppt using a commercial artificial sea salt (Crystal Sea Salt®-bioassay grade). A Site Water Control was also tested concurrently with the sediment elutriate samples. The sediment MET elutriates were tested at the 100% elutriate concentration only. Initial routine water quality characteristics (pH, D.O., and salinity) were measured for each treatment test solution prior to use in these tests.

There were 5 test replicates at each treatment, each replicate consisting of a 400 mL glass beaker containing 200 mL of appropriate test solution. The tests were initiated with the allocation of 10 randomly-selected 5-day old mysids into each test replicate. The test replicates were randomly positioned a temperature-controlled room at 20°C under a 16L:8D photoperiod.

Each day, water quality conditions were determined for one randomly-selected replicate per treatment, and the test replicates were examined to determine the number of surviving organisms, with any dead organisms being removed via pipette. Each replicate was fed brine shrimp nauplii daily.

After 96 (± 2) hrs exposure, the tests were terminated. At test termination, the final water quality conditions were determined for one randomly-selected replicate per treatment, after which each of the test replicates were examined to determine the number of surviving mysids. The resulting

survival data were then statistically analyzed using the CETIS® statistical software. The results of these tests are summarized in Section 5.2.4.

4.3.6.1 Reference Toxicant Testing of the Americanysis bahia

In order to assess the sensitivity of these test organisms to chemical stress, a reference toxicant test was performed concurrently with the MET elutriate tests. The reference toxicant test was performed similarly to the MET elutriate test, except that test solutions consisted of Lab Control water spiked with KCl at test concentrations of 0.125, 0.25, 0.5, 1, and 2 g/L. The resulting test response data were statistically analyzed to determine key dose-response point estimates (e.g., EC50); all statistical analyses were made using the CETIS® software. These response endpoints were then compared to the typical response range established by the mean ± 2 SD of the point estimates generated by the 20 most-recent previous reference toxicant tests performed by this lab. The results of this test are summarized in Section 5.2.4.1.

4.4 Data Analysis and Interpretation

Data were analyzed and are presented clearly so that suitability for disposal at an unconfined aquatic disposal or an upland wetland reuse site can be determined. All analytical data were reviewed for accuracy. The physical and chemical characteristics of sediment samples were evaluated consistent with the DMMO review process. Benthic sediment toxicity test results were compared to the organism responses in the SF-10 and SF-11 reference sediments according to the DMMO review process; water column toxicity test results were compared to the Elutriate Suitability Concentration (ESC) at the edge of the mixing zone for the SF-10 and SF-11 Disposal Sites.

4.4.1 Sediment Chemistry and Conventional Data Analyses

Sediment physical and chemical characteristics provide information about chemicals of concern present in the sediment and their potential bioavailability, and about non-chemical factors that could affect toxicity. Data analysis of sediment chemistry and conventional parameters consisted of tabulation and comparison with existing regulatory guidelines. Sediment chemistry results were also used to identify "hot spots" which may need further resolution (e.g., analysis of sediment material from individual cores), and/or to assist in evaluating appropriate disposal options.

4.4.2 Benthic Toxicity Test Data

ITM guidance requires that test sediment results be compared with disposal site and/or reference site sediment results or a reference site database (if it is available) to determine the potential impact of whole sediment on benthic organisms at and beyond the boundaries of the disposal site (USEPA/USACE 1998). As detailed in the ITM, comparative guidelines for acceptance were followed as listed below:

- 1. If survival is greater in the proposed dredged sediments than in reference site sediment(s) or the reference site sediment database, the proposed dredged sediments are <u>not</u> acutely toxic to benthic organisms.
- 2. If the difference between test sediment survival and reference sediment survival (or between test sediment survival and the 'reference site database survival') is ≤20% for amphipods or ≤10% for polychaetes, the test sediments are <u>not</u> acutely toxic to benthic organisms.
- 3. If the difference between test sediment survival and reference sediment survival is >20% for amphipods or >10% for polychaetes, then survival in the test sediment must be statistically compared to survival in the reference sediment. If a statistically significant reduction in survival is then observed for the proposed dredged sediment treatment, then the test sediments are considered to be acutely toxic to benthic organisms. Statistical analyses are not performed when reference site database values are used.

4.5 Water Column (Sediment Elutriate or Liquid Suspended Phase) Toxicity Test Data

Guidelines for interpretation of water column tests, as detailed in the ITM, are listed below:

- 1. If survival and normal embryo development in the 100% sediment elutriate treatment is ≥ survival and normal embryo development in the Control (clean seawater) treatment, the dredged material is <u>not</u> predicted to be acutely toxic to water column organisms.
- 2. If the reduction in survival or normal embryo development in the 100% sediment elutriate treatment is ≤10% relative to the Control treatment response, there is no need for statistical analyses and no indication of water column toxicity attributable to the test sediments.
- 3. If the reduction in survival or normal embryo development in the 100% sediment elutriate is >10% relative to the Control treatment response, then data must be evaluated statistically to determine the magnitude of toxicity. If there is >50% survival or normal embryo development in the 100% elutriate treatment, the LC50/EC50 is assumed to be ≥100%. If there is <50% survival or normal embryo development in at least one of the elutriate treatments, then an LC50/EC50 should be calculated and compared with existing acceptability standards.

4.5.1 Dilution Model Calculations

The Short Term Fate Model for open water barge and hopper discharges will ultimately be used to model the fate of disposed sediments and determine if the concentrations of chemicals of concern will meet water quality criteria at the edge of the mixing zones for the various disposal sites in San Francisco Bay; input parameters, unique to each site, are currently being developed. The dilution model currently used to calculate the concentration of sediment at the edge of the mixing zone uses the results of both grain size analysis (% clay and % silt) and water-column bioassay tests (LC50/EC50) to determine if the concentration of dredge material that is swept away from the barge will result in an exceedance at the edge of the disposal site mixing zone. A

sample is considered to exceed water quality criteria if 1% of the calculated LC50 or EC50 (whichever is more conservative) is lower than the projected suspended phase concentration of the dredge material at the edge of the mixing zone.

5. RESULTS OF LABORATORY ANALYSES

5.1 Results of Conventional and Chemical Analyses

Sediment and sediment elutriate samples were analyzed for the chemical and conventional parameters specified in the SAP (USACE 2010) and described in Section 2.0.

5.1.1 Sediment Analytical Chemistry Results

The results for analyses of composite area, individual sediment cores, and z-layer samples are summarized in Tables 5-1a-c. The full Data Reports for the conventional and chemical analyses that were submitted by CAS and CalScience are provided in Appendices B and C, respectively. Results for 'information only' composite samples are presented in Appendix D.

While the majority of compounds were similar to or below Bay Ambient concentrations or HWRP acceptance criteria, there were select sediment samples which were above these screening levels. Table 5-2 summarizes sediment cores for which analytical results were above either Bay Ambient concentrations or HWRP acceptance criteria.

5.1.2 Modified Elutriate Test Chemistry Analyses

The results of the MET elutriate analyses are summarized in Table 5-3 and were evaluated to predict concentrations of metals in decant water discharged from the HWRP site following the placement of dredged material. Total suspended solids (TSS) along with total and dissolved metals concentrations were determined and were compared to water quality objectives (WQOs) defined in the SF Bay Basin Plan (RWQCB 2007 and RWQCB 2009) for surface waters. Briefly, the measured total suspended solids (TSS) concentrations ranged from 25–382 mg/L. Any metals that exceeded a WQO value are highlighted in Table 4-7. With the exception of total mercury for sites SRC-2010-1, SRC-2010-4, SRC-2010-6, and SRC-2010-7 all metals measured in the sediment elutriate were below SFRWQCB WQOs. The dissolved mercury concentrations metals were all well below the WQO indicating that relative suspended solids are playing a significant roll in mercury above the WQO. A copy of the MET analytical chemistry report is presented in Appendix B.

Table 5-1a. San Rafael Channel 2010 Sediment Chemistries - Composite Sample Areas 1-6 Maintenance Depth Core Section Composites.

Analyte	Units	SF-10	SF-11	Bay Background (RWQCB 1998) ¹	HWRP Acceptance Criteria ²	SRC-2010-1	SRC-2010-2	SRC-2010-3	SRC-2010-4	SRC-2010-5	SRC-2010-6
Grain Size											
Gravel (>2.00 mm)	%, dry wt	14.4	2.34			18.60	16.80	0.64	23.20	10.50	4.04
Sand (0.0625 mm to 2.00 mm)	%, dry wt	66.9	92.10			17.22	36.4	35.5	31.9	35.8	31.2
Silt (0.0039 mm to 0.0625 mm)	%, dry wt	11.4	0.67	<100% fines	NA	31.50	19.50	30.80	19.30	25.60	24.50
Clay (< 0.0039 mm)	%, dry wt	10.8	1.39			36.1	18.50	30.00	21.80	26.90	41.80
Percent fines (Silt+Clay)	%, dry wt	22.2	2.06			67.6	38.0	60.8	41.1	52.5	66.3
% Solids	%	67.1	80.9	-	-	44.6	46.7	48.3	47.2	44.2	40.9
TOC	%	0.87	0.27	-	-	1.38	1.28	1.15	1.29	1.45	1.56
Metals											
Arsenic	mg/kg, dry wt	8.02	4.12	15.3	15.3	10.4	9.95	9.73	9.97	10.5	11
Cadmium	mg/kg, dry wt	0.145	0.035	0.33	0.7	0.221	0.189	0.184	0.182	0.203	0.236
Chromium	mg/kg, dry wt	42.2	21.4	112	112	76.6	74.7	71.9	75	81.1	84.8
Copper	mg/kg, dry wt	24.3	4.13	68.1	68.1	53	49.7	46.6	51.3	60	76.4
Lead	mg/kg, dry wt	14.1	6.84	43.2	43.2	23.1	22.1	21.8	24.7	27.9	39.1
Mercury	mg/kg, dry wt	0.138	0.033	0.43	0.43	0.311	0.287	0.306	0.309	0.395	0.356
Nickel	mg/kg, dry wt	59.9	27.4	112	112	87.3	85.1	79.7	83.9	89.9	93.5
Selenium	mg/kg, dry wt	0.04 J	0.03	0.64	0.64	0.27	0.35	0.27	0.36	0.39	0.30
Silver	mg/kg, dry wt	0.106	0.018 J	0.58	0.58	0.243	0.246	0.246	0.263	0.285	0.338
Zinc	mg/kg, dry wt	67.3	23.6	158	158	123	112	122	142	158	185
Butyltins											
Tetra-n-butyltin	μg/kg, dry wt	<0.64	< 0.54	-	-	< 0.98	< 0.94	< 0.89	< 0.92	<1.0	<1.1
Tri-n-butyltin Cation	μ g/kg, dry wt	< 0.62	< 0.53	-	-	< 0.96	< 0.92	1.3 J	< 0.90	1.7 J	3.8
Di-n-butyltin Cation	μ g/kg, dry wt	0.63 J	< 0.24	-	-	2.1 J	1.5 J	2.3	1.6 J	5.0	14
n-Butyltin Cation	μ g/kg, dry wt	0.93 J	< 0.32	-	-	2.5	2.0 J	2.5	2.5	5.6	12
Σ detected Butylins	μg/kg, dry wt	1.56 J	<0.54	-	-	4.6	3.5 J	6.1	4.1	12.3	29.8
PCBs											
Aroclor 1016	μg/kg, dry wt	<2.0	<1.7	-	-	<2.4	<2.3	<2.2	<2.3	<2.4	<2.6
Aroclor 1221	μg/kg, dry wt	<2.0	<1.7	-	-	<2.4	<2.3	<2.2	<2.3	<2.4	<2.6
Aroclor 1232	μg/kg, dry wt	<2.0	<1.7	-	-	<2.4	<2.3	<2.2	<2.3	<2.4	<2.6
Aroclor 1242	μ g/kg, dry wt	<2.0	<1.7	-	-	<2.4	<2.3	<2.2	<2.3	<2.4	<8.9
Aroclor 1248	μ g/kg, dry wt	<2.0	<1.7	-	-	<2.4	<2.3	<2.2	<2.3	<2.4	<2.6
Aroclor 1254	μ g/kg, dry wt	<2.0	<1.7	-	-	10 J	<4.2	3.8 J	<4.4	8.8 J	13 J
Aroclor 1260	μg/kg, dry wt	2.9 J	<1.7	-	- 22.5	9.6 J	<5.5	5.5 J	<2.3	8.7 J	5.0 J
Σ detected PCBs	μg/kg, dry wt	2.9 J	<1.7	22.7	22.7	19.6 J	<5.5	9.3 J	<4.4	17.5 J	18.0 J

Table 5-1a. San Rafael Channel 2010 Sediment Chemistries - Composite Sample Areas 1-6 Maintenance Depth Core Section Composites (continued).

Analyte	Units	SF-10	SF-11	Bay Background (RWQCB 1998) ¹	HWRP Acceptance Criteria ²	SRC-2010-1	SRC-2010-2	SRC-2010-3	SRC-2010-4	SRC-2010-5	SRC-2010-6
Organochlorine Pesticides											
Aldrin	μg/kg, dry wt	< 0.069	< 0.057	1.1	-	<0.18	<0.18	< 0.17	< 0.17	<0.19	< 0.20
alpha-BHC	μg/kg, dry wt	< 0.087	< 0.072	-	-	<0.13	<0.12	< 0.12	< 0.12	<0.13	< 0.14
beta-BHC	μg/kg, dry wt	< 0.27	< 0.23	-	-	<0.21	< 0.20	<0.19	< 0.20	<0.21	< 0.22
delta-BHC	μg/kg, dry wt	< 0.11	< 0.087	-	-	0.10 J	<0.080	< 0.077	< 0.079	< 0.084	< 0.091
gamma-BHC (lindane)	μg/kg, dry wt	< 0.076	< 0.063	-	-	< 0.090	< 0.086	< 0.083	< 0.085	<1.2	< 0.098
alpha-Chlordane	μg/kg, dry wt	< 0.094	< 0.078	-	-	<0.12	<0.11	<0.11	<0.11	0.26 J	0.53 J
gamma-Chlordane	μg/kg, dry wt	0.16 J	< 0.070	-	-	0.29 J	0.12 J	< 0.094	0.24 J	0.43 J	1.1 J
Chlordane	μg/kg, dry wt	<15	<13	1.1	1.1	<3.4	<2.7	<2.5	<2.1	3.5 J	9.1 J
4,4'-DDD	μg/kg, dry wt	0.44	< 0.13	-	-	1.1 J	0.90 J	0.51 J	0.60 J	0.86 J	1.2 J
4,4'-DDE	μg/kg, dry wt	0.87	< 0.059	-	-	2.0	1.4	1.0 J	0.96 J	1.3	2
4,4'-DDT	μg/kg, dry wt	< 0.30	< 0.071	-	-	< 0.65	< 0.46	< 0.25	< 0.20	<1.2	<1.3
2,4'-DDD	μg/kg, dry wt	0.17 J	< 0.075	-	-	0.51 J	0.55 J	0.35 J	0.17 J	0.25 J	0.51 J
2,4'-DDE	μ g/kg, dry wt	< 0.093	< 0.077	-	-	<0.18	<0.18	< 0.17	< 0.17	<0.19	<1.3
2,4'-DDT	μ g/kg, dry wt	0.21 J	< 0.055	-	-	0.44 J	0.24 J	0.21 J	0.22 J	0.40 J	0.70 J
Σ detected DDTs	μg/kg, dry wt	1.69	<0.13	7.0	7.0	4.05 J	3.09 J	2.07 J	1.95 J	2.81 J	4.41 J
Dieldrin	μg/kg, dry wt	< 0.076	< 0.063	0.44	0.72	<0.16	<0.15	< 0.15	<0.18	<0.16	<0.18
Endosulfan I	μg/kg, dry wt	< 0.084	< 0.070	-	-	< 0.071	< 0.068	< 0.066	< 0.070	< 0.072	< 0.080
Endosulfan II	μg/kg, dry wt	<0.13	< 0.111	-	-	<0.16	< 0.15	<0.15	< 0.15	<0.16	<0.18
Endosulfan sulfate	μg/kg, dry wt	< 0.076	< 0.063	-	-	<0.13	<0.12	<0.12	< 0.12	<0.13	< 0.14
Endrin	μg/kg, dry wt	< 0.085	< 0.071	0.78	-	<0.11	<0.11	< 0.098	< 0.10	<0.11	<0.12
Endrin aldehyde	μg/kg, dry wt	< 0.072	< 0.060	-	6.4	< 0.14	<0.13	<0.13	<0.13	< 0.14	< 0.15
Heptachlor	μg/kg, dry wt	< 0.069	< 0.057	-	0.3	< 0.14	<0.13	< 0.15	<0.13	< 0.14	< 0.15
Heptachlor epoxide	μg/kg, dry wt	< 0.072	< 0.060	-	0.3	< 0.095	< 0.097	< 0.087	< 0.089	< 0.095	< 0.24
Toxaphene	μg/kg, dry wt	<3.6	<3.0	-	-	<13	<7.3	<9.9	<9.4	<18	<15
PAHs											
Naphthalene	μg/kg, dry wt	5.2	7.9	55.8	-	12	11	15	11	12	14
Acenaphthylene	μ g/kg, dry wt	1.8 J	0.94 J	31.7	-	4.2 J	4.9 J	9.1	4.2 J	7.5	4.0 J
Acenaphthene	μ g/kg, dry wt	1.4 J	< 0.76	26.6	-	3.1 J	3.8 J	6.1	2.7 J	3.6 J	3.2 J
Fluorene	μ g/kg, dry wt	3.1	1.7 J	25.3	-	5.1 J	4.8 J	7.9	4.0 J	6.8	5.0 J
Phenanthrene	μ g/kg, dry wt	27	13	237	-	38	40	80	32	72	31
Anthracene	μ g/kg, dry wt	16	4.0	88	-	10	13	30	9.9	23	9.3
Fluoranthene	μ g/kg, dry wt	47	14	514	-	91	110	190	88	260	100
Pyrene	μ g/kg, dry wt	57	15	665	-	150	190	300	150	360	200

Table 5-1a. San Rafael Channel 2010 Sediment Chemistries - Composite Sample Areas 1-6 Maintenance Depth Core Section Composites (continued).

Analyte	Units	SF-10	SF-11	Bay Background (RWQCB 1998) ¹	HWRP Acceptance Criteria ²	SRC-2010-1	SRC-2010-2	SRC-2010-3	SRC-2010-4	SRC-2010-5	SRC-2010-6
PAHs (cont.)											
Benzo(a)anthracene	μg/kg, dry wt	23	7.6	244	-	46	56	100	48	140	54
Chrysene	μg/kg, dry wt	26	7.1	289	-	54	79	120	62	180	78
Benzo(b)fluoranthene	μg/kg, dry wt	35	8.2	371	-	86	110	160	93	240	120
Benzo(k)fluoranthene	μg/kg, dry wt	13	2.9	258	-	27	32	51	31	74	37
Benzo(a)pyrene	μg/kg, dry wt	37	7.3	412	-	90	110	180	92	210	100
Indeno(1,2,3-cd)pyrene	μg/kg, dry wt	32	5.4	382	-	81	90	150	84	200	110
Dibenzo(a,h)anthracene	μg/kg, dry wt	3.9	1.5 J	32.7	-	9.2	10	16	8.9	24	13
Benzo(g,h,i)perylene	μg/kg, dry wt	39	6.6	310	-	99	110	170	100	210	140
Σ detected PAHs	μg/kg, dry wt	367	103	3390	3390	806	975	1585	821	2023	1019
Hamilton Metals											
Barium	mg/kg, dry wt	38.4	8.5	-	190	52.2	46.6	47.3	49.6	48.1	51.5
Beryllium	mg/kg, dry wt	0.352	0.14	-	1.03	0.566	0.535	0.503	0.543	0.626	0.643
Boron	mg/kg, dry wt	0.3	2.0 J	-	36.9	24	22	24	25	25	28
Cobalt	mg/kg, dry wt	13.7	7.09	-	27.6	17.9	17	16.1	16.3	17.8	17.6
Manganese	mg/kg, dry wt	434	303	-	943	733	654	619	659	598	506
Vanadium	mg/kg, dry wt	52.3	18.6	-	118	69.9	64.1	66.7	71	68.8	73.2
Hamilton Organics											
Phenol	μg/kg, dry wt	29 J	3.0 J	-	130	5.4 J	4.0 J	3.7 J	19 J	4.6 J	3.7 J
Pentachlorophenol	μ g/kg, dry wt	<20	<20	-	17	<23	<22	<21	<22	<23	<24
TPH Diesel / motor oil	mg/kg, dry wt	42.8 J	20.9 J	-	144000	145	156	161	223	188	355
TPH Gasoline / JP-4	mg/kg, dry wt	<2.3	<1.7	-	12000	<3.8	<3.6	<3.4	<3.5	<3.7	<4.1
Methoxyclor	mg/kg, dry wt	< 0.23	< 0.19	-	90	< 0.22	<0.21	<0.20	<0.21	< 0.22	<0.24
Dioxins (TCDD)	ng/kg, dry wt	0.210	0.00392	-	20	0.479	0.128	0.0288	0.281	0.330	2.40

Notes:

Bold Font and Bold Outline = Reported Value > Bay Background.

Bold Font and Grey Shading = Value > HWRP Acceptance Criteria and Bay Background.

¹ San Francisco Regional Water Quality Control Board (1998) Staff Report: Ambient Concentrations of Toxic Chemicals in San Francisco Bay Sediments. May 1998.

² Hamilton Wetlands Biological Opinion (USFWS 2005).

J – Analyte detected below the method reporting limit (MRL) and the reported value is therefore an estimate; as a result, J-flagged values are not identified as exceeding screening criteria.

Table 5-1b. San Rafael Channel 2010 Sediment Chemistries - Composite Sample Area 7 Maintenance Depth and Z-Layer Core Section Composites and Individual Core Maintenance Depth Sections.

Analyte	Units	SF-10	SF-11	Bay Background (RWQCB 1998) ¹	HWRP Acceptance Criteria ²	SRC-2010-7	SRC-2010-7-Z	SRC-2010-7-1	SRC-2010-7-2	SRC-2010-7-3	SRC-2010-7-4	SRC-2010-7-5
Grain Size												
Gravel (>2.00 mm)	%, dry wt	14.4	2.34			9.18	7.71	5.68	42.1	23.6	5.36	10
Sand (0.0625 mm to 2.00 mm)	%, dry wt	66.9	92.10			28.7	43.0	19.0	11.0	16.8	28.6	39.7
Silt (0.0039 mm to 0.0625 mm)	%, dry wt	11.4	0.67	<100% fines	NA	10.40	21.40	34.10	22.1	29.9	35.9	27.7
Clay (< 0.0039 mm)	%, dry wt	10.8	1.39			41.90	26.00	44.80	26.6	30.7	29.3	22.2
Percent fines (Silt+Clay)	%, dry wt	22.2	2.06			52.3	47.4	78.90	48.70	60.60	65.20	49.90
% Solids	%	67.1	80.9	-	-	42.0	47.5	39.0	41.7	41.3	39.8	43.8
TOC	%	0.87	0.27	-	-	2.84	0.558	1.77	1.61	1.96	3.83	4.91
Metals												
Arsenic	mg/kg, dry wt	8.02	4.12	15.3	15.3	10.9	11.9	9.14	11.5	10.5	11.6	11.5
Cadmium	mg/kg, dry wt	0.145	0.035	0.33	0.7	0.441	0.505	0.191	0.278	0.295	0.517	0.726
Chromium	mg/kg, dry wt	42.2	21.4	112	112	91.1	101	80.6	89.9	86.3	97	101
Copper	mg/kg, dry wt	24.3	4.13	68.1	68.1	104	109	88.2	88.3	101	129	95.7
Lead	mg/kg, dry wt	14.1	6.84	43.2	43.2	78.3	138	33.3	57.7	49.6	91.3	162
Mercury	mg/kg, dry wt	0.138	0.033	0.43	0.43	0.461	0.728	0.359	0.534	0.412	0.438	0.541
Nickel	mg/kg, dry wt	59.9	27.4	112	112	101	110	88.6	98.7	95.8	109	119
Selenium	mg/kg, dry wt	0.04 J	0.03	0.64	0.64	0.45	0.22	0.40	0.33	0.24	0.18	0.31
Silver	mg/kg, dry wt	0.106	0.018 J	0.58	0.58	0.358	0.49	0.268	0.392	0.346	0.332	0.419
Zinc	mg/kg, dry wt	67.3	23.6	158	158	248	227	207	210	227	272	298
Butyltins												
Tetra-n-butyltin	μ g/kg, dry wt	< 0.64	< 0.54	-	-	<1.1	< 0.90	<1.2	<1.1	<1.1	<1.1	<1.1
Tri-n-butyltin Cation	μ g/kg, dry wt	< 0.62	< 0.53	-	-	9.6	21	3.9	12	6.7	14	17
Di-n-butyltin Cation	μ g/kg, dry wt	0.63 J	<0.24	-	-	33	50	15	68	30	51	63
n-Butyltin Cation	μ g/kg, dry wt	0.93 J	< 0.32	-	-	20	21	10	29	20	29.0	27
∑ detected Butylins	μg/kg, dry wt	1.56 J	<0.54	-	-	62.6	92	28.9	109	56.7	94	107
PCBs												
Aroclor 1016	μ g/kg, dry wt	<2.0	<1.7	-	-	<2.5	<2.3	<2.7	<2.6	<2.6	<2.7	<2.4
Aroclor 1221	μ g/kg, dry wt	<2.0	<1.7	-	-	<2.5	<2.3	<2.7	<2.6	<2.6	<2.7	<2.4
Aroclor 1232	μg/kg, dry wt	<2.0	<1.7	-	-	<2.5	<2.3	<2.7	<2.6	<2.6	<2.7	<2.4
Aroclor 1242	μg/kg, dry wt	<2.0	<1.7	-	-	34	91	9.2 J	<2.6	27	55	<2.4
Aroclor 1248	μg/kg, dry wt	<2.0	<1.7	-	-	<2.5	<2.3	<2.7	<2.6	<2.6	<2.7	180
Aroclor 1254	μg/kg, dry wt	<2.0	<1.7	-	_	47	100	<2.7	42	42 37	97	230
Aroclor 1260 Σ detected PCBs	μ g/kg, dry wt μ g/kg, dry wt	2.9 J 2.9 J	<1.7 <1.7	22.7	22.7	45 126	64 255	14 23.2	33 75	106	66 218	170 580

Table 5-1b. San Rafael Channel 2010 Sediment Chemistries - Composite Sample Area 7 Maintenance Depth and Z-Layer Core Section Composites and Individual Core Maintenance Depth Sections (continued).

Analyte	Units	SF-10	SF-11	Bay Background (RWQCB 1998) ¹	HWRP Acceptance Criteria ²	SRC-2010-7	SRC-2010-7-Z	SRC-2010-7-1	SRC-2010-7-2	SRC-2010-7-3	SRC-2010-7-4	SRC-2010-7-5
Organochlorine Pesticides												
Aldrin	μg/kg, dry wt	< 0.069	< 0.057	1.1	-	<0.24	< 0.17	<0.21	< 0.20	< 0.20	< 0.67	<1.7
alpha-BHC	μ g/kg, dry wt	< 0.087	< 0.072	-	-	< 0.45	<0.12	< 0.15	< 0.14	< 0.14	< 0.14	<0.13
beta-BHC	μ g/kg, dry wt	< 0.27	<0.23	-	-	< 0.50	<0.19	< 0.24	< 0.22	< 0.22	<0.23	<0.21
delta-BHC	μ g/kg, dry wt	< 0.11	< 0.087	_	-	< 0.089	< 0.083	< 0.095	< 0.089	< 0.090	<0.13	<0.55
gamma-BHC (lindane)	μ g/kg, dry wt	< 0.076	< 0.063	_	-	< 0.096	<1.1	< 0.12	< 0.096	< 0.097	< 0.26	0.82 J
alpha-Chlordane	μ g/kg, dry wt	< 0.094	< 0.078	-	-	5.2	3.6	1.1 J	0.95 J	2.4	8.7	30
gamma-Chlordane	μ g/kg, dry wt	0.16 J	< 0.070	_	-	<7.3	6.7	1.3	2.3	3.7	11	43
Chlordane	μ g/kg, dry wt	<15	<13	1.1	1.1	64	48	12 J	18	32	96	380
4,4'-DDD	μ g/kg, dry wt	0.44	< 0.13	_	-	7.5	13	1.5	2.4	2.8	16	66
4,4'-DDE	μ g/kg, dry wt	0.87	< 0.059	-	-	6.8	11	2.4	3.6	4.4	13	33
4,4'-DDT	μ g/kg, dry wt	< 0.30	< 0.071	-	-	<1.2	4.5	1.6	<2.0	<2.2	<1.9	<9.7
2,4'-DDD	μ g/kg, dry wt	0.17 J	< 0.075	_	-	2.7	4.2	0.69 J	1.0 J	<1.1	4.5	18
2,4'-DDE	μ g/kg, dry wt	<0.093	< 0.077	-	-	<1.2	<2.1	<1.3	<1.2	<1.3	<1.3	<5.2
2,4'-DDT	μ g/kg, dry wt	0.21 J	< 0.055	-	-	1.9	3.5	<1.3	1.7	1.8	3.6	7.3
Σ detected DDTs	μ g/kg, dry wt	1.69	<0.13	7.0	7.0	18.9	36.2	6.19	8.7	9.0	37.1	124.3
Dieldrin	μ g/kg, dry wt	< 0.076	< 0.063	0.44	0.72	0.46 J	<1.1	<0.18	<1.2	<0.33	1.2 J	2.8
Endosulfan I	μ g/kg, dry wt	< 0.084	< 0.070	-	-	<1.2	1.1 J	< 0.14	0.34 J	<1.3	<1.3	<3.8
Endosulfan II	μ g/kg, dry wt	< 0.13	< 0.111	-	-	< 0.70	< 0.15	<0.18	< 0.17	< 0.21	<1.1	<1.2
Endosulfan sulfate	μ g/kg, dry wt	< 0.076	< 0.063	-	-	< 0.69	<0.12	< 0.15	< 0.14	< 0.14	<1.3	<1.2
Endrin	μ g/kg, dry wt	< 0.085	< 0.071	0.78	-	< 0.12	< 0.099	<0.13	< 0.20	< 0.17	< 0.53	<1.2
Endrin aldehyde	μ g/kg, dry wt	< 0.072	< 0.060	_	6.4	0.31 J	<1.1	< 0.16	< 0.15	0.19 J	< 0.27	<1.2
Heptachlor	μ g/kg, dry wt	< 0.069	< 0.057	_	0.3	< 0.15	<0.13	< 0.16	< 0.15	< 0.15	< 0.16	<1.2
Heptachlor epoxide	μ g/kg, dry wt	< 0.072	< 0.060	_	0.3	< 0.74	<1.1	<0.18	< 0.53	< 0.54	<0.11	< 0.096
Toxaphene	μ g/kg, dry wt	<3.6	<3.0	-	-	<44	<39	<21	<49	<42	<89	<210
PAHs												
Naphthalene	μ g/kg, dry wt	5.2	7.9	55.8	-	16	11	11	13	12	13	25
Acenaphthylene	μ g/kg, dry wt	1.8 J	0.94 J	31.7	-	9.4	3.4 J	5.5 J	5.8 J	7.5	6.6	11
Acenaphthene	μ g/kg, dry wt	1.4 J	<0.76	26.6	-	12	4.6 J	2.7 J	2.6 J	3.5 J	4.5 J	33
Fluorene	μ g/kg, dry wt	3.1	1.7 J	25.3	-	16	5.4	4.3 J	4.3 J	5.2 J	5.5 J	42
Phenanthrene	μ g/kg, dry wt	27	13	237	-	170	28	44	44	65	69	230
Anthracene	μ g/kg, dry wt	16	4.0	88	-	47	8.5	15	11	18	20	59
Fluoranthene	μ g/kg, dry wt	47	14	514	-	490	100	130	140	200	250	750
Pyrene	μ g/kg, dry wt	57	15	665	-	780	200	180	230	340	450	1000

Table 5-1b. San Rafael Channel 2010 Sediment Chemistries - Composite Sample Area 7 Maintenance Depth and Z-Layer Core Section Composites and Individual Core Maintenance Depth Sections (continued).

Chrysene	Analyte	Units	SF-10	SF-11	Bay Background (RWQCB 1998) ¹	HWRP Acceptance Criteria ²	SRC-2010-7	SRC-2010-7-Z	SRC-2010-7-1	SRC-2010-7-2	SRC-2010-7-3	SRC-2010-7-4	SRC-2010-7-5
Chrysene μg/kg, dry wt 26 7.1 289 - 380 73 92 86 140 110 3 Benzo(b)fluoranthene μg/kg, dry wt 35 8.2 371 - 510 110 130 150 220 260 3 Benzo(k)fluoranthene μg/kg, dry wt 13 2.9 258 - 170 35 38 46 64 72 Benzo(a)pyrene μg/kg, dry wt 37 7.3 412 - 450 100 110 140 180 210 4 Indeno(1,2,3-ed)pyrene μg/kg, dry wt 32 5.4 382 - 420 100 130 170 200 220 220 220 220 223 24 27 220 23 24 27 220 23 24 27 220 23 24 27 220 23 24 27 220 23 24 27 220<	PAHs (cont.)												
Benzo(b)fluoranthene $μg/kg$, dry wt 35 8.2 371 - 510 110 130 150 220 260 3 Benzo(k)fluoranthene $μg/kg$, dry wt 13 2.9 258 - 170 35 38 46 64 72 3 Benzo(a)pyrene $μg/kg$, dry wt 37 7.3 412 - 450 100 110 140 180 210 4 Indeno(1,2,3-cd)pyrene $μg/kg$, dry wt 32 5.4 382 - 420 100 130 170 200 220 20 20 23 24 27 27 20 23 24 27 27 20 23 24 27 27 20 23 24 27 20 23 24 27 27 26 6 9.9 20 23 24 27 27 26 6 9.9 20 23 24 27 27 </td <td>Benzo(a)anthracene</td> <td>μg/kg, dry wt</td> <td>23</td> <td>7.6</td> <td>244</td> <td>-</td> <td>270</td> <td>48</td> <td>59</td> <td>56</td> <td>91</td> <td>110</td> <td>310</td>	Benzo(a)anthracene	μg/kg, dry wt	23	7.6	244	-	270	48	59	56	91	110	310
Benzo(k)fluoranthene μg/kg, dry wt 13 2.9 258 - 170 35 38 46 64 72 Benzo(a)pyrene μg/kg, dry wt 37 7.3 412 - 450 100 110 140 180 210 4 Indeno(1,2,3-cd)pyrene μg/kg, dry wt 32 5.4 382 - 420 100 130 170 200 220 220 Dibenzo(a,h)anthracene μg/kg, dry wt 3.9 1.5 J 32.7 - 56 9.9 20 23 24 27 Benzo(g,h,i)perylene μg/kg, dry wt 39 6.6 310 - 460 130 130 180 220 250 4 Σ detected PAHs μg/kg, dry wt 367 103 3390 3390 4256 967 1102 1302 1790 2078 4 Hamilton Metals Barium mg/kg, dry wt 38.4 8.5 - 190 65.4 </td <td>Chrysene</td> <td>μg/kg, dry wt</td> <td>26</td> <td>7.1</td> <td>289</td> <td>-</td> <td>380</td> <td>73</td> <td>92</td> <td>86</td> <td>140</td> <td>110</td> <td>360</td>	Chrysene	μ g/kg, dry wt	26	7.1	289	-	380	73	92	86	140	110	360
Benzo(a)pyrene μg/kg, dry wt 37 7.3 412 - 450 100 110 140 180 210 4 Indeno(1,2,3-cd)pyrene μg/kg, dry wt 32 5.4 382 - 420 100 130 170 200 220 4 Dibenzo(a,h)anthracene μg/kg, dry wt 3.9 1.5 J 32.7 - 56 9.9 20 23 24 27 Benzo(g,h,i)perylene μg/kg, dry wt 39 6.6 310 - 460 130 130 180 220 250 4 Σ detected PAHs μg/kg, dry wt 367 103 3390 3390 4256 967 1102 1302 1790 2078 4 Hamilton Metals Barium mg/kg, dry wt 38.4 8.5 - 190 65.4 64.7 48.8 54.1 56.3 62.5 8 Beryllium mg/kg, dry wt 0.352 0.14 - 1.03 </td <td>Benzo(b)fluoranthene</td> <td>μg/kg, dry wt</td> <td>35</td> <td>8.2</td> <td>371</td> <td>-</td> <td>510</td> <td>110</td> <td>130</td> <td>150</td> <td>220</td> <td>260</td> <td>500</td>	Benzo(b)fluoranthene	μg/kg, dry wt	35	8.2	371	-	510	110	130	150	220	260	500
Indeno(1,2,3-cd)pyrene μg/kg, dry wt 32 5.4 382 - 420 100 130 170 200 220 420	Benzo(k)fluoranthene	μ g/kg, dry wt	13	2.9	258	-	170	35	38	46	64	72	150
Dibenzo(a,h)anthracene μg/kg, dry wt 3.9 1.5 J 32.7 - 56 9.9 20 23 24 27	Benzo(a)pyrene	μg/kg, dry wt	37	7.3	412	-	450	100	110	140	180	210	430
Benzo(g,h,i)perylene μg/kg, dry wt 39 6.6 310 - 460 130 130 180 220 250 4 Σ detected PAHs μg/kg, dry wt 367 103 3390 3390 4256 967 1102 1302 1790 2078 4 Hamilton Metals Barium mg/kg, dry wt 38.4 8.5 - 190 65.4 64.7 48.8 54.1 56.3 62.5 8 Beryllium mg/kg, dry wt 0.352 0.14 - 1.03 0.653 0.704 0.638 0.739 0.651 0.767 0 Boron mg/kg, dry wt 0.3 2.0 J - 36.9 33 27 33 28.0 30.0 38 Cobalt mg/kg, dry wt 13.7 7.09 - 27.6 17 17.7 16.5 17.7 16.6 17.8 1 Manganese mg/kg, dry wt 434 303 - 943 <t< td=""><td>Indeno(1,2,3-cd)pyrene</td><td>μg/kg, dry wt</td><td>32</td><td>5.4</td><td>382</td><td>-</td><td>420</td><td>100</td><td>130</td><td>170</td><td>200</td><td>220</td><td>430</td></t<>	Indeno(1,2,3-cd)pyrene	μg/kg, dry wt	32	5.4	382	-	420	100	130	170	200	220	430
Σ detected PAHs μg/kg, dry wt 367 103 3390 3390 4256 967 1102 1302 1790 2078 4 Hamilton Metals Barium mg/kg, dry wt 38.4 8.5 - 190 65.4 64.7 48.8 54.1 56.3 62.5 8 Beryllium mg/kg, dry wt 0.352 0.14 - 1.03 0.653 0.704 0.638 0.739 0.651 0.767 0 Boron mg/kg, dry wt 0.3 2.0 J - 36.9 33 27 33 28.0 30.0 38 Cobalt mg/kg, dry wt 13.7 7.09 - 27.6 17 17.7 16.5 17.7 16.6 17.8 1 Manganese mg/kg, dry wt 434 303 - 943 392 382 444 496 463 364 36	Dibenzo(a,h)anthracene	μg/kg, dry wt	3.9	1.5 J	32.7	-	56	9.9	20	23	24	27	53
Hamilton Metals mg/kg, dry wt 38.4 8.5 - 190 65.4 64.7 48.8 54.1 56.3 62.5 8 Beryllium mg/kg, dry wt 0.352 0.14 - 1.03 0.653 0.704 0.638 0.739 0.651 0.767 0 Boron mg/kg, dry wt 0.3 2.0 J - 36.9 33 27 33 28.0 30.0 38 Cobalt mg/kg, dry wt 13.7 7.09 - 27.6 17 17.7 16.5 17.7 16.6 17.8 1 Manganese mg/kg, dry wt 434 303 - 943 392 382 444 496 463 364 364	Benzo(g,h,i)perylene	μg/kg, dry wt	39	6.6	310	-	460	130	130	180	220	250	490
Barium mg/kg, dry wt 38.4 8.5 - 190 65.4 64.7 48.8 54.1 56.3 62.5 8 Beryllium mg/kg, dry wt 0.352 0.14 - 1.03 0.653 0.704 0.638 0.739 0.651 0.767 0 Boron mg/kg, dry wt 0.3 2.0 J - 36.9 33 27 33 28.0 30.0 38 Cobalt mg/kg, dry wt 13.7 7.09 - 27.6 17 17.7 16.5 17.7 16.6 17.8 1 Manganese mg/kg, dry wt 434 303 - 943 392 382 444 496 463 364 3	∑ detected PAHs	μg/kg, dry wt	367	103	3390	3390	4256	967	1102	1302	1790	2078	4873
Barium mg/kg, dry wt 38.4 8.5 - 190 65.4 64.7 48.8 54.1 56.3 62.5 8 Beryllium mg/kg, dry wt 0.352 0.14 - 1.03 0.653 0.704 0.638 0.739 0.651 0.767 0 Boron mg/kg, dry wt 0.3 2.0 J - 36.9 33 27 33 28.0 30.0 38 Cobalt mg/kg, dry wt 13.7 7.09 - 27.6 17 17.7 16.5 17.7 16.6 17.8 1 Manganese mg/kg, dry wt 434 303 - 943 392 382 444 496 463 364 3													
Beryllium mg/kg, dry wt 0.352 0.14 - 1.03 0.653 0.704 0.638 0.739 0.651 0.767 0 Boron mg/kg, dry wt 0.3 2.0 J - 36.9 33 27 33 28.0 30.0 38 Cobalt mg/kg, dry wt 13.7 7.09 - 27.6 17 17.7 16.5 17.7 16.6 17.8 1 Manganese mg/kg, dry wt 434 303 - 943 392 382 444 496 463 364 3	Hamilton Metals												
Boron mg/kg, dry wt 0.3 2.0 J - 36.9 33 27 33 28.0 30.0 38 Cobalt mg/kg, dry wt 13.7 7.09 - 27.6 17 17.7 16.5 17.7 16.6 17.8 1 Manganese mg/kg, dry wt 434 303 - 943 392 382 444 496 463 364 3	Barium	mg/kg, dry wt	38.4	8.5	-	190	65.4	64.7	48.8	54.1	56.3	62.5	80.4
Cobalt mg/kg, dry wt 13.7 7.09 - 27.6 17 17.7 16.5 17.7 16.6 17.8 1 Manganese mg/kg, dry wt 434 303 - 943 392 382 444 496 463 364 33	Beryllium	mg/kg, dry wt	0.352	0.14	-	1.03	0.653	0.704	0.638	0.739	0.651	0.767	0.741
Manganese mg/kg, dry wt 434 303 - 943 392 382 444 496 463 364 3	Boron	mg/kg, dry wt	0.3	2.0 J	-	36.9	33	27	33	28.0	30.0	38	47
	Cobalt	mg/kg, dry wt	13.7	7.09	-	27.6	17	17.7	16.5	17.7	16.6	17.8	17.2
	Manganese	mg/kg, dry wt	434	303	-	943	392	382	444	496	463	364	347
Vanadium mg/kg, dry wt 52.3 18.6 - 118 64 66.2 70.7 74.5 71.5 64.4 5	Vanadium	mg/kg, dry wt	52.3	18.6	-	118	64	66.2	70.7	74.5	71.5	64.4	58.1
Hamilton Organics	Hamilton Organics												
Phenol \(\mu g/\text{kg, dry wt} \) 29 J 3.0 J - 130 150 J <11 4.4 J 4.2 J 5.0 J 7.4 J 60	Phenol	μ g/kg, dry wt	29 J	3.0 J	-	130	150 J	<11	4.4 J	4.2 J	5.0 J	7.4 J	6.7 J
	Pentachlorophenol		<20	<20	-	17	<240	<110	<26	<24	<24	<26	<23
	TPH Diesel / motor oil		42.8 J	20.9 J	-	144000	1240	880	376	530	620	1590	2950
	TPH Gasoline / JP-4		<2.3	<1.7	-	12000	5.0 J	7.1 J	<4.3	<3.9	<4.1	<4.3	6.4 J
	Methoxyclor		< 0.23	< 0.19	-	90	<1.2	< 0.20	< 0.29	< 0.23	< 0.64	<1.3	1.70
Dioxins (TCDD)	Dioxins (TCDD)		0.210	0.00392	-	20	5.00	5.12			-	-	-

Notes:

Bold Font and Bold Outline = Value > Bay Background.

Bold Font and Grey Shading = Value > HWRP Acceptance Criteria and Bay Background.

¹ San Francisco Regional Water Quality Control Board (1998) Staff Report: Ambient Concentrations of Toxic Chemicals in San Francisco Bay Sediments. May 1998.

²HWRP Biological Opinion (USFWS 2005).

J – Analyte detected below the method reporting limit (MRL) and the reported value is therefore an estimate; as a result, J-flagged values are not identified as exceeding screening criteria.

Table 5-1c. San Rafael Channel 2010 Sediment Chemistries – Composite Sample Area 8 Maintenance Depth and Z-Layer Core Section Composites and Individual Core Maintenance Depth Sections.

Analyte	Units	SF-10	SF-11	Bay Background (RWQCB 1998) ¹	HWRP Acceptance Criteria ²	SRC-2010-8	SRC-2010-8-Z	SRC-2010-8-1	SRC-2010-8-2	SRC-2010-8-3	SRC-2010-8-4
Grain Size											
Gravel (>2.00 mm)	%, dry wt	14.4	2.34			8.91	7.25	5.56	16.9	10.8	3.89
Sand (0.0625 mm to 2.00 mm)	%, dry wt	66.9	92.10			67.0	61.6	35.8	66.6	65.7	36.3
Silt (0.0039 mm to 0.0625 mm)	%, dry wt	11.4	0.67	<100% fines	NA	14.4	18.10	34.5	8.84	19.3	41.7
Clay (< 0.0039 mm)	%, dry wt	10.8	1.39			8.5	15.60	31.2	6.97	9.84	18.1
Percent fines (Silt+Clay)	%, dry wt	22.2	2.06			22.9	33.7	65.7	15.8	29.1	59.8
% Solids	%	67.1	80.9	-	-	54.4	47.5	42.7	59.8	38.1	45.4
TOC	%	0.87	0.27	-	-	4.26	4.75	2.70	9.50	7.60	3.80
Metals											
Arsenic	mg/kg, dry wt	8.02	4.12	15.3	15.3	5.58	12.1	17.1	8.59	10.5	5.88
Cadmium	mg/kg, dry wt	0.145	0.035	0.33	0.7	0.363	0.845	1.11	1.03	1.13	0.577
Chromium	mg/kg, dry wt	42.2	21.4	112	112	47.8	106	111	70.7	82.5	47.8
Copper	mg/kg, dry wt	24.3	4.13	68.1	68.1	52.7	107	75.0	79.2	115	39.5
Lead	mg/kg, dry wt	14.1	6.84	43.2	43.2	60.3	200	126	86.5	227	131
Mercury	mg/kg, dry wt	0.138	0.033	0.43	0.43	0.279	0.503	1.54	0.293	0.332	0.262
Nickel	mg/kg, dry wt	59.9	27.4	112	112	61.4	127	130	85.8	94.9	56.5
Selenium	mg/kg, dry wt	0.04 J	0.03	0.64	0.64	0.12	0.29	0.603	0.528	0.462	0.217
Silver	mg/kg, dry wt	0.106	0.018 J	0.58	0.58	0.152	0.425	0.763	0.316	0.499	0.165
Zinc	mg/kg, dry wt	67.3	23.6	158	158	184	323	237	358	392	201
Butyltins											
Tetra-n-butyltin	μg/kg, dry wt	< 0.64	< 0.54	-	-	< 0.81	1.3 J	< 0.75	< 0.84	< 0.82	< 0.59
Tri-n-butyltin Cation	μ g/kg, dry wt	< 0.62	< 0.53	-	-	5.9	11	< 0.71	7.2	23	18
Di-n-butyltin Cation	μ g/kg, dry wt	0.63 J	< 0.24	-	-	12	25	6.1	16	67	32
n-Butyltin Cation	μ g/kg, dry wt	0.93 J	< 0.32	-	-	12	27	<2.1	<2.3	<2.2	<1.6
Σ detected Butylins	μg/kg, dry wt	1.56 J	<0.54	-	-	29.9	64.3	6.1	23.2	90	50
PCBs											
Aroclor 1016	μg/kg, dry wt	<2.0	<1.7	-	-	<23	<50	<4.3	<4.7	<4.6	<3.3
Aroclor 1221	μ g/kg, dry wt	<2.0	<1.7	-	-	<6.4	<23	<4.2	<4.7	<4.6	<3.3
Aroclor 1232	μ g/kg, dry wt	<2.0	<1.7	-	-	<29	<110	<4.2	<4.7	<4.6	<3.3
Aroclor 1242	μ g/kg, dry wt	<2.0	<1.7	-	-	<39	<29	<4.2	<4.7	<4.6	<3.3
Aroclor 1248	μ g/kg, dry wt	<2.0	<1.7	-	-	<38	<61	<4.2	<4.7	<4.6	<3.3
Aroclor 1254	μg/kg, dry wt	<2.0	<1.7	-	-	<57	<58	<4.2	<4.7	<4.6	<3.3
Aroclor 1260	μ g/kg, dry wt	2.9 J	<1.7	- 22.5	-	60	76	<4.7	<5.2	<5.1	<3.7
∑ detected PCBs	μ g/kg, dry wt	2.9 J	<1.7	22.7	22.7	60	76	<4.7	<5.2	<5.1	<3.7

Table 5-1c. San Rafael Channel 2010 Sediment Chemistries – Composite Sample Area 8 Maintenance Depth and Z-Layer Core Section Composites and Individual Core Maintenance Depth Sections (continued).

Analyte	Units	SF-10	SF-11	Bay Background (RWQCB 1998) ¹	HWRP Acceptance Criteria ²	SRC-2010-8	SRC-2010-8-Z	SRC-2010-8-1	SRC-2010-8-2	SRC-2010-8-3	SRC-2010-8-4
Organochlorine Pesticides											
Aldrin	μ g/kg, dry wt	< 0.069	< 0.057	1.1	-	0.55 J	0.83 J	< 0.65	< 0.73	< 0.70	< 0.51
alpha-BHC	μg/kg, dry wt	< 0.087	< 0.072	-	-	<0.43	< 0.64	< 0.62	< 0.69	< 0.67	< 0.49
beta-BHC	μg/kg, dry wt	< 0.27	<0.23	-	-	<0.18	<0.21	< 0.54	< 0.60	< 0.58	< 0.42
delta-BHC	μg/kg, dry wt	< 0.11	< 0.087	-	-	< 0.074	< 0.38	< 0.67	< 0.75	< 0.72	< 0.53
gamma-BHC (lindane)	μg/kg, dry wt	< 0.076	< 0.063	-	-	<0.22	<1.3	< 0.48	< 0.54	< 0.52	< 0.38
alpha-Chlordane	μg/kg, dry wt	< 0.094	< 0.078	-	-	12	15	1.2 J	10	18	16
gamma-Chlordane	μg/kg, dry wt	0.16 J	< 0.070	-	-	18	23	2.8	11	36	23
Chlordane	μg/kg, dry wt	<15	<13	1.1	1.1	130	170	<8.5	170	250	190
4,4'-DDD	μg/kg, dry wt	0.44	<0.13	-	-	22	43	76	15	29	29
4,4'-DDE	μg/kg, dry wt	0.87	< 0.059	-	-	13	18	16	13	21	14
4,4'-DDT	μg/kg, dry wt	< 0.30	< 0.071	-	-	<4.3	<2.7	44	< 0.77	7.1	< 0.54
2,4'-DDD	μg/kg, dry wt	0.17 J	< 0.075	-	-	4	7.1	< 0.42	< 0.47	< 0.46	< 0.33
2,4'-DDE	μg/kg, dry wt	< 0.093	< 0.077	-	-	<1.5	<2.0	< 0.38	< 0.42	< 0.41	< 0.29
2,4'-DDT	μg/kg, dry wt	0.21 J	< 0.055	-	-	3.3	4.2	0.45	< 0.33	< 0.32	< 0.23
Σ detected DDTs	μg/kg, dry wt	1.69	<0.13	7.0	7.0	42.3	72.3	136	28	57.1	43
Dieldrin	μg/kg, dry wt	< 0.076	< 0.063	0.44	0.72	3.1	4.0	1.8	< 0.53	5.1	4.2
Endosulfan I	μ g/kg, dry wt	< 0.084	< 0.070	-	-	3.9	5.3	< 0.75	< 0.84	< 0.81	< 0.59
Endosulfan II	μ g/kg, dry wt	< 0.13	< 0.11	-	-	< 0.92	< 0.16	< 0.37	< 0.41	< 0.40	< 0.29
Endosulfan sulfate	μ g/kg, dry wt	< 0.076	< 0.063	-	-	< 0.92	<1.2	1.2 J	< 0.62	< 0.60	< 0.44
Endrin	μ g/kg, dry wt	< 0.085	< 0.071	0.78	-	< 0.92	0.18 J	< 0.43	< 0.47	< 0.46	< 0.33
Endrin aldehyde	μg/kg, dry wt	< 0.072	< 0.060	-	6.4	< 0.92	< 0.14	< 0.41	< 0.46	< 0.45	< 0.32
Heptachlor	μ g/kg, dry wt	< 0.069	< 0.057	-	0.3	< 0.12	< 0.14	< 0.47	< 0.52	< 0.51	< 0.37
Heptachlor epoxide	μ g/kg, dry wt	< 0.072	< 0.060	-	0.3	< 0.92	<1.2	2.5	< 0.43	< 0.42	< 0.30
Toxaphene	μ g/kg, dry wt	<3.6	<3.0	-	-	<90	<130	<18	<20	<19	<14
PAHs											
Naphthalene	μg/kg, dry wt	5.2	7.9	55.8	-	10	37	30	36	22 J	19
Acenaphthylene	μg/kg, dry wt	1.8 J	0.94 J	31.7	-	5.6	21	15 J	65	13 J	9.6 J
Acenaphthene	μg/kg, dry wt	1.4 J	< 0.76	26.6	-	93	21	13 J	69	18 J	29
Fluorene	μg/kg, dry wt	3.1	1.7 J	25.3	-	85	20	17 J	130	42	32
Phenanthrene	μg/kg, dry wt	27	13	237	-	1400	230	41	130	150	410
Anthracene	μg/kg, dry wt	16	4.0	88	-	300	54	16 J	39	45	74
Fluoranthene	μg/kg, dry wt	47	14	514	-	2100	990	150	290	370	570
Pyrene	μg/kg, dry wt	57	15	665	-	2200	1600	320	560	400	820

Table 5-1c. San Rafael Channel 2010 Sediment Chemistries - Composite Sample Area 8 Maintenance Depth and Z-Layer Core Section Composites and Individual Core Maintenance Depth Sections (continued).

Analyte	Units	SF-10	SF-11	Bay Background (RWQCB 1998) ¹	HWRP Acceptance Criteria ²	SRC-2010-8	SRC-2010-8-Z	SRC-2010-8-1	SRC-2010-8-2	SRC-2010-8-3	SRC-2010-8-4
PAHs (cont.)											
Benzo(a)anthracene	μg/kg, dry wt	23	7.6	244	-	1000	300	41	110	140	290
Chrysene	μg/kg, dry wt	26	7.1	289	-	900	400	80	170	210	350
Benzo(b)fluoranthene	μ g/kg, dry wt	35	8.2	371	-	790	670	84	150	190	210
Benzo(k)fluoranthene	μ g/kg, dry wt	13	2.9	258	-	280	170	67	130	170	210
Benzo(a)pyrene	μg/kg, dry wt	37	7.3	412	-	680	710	110	160	190	290
Indeno(1,2,3-cd)pyrene	μg/kg, dry wt	32	5.4	382	-	450	850	86	100	120	140
Dibenzo(a,h)anthracene	μ g/kg, dry wt	3.9	1.5 J	32.7	-	97	61	13 J	28	26	30
Benzo(g,h,i)perylene	μ g/kg, dry wt	39	6.6	310	-	480	970	140	170	190	210
Σ detected PAHs	μg/kg, dry wt	367	103	3390	3390	10871	7104	1223	2337	2296	3694
Hamilton Metals											
Barium	mg/kg, dry wt	38.4	8.5	-	190	58.7	98.9	70.4	58.3	78.1	85.5
Beryllium	mg/kg, dry wt	0.352	0.14	-	1.03	0.276	0.721	0.611	0.519	0.496	0.570
Boron	mg/kg, dry wt	0.3	2.0 J	-	36.9	25.1	40	38.5	21.0	55.0	37.9
Cobalt	mg/kg, dry wt	13.7	7.09	-	27.6	11.0	17.6	14.8	12.4	11.1	15.2
Manganese	mg/kg, dry wt	434	303	-	943	241	372	337	299	254	326
Vanadium	mg/kg, dry wt	52.3	18.6	-	118	32.9	63.6	60.5	32.0	39.0	53.2
Hamilton Organics											
Phenol	μ g/kg, dry wt	29 J	3.0 J	-	130	< 0.83	<23	<24	29 J	<590	<22
Pentachlorophenol	μ g/kg, dry wt	<20	<20	-	17	<25	<230	<240	<200	<270	<220
TPH Diesel / motor oil	mg/kg, dry wt	42.8 J	20.9 J	-	144000	262	2620	2060	1500	3440	3510
TPH Gasoline / JP-4	mg/kg, dry wt	<2.3	<1.7	-	12000	15	4.9 J	<4.0	<2.6	<4.4	7.2 J
Methoxyclor	mg/kg, dry wt	< 0.23	< 0.19	-	90	<2.0	<2.8	<0.35	< 0.39	<0.38	<0.28
Dioxins (TCDD)	ng/kg, dry wt	0.210	0.00392	-	20	6.15	10.2	-	-	-	-

Notes:

Bold Font and Bold Outline = Value > Bay Background

Bold Font and Grey Shading = Value > HWRP Acceptance Criteria and Bay Background

¹ San Francisco Regional Water Quality Control Board (1998) Staff Report: Ambient Concentrations of Toxic Chemicals in San Francisco Bay Sediments. May 1998.

²HWRP Biological Opinion (USFWS 2005)

J – Analyte detected below the method reporting limit (MRL) and the reported value is therefore an estimate; as a result, J-flagged values are not identified as exceeding screening criteria.

Table 5-2. Compounds Measured Above San Francisco Bay Ambient Levels or HWRP Acceptance Criteria.

Sample ID	Analytes Above Bay Ambient Levels (SFRWQCB 1998)	Analytes Above HWRP Acceptance Criteria (USFWS 2003)
SRC-2010-1	none	none
SRC-2010-2	none	none
SRC-2010-3	none	none
SRC-2010-4	none	none
SRC-2010-5	none	none
SRC-2010-6	Copper, Zinc	Copper, Zinc
SRC-2010-7	Cadmium, Copper, Lead, Mercury, Zinc, Chlordane, DDTs, Dieldrin, PCBs, and PAHs	Copper, Lead, Mercury, Zinc, Chlordane, DDTs, PCBs, and PAHs
SRC-2010-7-Z	Cadmium, Copper, Lead, Mercury, Zinc, Chlordane, DDTs, and PCBs	Copper, Lead, Mercury, Zinc, Chlordane, DDTs, and PCBs
SRC-2010-7-1	Copper, Zinc, and Chlordane	Copper, Zinc, and Chlordane
SRC-2010-7-2	Copper, Lead, Mercury, Zinc, Chlordane, DDTs, and PCBs	Copper, Lead, Mercury, Zinc, Chlordane, DDTs, and PCBs
SRC-2010-7-3	Copper, Lead, Zinc, Chlordane, DDTs, and PCBs	Copper, Lead, Zinc, Chlordane, DDTs, and PCBs
SRC-2010-7-4	Cadmium, Copper, Lead, Mercury, Zinc, Chlordane, DDTs, and PCBs	Copper, Lead, Mercury, Zinc, Chlordane, DDTs, and PCBs
SRC-2010-7-5	Cadmium, Copper, Lead, Mercury, Nickel, Zinc, Chlordane, DDTs, Dieldrin, PCBs, and PAHs	Cadmium, Copper, Lead, Mercury, Nickel, Zinc, Chlordane, DDTs, Dieldrin, PCBs, and PAHs
SRC-2010-8	Cadmium, Lead, Zinc, Chlordane, DDTs, Dieldrin, PCBs, and PAHs	Lead, Zinc, Chlordane, DDTs, Dieldrin, PCBs, and PAHs
SRC-2010-8-Z	Cadmium, Copper, Lead, Mercury, Nickel, Zinc, Chlordane, DDTs, Dieldrin, PCBs, and PAHs	Cadmium, Copper, Lead, Mercury, Nickel, Zinc, Chlordane, DDTs, Dieldrin, PCBs, and PAHs
SRC-2010-8-1	Arsenic, Cadmium, Copper, Lead, Mercury, Nickel, Silver, Zinc, DDTs, Dieldrin, and Heptachlor epoxide	Arsenic, Boron, Cadmium, Copper, Lead, Mercury, Nickel, Silver, Zinc, DDTs, Dieldrin, and Heptachlor epoxide
SRC-2010-8-2	Cadmium, Copper, Lead, Zinc, Chlordane, and DDTs	Cadmium, Copper, Lead, Zinc, Chlordane, and DDTs
SRC-2010-8-3	Cadmium, Copper, Lead, Zinc, Chlordane, DDTs, and Deildrin	Boron, Cadmium, Copper, Lead, Zinc, Chlordane, DDTs, and Deildrin
SRC-2010-8-4	Lead, Zinc, Chlordane, DDTs, Deildrin, and PAHs	Boron, Lead, Zinc, Chlordane, DDTs, Deildrin, and PAHs

Table 5-3. Modified Elutriate Test Chemistry Results.

Analytes	SRC-2010-1	SRC-2010-2	SRC-2010-3	SRC-2010-4	SRC-2010-5	SRC-2010-6	SRC-2010-7	SRC-2010-8	Water Quality Objective ^A
TSS	56	382	169	42.7	25.5	48	172	28.0	-
				Total Mo	etals (µg/L)				
Arsenic	4.86	11.9	7.09	5.11	14.9	18.6	9.23	3.19	NA
Cadmium	0.034	0.035	0.010J	0.027J	0.017J	0.028J	0.061	0.010J	NA
Chromium	2.00	3.10	0.27	2.73	1.33	2.96	4.35	0.21J	NA
Copper	3.430	5.640	0.569	3.910	2.250	6.830	12.1	0.602	NA
Lead	1.620	2.840	0.178	2.120	1.100	3.510	8.590	0.640	NA
Mercury	0.0392	0.0036	0.0035	0.0263	0.0059	0.0725	0.0843	0.0019	0.025
Nickel	5.99	7.28	1.89	7.44	3.25	5.93	9.75	2.53	NA
Selenium	0.3J	0.3J	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	5.0
Zinc	6.30	10.8	2.30	7.32	4.24	9.39	21.0	1.31	NA
				Dissolved 1	Metals (µg/L)				
Arsenic	2.83	7.24	3.99	3.22	13.4	15.3	8.77	2.07	36
Cadmium	0.014J	0.018J	0.016J	0.014J	0.011J	0.010J	0.029J	0.011J	9.3
Chromium	0.04J	0.07J	0.06J	0.07J	0.09J	0.08J	0.09J	0.05J	50
Copper	1.070	1.790	1.790	1.450	1.040	1.400	2.880	0.562	6.0^{B}
Lead	0.014J	0.016J	0.023J	0.019J	0.018U	0.081	0.068	0.036	8.1
Mercury	0.0014	0.0014	0.0010	0.0008	0.0009	0.0015	0.0006	0.0007	0.025
Nickel	2.10	2.51	2.29	2.38	1.45	1.14	1.86	2.10	8.2
Selenium	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	NA
Zinc	0.62	1.53	1.09	0.64J	0.58J	0.56J	3.94	1.31	81.0

A – Chronic criteria (four-day average) from the SF Bay Basin Plan (RWQCB, 2007) unless otherwise noted.

B – New chronic criteria set by USEPA and promulgated by the RWQCB in the January Executive Officer's Report (RWQCB, 2009).

NA – Not applicable.

5.2 Biological Testing Results

There were 4 different biological tests performed for each Composite Sample Area maintenance depth core section composited sediment:

- 1. a 10-day amphipod bulk-sediment survival test with Ampelisca abdita,
- 2. a 10-day juvenile polychaete bulk-sediment survival test with Neanthes arenaceodentata,
- 3. a 48-hr SET sediment elutriate survival test with Mytilus galloprovincialis, and
- 4. a 96-hr MET sediment elutriate survival test with the mysid *Americamysis bahia*.

A summary table of the bulk-sediment tests water quality characteristics and sediment porewater water quality characteristics at test initiation and test termination are presented in Appendix E.

5.2.1 Effects of the San Rafael Channel Sediments on Ampelisca abdita

The results of these tests are summarized in Table 5-4. There was 85% survival at the Control treatment, which was slightly below an acceptable survival response by the test organisms. However, there was 92% and 91% survival in the SF-10 and SF-11 reference site sediments, respectively. There was $\geq 84\%$ survival each of the sediment composite samples, which was less than a 20% reduction in survival relative to both the SF-10 and SF-11 reference sediments.

The test data and summary of statistical analyses for these tests are attached as Appendix F.

Table 5-4. Ampelisca abdita survival in the San Rafael Channel test sediments.

Sediment Site	, c	% Surviva	l in Test	Replicates	S	Overall Mean
Sediment Site	Rep A	Rep B	Rep C	Rep D	Rep E	% Survival
Lab Control	80	90	80	85	90	85
SF-10 (San Pablo)	95	90	95	90	90	92
SF-11 (Alcatraz)	95	100	85	90	85	91
SRC-2010-1	90	95	95	85	100	93
SRC-2010-2	80	80	100	100	90	90
SRC-2010-3	100	95	95	90	90	94
SRC-2010-4	100	90	90	90	80	90
SRC-2010-5	100	80	90	100	100	94
SRC-2010-6	90	85	85	90	90	88
SRC-2010-7	100	100	90	100	90	96
SRC-2010-8	75	90	70	85	100	84

5.2.1.1 Reference Toxicant Toxicity to Ampelisca abdita

The results of this testing are presented in Tables 5-5 and 5-6. There was 95% survival in the Lab Control treatment. The EC50 for this test is consistent with the typical response range established by previous performance of this test in our laboratory (Table 5-6), indicating that these test organisms were responding to toxic stress in a typical fashion.

The test data and summary of statistical analyses for this test are attached as Appendix G.

Table 5-5. Reference toxicant testing: Effects of KCl on Ampelisca abdita (7/10/10).

KCl Treatment (g/L)	Mean% Survival
Lab Control	95
0.25	95
0.5	90
1	65
2	0
4	0
EC50 =	1.1 g/L KCl

^{*} The survival response at this treatment was significantly less than the Lab Control at p < 0.05.

Table 5-6. Summary of Reference Toxicant Database for Ampelisca abdita.

Current LC50 Value	Typical Response Range (mean ± 2SD)
1.1 g/L KCl	0.52 – 1.8 g/L KCl

5.2.2 Effects of the San Rafael Channel Sediments on Neanthes arenaceodentata

The results of these tests are summarized in Table 5-7. There was 94% survival at the Control treatment, indicating an acceptable survival response by the test organisms. There was also ≥90% survival in the SF-10 and SF-11 reference site sediments. There was ≥86% survival in each of the San Rafael Channel samples. The survival response for each of the site sediments was <10% less than the reference site sediment survival responses. In addition, the survival response for each of the site sediments was also <10% less than both the reference site sediments and the Lab Control sediment survival response indicating that the sediments are <u>not</u> toxic to polychaetes.

The test data and summary of statistical analyses for these tests are attached as Appendix H.

Sediment Site	(% Surviva	ıl in Test	Replicate	S	Overall Mean
Sedifficit Site	Rep A	Rep B	Rep C	Rep D	Rep E	% Survival
Lab Control	80	100	100	90	100	94
SF-10 (San Pablo)	90	100	90	90	100	94
SF-11 (Alcatraz)	90	90	90	90	90	90
SRC-2010-1	100	90	100	90	100	96
SRC-2010-2	90	100	90	90	100	94
SRC-2010-3	90	80	80	80	100	86
SRC-2010-4	90	90	90	80	100	90
SRC-2010-5	100	80	90	90	90	90
SRC-2010-6	100	100	100	80	100	96
SRC-2010-7	90	90	100	90	100	94
SRC-2010-8	100	90	100	80	90	92

Table 5-7. Neanthes arenaceodentata survival in the San Rafael Channel test sediments.

5.2.2.1 Reference Toxicant Toxicity to Neanthes arenaceodentata

The results of this test are presented in Table 5-8. There was 100% survival in the Lab Control treatment. The EC50 was 2.3 g/L KCl, which is consistent with the typical response range established by previous performance of this test in our laboratory (Table 5-9), indicating that these test organisms were responding to toxic stress in a typical fashion.

The test data and summary of statistical analyses for this test are presented in Appendix I.

KCl Treatment (g/L)	Mean% Survival
Lab Control	100
0.25	100
0.5	100
1	100
2	70*
4	0*
EC50 =	2.3 g/L KCl

Table 5-8. Reference toxicant testing: Effects of KCl on Neanthes arenaceodentata.

Table 5-9. Summary of Reference Toxicant Database for Neanthes arenaceodentata...

Current LC50 Value	Typical Response Range (mean ± 2SD)
2.3 g/L KCl	0.83 – 2.7 g/L KCl

5.2.3 Toxicity of the San Rafael Channel Sediment SET Elutriates to Mytilus galloprovincialis

The results of these tests are summarized below in Tables 5-10 through 5-20. The Lab Control treatments ranged from 80.9-90.1% survival and 96.7-97.8% normal development, indicating an acceptable response by the test organisms.

Table 5-10. Effects of San Rafael Channel SET sediment elutriates on *Mytilus galloprovincialis*.

Elutriate Treatment	Survival LC50	Development EC50	ESC Acceptable?
SF-10	50.3% elutriate	72.8% elutriate	YES
SF-11	>100% elutriate	>100% elutriate	YES
SRC-2010-1	48.8% elutriate	48.6% elutriate	YES
SRC-2010-2	35.4% elutriate	37.5% elutriate	YES
SRC-2010-3	39.2% elutriate	44.5% elutriate	YES
SRC-2010-4	35.0% elutriate	37.5% elutriate	YES
SRC-2010-5	35.1% elutriate	37.5% elutriate	YES
SRC-2010-6	34.8% elutriate	37.5% elutriate	YES
SRC-2010-7	35.2% elutriate	37.5% elutriate	YES
SRC-2010-8	32.5% elutriate	37.3% elutriate	YES

^{*} The survival response at this treatment was significantly less than the Lab Control at p < 0.05.

The test data and the summary of statistical analyses for these tests are presented in Appendix J. Elutriate suitability calculations are presented in Appendix K.

Table 5-11. Effects of SF-10 sediment elutriate on A	Mytilus	gallopro	vincialis.
--	---------	----------	------------

Elutriate Treatment	Mean % Survival	Mean % Normal Development
Lab Control	90.7	97.5
1%	68.1	74.1
10%	77.5	98.0
50%	60.3*	95.2
100%	0*	0*
Site Water Control	88.1	99.2
Survival LC50 or Development EC50 =	50.3% elutriate	72.8% elutriate

^{*} The survival response at this treatment was significantly less than the Lab Control at p < 0.05.

Table 5-12. Effects of SF-11 sediment elutriate on Mytilus galloprovincialis.

Elutriate Treatment	Mean % Survival	Mean % Normal Development
Lab Control	90.7	97.5
1%	95.2	99.4
10%	89.1	98.2
50%	74.9*	98.2
100%	65.7*	98.6
Site Water Control	88.1	99.2
Survival LC50 or Development EC50 =	>100% elutriate	>100% elutriate

^{*} The survival response at this treatment was significantly less than the Lab Control at p < 0.05.

Table 5-13. Effects of SRC-2010-1 sediment elutriate on Mytilus galloprovincialis.

Elutriate Treatment	Mean % Survival	Mean % Normal Development
Lab Control	90.7	97.5
1%	84.5	98.3
10%	93.2	98.8
25%	90.5	99.0
50%	42.9*	45.6*
100%	0*	0*
Site Water Control	88.1	99.2
Survival LC50 or Development EC50 =	48.8% elutriate	48.6% elutriate

^{*} The survival response at this treatment was significantly less than the Lab Control at p < 0.05.

Tuble of the Effects of Site 2010 2 Sculment charrante on 17.7, that & game province and site				
Elutriate Treatment	Mean % Survival	Mean % Normal Development		
Lab Control	90.7	97.5		
1%	89.7	99.2		
10%	98.6	99.3		
25%	93.8	98.6		
50%	0.11*	0.15*		
100%	0*	0*		
Site Water Control	88.1	99.2		
Survival LC50 or Development EC50 =	35.4% elutriate	37.5% elutriate		

Table 5-14. Effects of SRC-2010-2 sediment elutriate on Mytilus galloprovincialis.

Table 5-15. Effects of SRC-2010-3 sediment elutriate on Mytilus galloprovincialis.

Elutriate Treatment	Mean % Survival	Mean % Normal Development
Lab Control	90.7	97.5
1%	90.9	99.2
10%	83.0	99.2
25%	89.0	98.1
50%	30.0*	35.3*
100%	0*	0*
Site Water Control	88.1	99.2
Survival LC50 or Development EC50 =	39.2% elutriate	44.5% elutriate

^{*} The survival response at this treatment was significantly less than the Lab Control at p < 0.05.

Table 5-16. Effects of SRC-2010-4 sediment elutriate on Mytilus galloprovincialis.

Elutriate Treatment	Mean % Survival	Mean % Normal Development	
Lab Control	90.7	97.5	
1%	88.1	98.6	
10%	89.7	98.4	
25%	88.5	98.3	
50%	0*	0*	
100%	0*	0*	
Site Water Control	88.1	99.2	
Survival LC50 or Development EC50 =	35% elutriate	37.5% elutriate	

^{*}The survival response at this treatment was significantly less than the Lab Control at p < 0.05.

^{*} The survival response at this treatment was significantly less than the Lab Control at p < 0.05.

Elutriate Treatment Mean % Survival Mean % Normal Development Lab Control 90.7 97.5 1% 87.6 98.9 10% 88.5 97.8 25% 98.8 89.8 0* 0* **50%** 100% 0* 0* Site Water Control 99.2 88.1 Survival LC50 or Development EC50 = 35.1% elutriate 37.5% elutriate

Table 5-17. Effects of SRC-2010-5 sediment elutriate on Mytilus galloprovincialis.

Table 5-18. Effects of SRC-2010-6 sediment elutriate on Mytilus galloprovincialis.

Elutriate Treatment	Mean % Survival	Mean % Normal Development
Lab Control	90.7	97.5
1%	90.8	98.3
10%	93.8	98.2
25%	90.1	98.5
50%	0*	0*
100%	0*	0*
Site Water Control	88.1	99.2
Survival LC50 or Development EC50 =	34.8% elutriate	37.5% elutriate

^{*} The survival response at this treatment was significantly less than the Lab Control at p < 0.05.

Table 5-19. Effects of SRC-2010-7 sediment elutriate on Mytilus galloprovincialis.

Elutriate Treatment	Mean % Survival	Mean % Normal Development
Lab Control	90.7	97.5
1%	88.9	99.0
10%	93.0	98.3
25%	90.4	98.9
50%	0*	0*
100%	0*	0*
Site Water Control	88.1	99.2
Survival LC50 or Development EC50 =	35.2% elutriate	37.5% elutriate

^{*} The survival response at this treatment was significantly less than the Lab Control at p < 0.05.

^{*} The survival response at this treatment was significantly less than the Lab Control at p < 0.05.

Elutriate Treatment	Mean % Survival	Mean % Normal Development
Lab Control	90.7	97.5
1%	90.2	98.6
10%	92.1	98.6
25%	81.5	96.7
50%	0*	0*
100%	0*	0*
Site Water Control	88.1	99.2
Survival LC50 or Development EC50 =	32.5% elutriate	37.3% elutriate

Table 5-20. Effects of SRC-2010-8 sediment elutriate on Mytilus galloprovincialis.

5.2.3.1 Reference Toxicant Toxicity to Mytilus galloprovincialis Embryos

The results of this test are presented in Table 5-21. There was 98.9% normal embryo development at the Lab Control treatment. The embryo development EC50 was 2.5 g/L KCl, which is consistent with the typical response range established by reference toxicant testing previously performed in this lab (Table 5-22), indicating that these test organisms were responding to toxic stress in a typical fashion.

The test data and summary of statistical analyses for this test are attached as Appendix L.

Table 5-21. Reference toxicant testing:	Effects of KCl on Mytilus galloprovincialis.

KCl Treatment (g/L)	Mean % Normal Embryo Development
Lab Control	98.9
0.5	97.7
1	98.4
2	92.6*
3	0*
4	0*
EC50 =	2.5 g/L KCl

^{*} Significantly less than the Lab Control treatment response at p < 0.05.

Table 5-22. Summary of Reference Toxicant Database for Mytilus galloprovincialis.

Current EC50	Typical Response Range (mean ± 2SD)
2.5 g/L KCl	1.7–2.9 g/L KCl

^{*} The survival response at this treatment was significantly less than the Lab Control at p < 0.05.

5.2.4 Toxicity of the San Rafael Channel Sediment Elutriates to Americamysis bahia

The results of these tests are summarized below in Table 5-23. There was \geq 96% survival at the Control treatments, indicating an acceptable survival response by the test organisms; there was 96% survival at the Site Water Control treatment. The test data and summary of statistical analyses for these tests are attached as Appendix M.

Test Treatment	% Survival in Test Replicates					Mean
Test Treatment	Rep A	Rep B	Rep C	Rep D	Rep E	% Survival
Lab Control 1	100	90	90	100	100	96
Site Water Control	90	100	100	100	90	96
SRC-2010-1	100	90	100	100	100	98
SRC-2010-2	100	90	100	90	100	96
SRC-2010-3	90	100	100	100	100	98
SRC-2010-4	100	90	100	100	100	98
Lab Control 2	90	100	100	100	100	98
SRC-2010-5	90	100	100	100	100	98
SRC-2010-6	100	100	100	100	100	100
SRC-2010-7	90	100	100	100	100	98
SRC-2010-8	90	100	100	100	90	96

Table 5-23. Effects of San Rafael Channel MET elutriates on Americamysis bahia.

5.2.4.1 Reference Toxicant Toxicity to Americamysis bahia

The results of this test are summarized in Table 5-24. There was a mean of 95% survival in the Lab Control treatment; the LC50 was 0.39 g/L KCl, which is consistent with the typical response rang established by previous performance of this test in our laboratory (Table 5-26), indicating that these test organisms were responding to toxic stress in a typical fashion. The test data and summary of statistical analyses for this test are attached as Appendix N.

KCl Treatment (g/L)	Mean % Survival
Lab Control	95
0.125	90
0.25	100
0.5	15*
1	0*
2	0*
LC50 =	0.39 g/L KCl

Table 5-24. Reference toxicant testing: Effects of KCl on Americamysis bahia.

^{*} Significantly less than the Lab Control treatment response at p < 0.05.

Table 5-25. Summary of Reference Toxicant Database for Americanysis bahia.

Current LC50	Typical Response Range (mean ± 2SD)
0.39 g/L KCl	0.31–0.75 g/L KCl

6. QUALITY CONTROL REVIEW

6.1 Conventional and Chemical Analytical Quality Control Summary

The QA/QC review entailed reviewing the contract lab Data Reports for sample integrity, correct methodology, and compliance with all appropriate quality Lab Control requirements. The overall data quality assessment found that all data were usable. Appendix C contains the conventional and chemical analysis reports, which include the contract laboratory QA/QC narrative.

A review summary of the analytical methods, the targeted reporting limits and the achieved method reporting and detection limits are presented in Tables 6-1 though 6-3. A review of this data indicated that for some samples, Pentachlorophenol, Phenol, DDE, DDT, Chlordane, Endosulfan I, PCBs, Dieldrin, Heptachlor, Heptachlor epoxide, or Toxaphene detection limits were elevated above the targeted method reporting limits due to matrix interferences or the need to dilute the sample due to elevated levels of the target analyte (e.g., the reporting limit for DDT was elevated for the SRC-2010-8-1 sample, however, the analyte was detected at an order of magnitude greater that the reporting level and as a result, the elevated reporting limit is inconsequential); all other analytes were at or below targeted MRLs.

6.2 Biological Testing Quality Lab Control Summary

The biological testing of the San Rafael Channel sediments incorporated standard QA/QC procedures to ensure that the test results were valid. Standard QA/QC procedures included the use of negative Lab Controls, positive Lab Controls, test replicates, and measurements of water quality during testing.

Quality assurance procedures that were used for sediment testing are consistent with methods described in the U.S.EPA/ACOE (1998). Sediments for the bioassay testing were stored appropriately at ≤4°C and were used within the 8 week holding time period. Sediment interstitial water characteristics were within test acceptability limits at the start of the tests. Sediment elutriates were prepared using site water. The tests were performed using high-quality natural seawater.

All measurements of routine water quality characteristics were performed as described in the PER Lab Standard Operating Procedures (SOPs). All biological testing water quality conditions were within the appropriate limits. Laboratory instruments were calibrated daily according to Lab SOPs, and calibration data were logged and initialed. Standard test conditions are presented in Appendix O.

Negative Lab Control – With the exception of the *Ampelisca abdita* testing, the biological responses for all the test organisms at the negative Lab Control treatments were within acceptable limits for the sediment and sediment elutriate tests.

Positive Lab Control – The accuracy of the responses of the test organisms to toxic stress was also evaluated using positive Lab Controls (reference toxicant testing). The key test doseresponse LC and/or EC point estimates determined for each test species were all within the respective typical response ranges for these species, indicating that these test organisms were responding to toxic stress in a typical fashion.

Table 6-1. Standard List of Analytes, Methods, and Targeted Reporting Limits.

Analyte	Units	Method Used	SAP Targeted MRL	Achieved MDL	Achieved MRL
Metals					
Arsenic	mg/kg	EPA 6020	2	0.05-0.07	0.51-0.71
Cadmium	mg/kg	EPA 6020	0.3	0.004-0.006	0.020-0.028
Chromium	mg/kg	EPA 6020	5	0.02	0.20-0.29
Copper	mg/kg	EPA 6020	5	0.06-0.6	0.10-2.0
Lead	mg/kg	EPA 6020	5	0.006-0.009	0.050-0.071
Mercury	mg/kg	EPA 7471A	0.02	0.001-0.002	0.010-0.020
Nickel	mg/kg	EPA 6020	5	0.02-0.03	0.20-0.29
Selenium	mg/kg	EPA 7742	0.1	0.03-0.04	0.10-0.14
Silver	mg/kg	EPA 6020	0.2	0.008-0.011	0.020-0.028
Zinc	mg/kg	EPA 6020	1	0.2-0.4	0.5-2.9
Pesticides					
Aldrin	μg/kg	EPA 8081B	2	0.16-1.7	0.92-1.7
a- <i>BHC</i>	μg/kg	EPA 8081B	2	0.12-0.64	0.92-1.3
b-BHC	μg/kg	EPA 8081B	2	0.18-0.50	0.92-1.3
g-BHC (Lindane)	μg/kg	EPA 8081B	2	0.092-1.3	0.92-1.3
d-BHC	μg/kg	EPA 8081B	2	0.074-0.13	0.92-1.3
Chlordane	μg/kg	EPA 8081B	20	1.9-11	9.2-58
2,4'-DDD	μg/kg	EPA 8081B	2	0.13-1.1	0.92-1.3
2,4'-DDE	μg/kg	EPA 8081B	2	0.17-5.2	0.13-5.2
2,4'-DDT	μg/kg	EPA 8081B	2	0.058-1.3	0.92-1.3
4,4'-DDD	μg/kg	EPA 8081B	2	0.11-0.63	0.92-5.8
4,4'-DDE	μg/kg	EPA 8081B	2	0.11-0.15	0.92-1.3
4,4'-DDT	μg/kg	EPA 8081B	2	0.18-9.7	1.2-9.7
Total DDT	μg/kg	EPA 8081B	2	0.058-9.7	0.13-4.3
Dieldrin	μg/kg	EPA 8081B	2	0.14-1.2	0.92-1.3
Endosulfan I	μg/kg	EPA 8081B	2	0.063-3.8	0.92-3.8
Endosulfan II	μg/kg	EPA 8081B	2	0.15-1.2	0.92-1.3
Endosulfan sulfate	μg/kg	EPA 8081B	2	0.12-1.3	0.92-1.3
Endrin	μg/kg	EPA 8081B	2	0.098-1.2	0.92-1.3
Endrin aldehyde	μg/kg	EPA 8081B	2	0.13-1.2	0.92-1.3
Heptachlor	μg/kg	EPA 8081B	2	0.12-1.2	0.92-1.3
Heptachlor epoxide	μg/kg	EPA 8081B	2	0.087-1.2	0.92-1.3
Toxaphene	μg/kg	EPA 8081B	20	13-210	52-210
Total Organotins	μg/kg	Krone 1989	10	0.24-1.2	1.3-2.6
Total PAHs	μg/kg	EPA 8270C	20	0.58-4.9	2.5-23
Total PCBs	μg/kg	EPA 8082	20	1.7-110	3.1-110
Grain Size	%	ASTM 1992	0.1	0.01	0.01
Total Solids	%	EPA 160.3	0.10	0.1	0.1
Total Organic Carbon (TOC)	%	EPA 415.1	0.10	0.20	0.050

Table 6-2. List of Hamilton Analytes, Methods, and Targeted Reporting Limits (dry weight).

Analyte	Units	Method Used	SAP Targeted MRL	Achieved MDL	Achieved MRL
Metals					
Barium	mg/kg	EPA 6020	190	0.3-0.4	2.0-2.9
Beryllium	mg/kg	EPA 6020	1.03	0.003-0.004	0.020-0.028
Boron	mg/kg	EPA 6020	36.9	0.3-0.4	9.9-14
Cadmium	mg/kg	EPA 6020	0.7	0.004-0.006	0.020-0.028
Chromium	mg/kg	EPA 6020	5	0.02	0.20-0.29
Cobalt	mg/kg	EPA 6020	27.6	0.001	0.020-0.028
Manganese	mg/kg	EPA 6020	943	0.04-0.06	1.98-2.85
Vanadium	mg/kg	EPA 6020	118	0.4-0.6	2.0-2.9
Organics					
Pentachlorophenol	μg/kg	EPA 8270-GPC	17	20-270	100-1400
Phenol	μg/kg	EPA 8270-GPC	130	2.0-590	30-590
TPH – diesel/motor oil	mg/kg	EPA 8015	144	2.0-7.6	31-65
TPH – gasoline/JP-4	mg/kg	EPA 8015	12	1.7-4.4	6.6-17
Chlordane	μg/kg	EPA 8081B	1.1	1.9-11	9.2-58
Dieldrin	μg/kg	EPA 8081B	0.72	0.14-1.2	0.92-1.3
Heptachlor	μg/kg	EPA 8081B	0.3	0.12-1.2	0.92-1.3
Heptachlor epoxide	μg/kg	EPA 8081B	0.3	0.087-1.2	0.92-1.3
Methoxychlor	μg/kg	EPA 8081	90	0.19-2.8	0.25-2.8
Dioxins (total TCDD TEQ)	ng/kg	EPA 8290	20	0.0273-0.810	1.03-11.5

Table 6-3. List of Analytes for Modified Elutriate Tests, Methods, and Targeted Reporting Limits (dry weight)

Analyte	Units	Method Used	SAP Targeted MRL	Achieved MDL	Achieved MRL
Arsenic	μg/L	EPA 6020	1	0.04-0.08	0.50-1.00
Cadmium	μg/L	EPA 6020	0.25	0.002-0.004	0.020-0.040
Chromium	μg/L	EPA 6020	1	0.03-0.06	0.20-0.40
Copper	μg/L	EPA 6020	1	0.004-0.008	0.100-0.200
Lead	μg/L	EPA 6020	0.25	0.009-0.018	0.020-0.040
Mercury	μg/L	EPA 7471A	0.005	0.00006	0.001
Nickel	μg/L	EPA 6020	5	0.03-0.06	0.20-0.40
Selenium	μg/L	EPA 7742	0.5	0.2	1.0
Zinc	μg/L	EPA 6020	10	0.06-0.12	0.50-1.00

7. SUMMARY

The San Rafael Channel sediments were analyzed to determine suitability of the material to be dredged for placement at HWRP or aquatic placement at San Pablo (SF-10) or Alcatraz (SF-11). A summary of the chemical and biological evaluations assessing each of the three potential placement/disposal options is provided below in Table 7-1. It should be noted that the SRC-2010-5 and SRC-2010-6 sediment composite samples had measured copper and zinc above reported Bay Ambient concentrations (SFRWQCB 1998) and HWRP screening criteria (USFWS 2005); however, the biological testing indicated that these sediments were not toxic. As a result, the SRC-2010-5 and SRC-2010-6 sediments are considered suitable for placement at either the HWRP, SF-10, or SF-11 sites.

Table 7-1. Recommended Suitability Determinations for San Rafael Channel test sediments.

Composite ID		n-bay Disposal or SF-11	Suitable for Placement at HWRP	
	Chemistry	Biological	Chemistry	Biological
SRC-2010-1	Yes	Yes	Yes	Yes
SRC-2010-2	Yes	Yes	Yes	Yes
SRC-2010-3	Yes	Yes	Yes	Yes
SRC-2010-4	Yes	Yes	Yes	Yes
SRC-2010-5	Yes	Yes	Yes	Yes
SRC-2010-6	Yes	Yes	Yes	Yes
SRC-2010-7	No	Yes	No	Yes
SRC-2010-8	No	Yes	No	Yes

8. REFERENCES

ASTM (1999) Method E724-98. Standard Guide for conducting static acute toxicity tests starting with embryos of four species of seawater bivalve mollusk. ASTM Standards on Biological Effects and Environmental Fate. American Society for Testing and Materials, Philadelphia, PA.

ASTM (1999) Method E1367-99. Standard Guide for conducting 10-day static toxicity tests with marine and estuarine amphipods. ASTM Standards on Biological Effects and Environmental Fate. American Society for Testing and Materials, Philadelphia, PA.

ASTM (2000) Method E1611-00. Standard Guide for conducting sediment tests with marine and estuarine polychaetous annelids. ASTM Standards on Biological Effects and Environmental Fate. American Society for Testing and Materials, Philadelphia, PA.

ASTM (2003) Method 1688-00a. Standard Guide for the Bioaccumulation of sediment-associated contaminants by benthic invertebrates. ASTM Standards on Biological Effects and Environmental Fate. American Society for Testing and Materials, Philadelphia, PA.

SFRWQCB (1998) Ambient concentrations of toxic chemicals in San Francisco Bay Sediments: Draft Staff Report. San Francisco Regional Water Quality Lab Control Board, Oakland, CA.

USACE (2010) San Rafael Channel FY 2010 Maintenance Dredging Sampling and Analysis Plan Revised April 22, 2010. U.S. Army Corps of Engineers San Francisco District, Engineering and Technical Services Division Planning Branch, Environmental Section B.

USACE (2004) Master Sampling and Analysis Plan USACE SF-District O&M Dredging. U.S. Army Corps of Engineers San Francisco District, Engineering and Technical Services Division Planning Branch, Environmental Sciences Section, Material Management Unit.

USACE (1985) Technical Note EEDP 04-2. Interim Guidance for Predicting Quality of Effluent Discharged from Confined Dredged Material Disposal Areas During Dredging Operations. U.S. Army Engineer Waterways Experiment Station, Environmental Laboratory, June 1985.

US EPA (1994) 'Methods for Assessing the Toxicity of Sediment-Associated Contaminants with Estuarine and Marine Amphipods', EPA-600/R-94/025. U.S. EPA, Env. Research Laboratory, Narragansett, RI.

U.S.EPA/ACOE (1998) Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. – Testing Manual (Inland Testing Manual). U.S. Environmental Protection Agency/U.S. Army Corps of Engineers. EPA/823/B-94/002. Office of Water. Washington, DC 20460.

US EPA (1991) 'Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms', fifth edition. EPA/821/R-02/012. U.S. EPA, Environmental Office of Research and Development, Washington DC.

USFWS (2005) Endangered Species Consultation for the Proposed Wetland Restoration Project at the Former Hamilton Army Airfield, City of Novato, Marin County, California. 1-1-05-F-0068. Prepared by the U.S. Fish and Wildlife Service Sacramento, CA.

Appendix A

Sampling Field Logs and Data Sheets

Sediment	Core	Collection	Form
~~~~~~~	OLU	COLLOCATOLL	T 01 111

Station ID:	SRC - Z010-1-1	Date:	6/8/10
Project Name:	SRC - Z010-1-1 San Refuel Chan	Project No.:	16087
Coordinates:	37°57.4468'		12 2 • 27. 4544
Vertical Datum:	MLLW	MLW	Other:
Depth Measurement:	Sounder	Leadlin	le)
Project Depth:	8.0'	Overdredge:	2.0' + 2.0' Extra
		Attempt 1	Attempt 2
	Time		
(A) Measured Water I	Depth	3.1 8.0	
(B) Tide Height	<del></del>	3.1'	
(C) Mudline Elevation (A–B=C)		4.9'	
(D) Calculated Core Length (PD+OD-C=D)		7.1'	
Estimated Penetration		7.1'	
Description of Core Drive		SMOOTH	
Refusal Encountered?		No	
Total Core Length Recovered		7.1'	
Core Characteristics			
Sediment Type		cobble, gravel, sand C M F,	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		brown surface, olivine	gray, black, brown, brown surface, olivine
Sediment Odor		None, slight, mod, strong H ₂ S, petroleum, septic	None, slight, prod, strong H ₂ S, petroleum, septic
Any Layering Homoge	enous	*	
Comments: EPE: 4	,	1 4 / 1 1 1	1 Com to 10'R
SRC-2010-1-1 : SRC-2010-1-1-B	Sediment SM rface - 10.0° 10.0° - 12.0°	- black lager @	2.6' B.S.S. (Z"Thick)
Recorded by:	-		



Fax: (707) 207-7916

#### **Sediment Core Collection Form**

Coordinates:  Lat/Northing: 37°5  Vertical Datum:  Depth Measurement:  Project Depth:  (A) Measured Water Depth (B) Tide Height (C) Mudline Elevation (A-B=C) (D) Calculated Core Length (PD+Estimated Penetration  Description of Core Drive  Refusal Encountered?  Total Core Length Recovered  Core Characteristics  Sediment Type	Sounde  Time	Long/Easting: MLW  Cr Leadli  Overdredge:  Attempt 1	16087  122° 27.6109'  Other:  2.0' + 2.0' Ex7
Vertical Datum:  Depth Measurement:  Project Depth:  (A) Measured Water Depth (B) Tide Height (C) Mudline Elevation (A–B=C) (D) Calculated Core Length (PD+Estimated Penetration  Description of Core Drive  Refusal Encountered?  Total Core Length Recovered  Core Characteristics  Sediment Type	Sounde	MLW  Cr Leadli  Overdredge:  Attempt 1 e: /o:/o 9.o' 3.5'	Other:  2.0' + Z.0' Ex7
Depth Measurement:  Project Depth:  (A) Measured Water Depth (B) Tide Height (C) Mudline Elevation (A–B=C) (D) Calculated Core Length (PD+Estimated Penetration Description of Core Drive Refusal Encountered? Total Core Length Recovered Core Characteristics Sediment Type	Sounde	Overdredge:  Attempt 1 e: /o:/o 9-o' 3.5'	Z.O' + Z.O'Ex7
Measurement:  Project Depth:  (A) Measured Water Depth (B) Tide Height (C) Mudline Elevation (A–B=C) (D) Calculated Core Length (PD+Estimated Penetration  Description of Core Drive  Refusal Encountered?  Total Core Length Recovered  Core Characteristics  Sediment Type	8.0'	Overdredge:  Attempt 1 e: /0:/0 9-0' 3.5'	Z.O' + Z.O'Ex7
(A) Measured Water Depth (B) Tide Height (C) Mudline Elevation (A–B=C) (D) Calculated Core Length (PD+Estimated Penetration Description of Core Drive Refusal Encountered? Total Core Length Recovered Core Characteristics Sediment Type		Attempt 1 e: /o:/o 9.0' 3.5'	
(B) Tide Height (C) Mudline Elevation (A–B=C) (D) Calculated Core Length (PD+ Estimated Penetration  Description of Core Drive  Refusal Encountered?  Total Core Length Recovered  Core  Characteristics  Sediment Type	Time	e: 10:10 9-0' 3.5'	Attempt 2
(B) Tide Height (C) Mudline Elevation (A–B=C) (D) Calculated Core Length (PD+ Estimated Penetration  Description of Core Drive  Refusal Encountered?  Total Core Length Recovered  Core Characteristics  Sediment Type	Tim	9.0'	
(B) Tide Height (C) Mudline Elevation (A–B=C) (D) Calculated Core Length (PD+ Estimated Penetration  Description of Core Drive  Refusal Encountered?  Total Core Length Recovered  Core Characteristics  Sediment Type		3.5'	
(C) Mudline Elevation (A–B=C) (D) Calculated Core Length (PD+Estimated Penetration  Description of Core Drive  Refusal Encountered?  Total Core Length Recovered  Core  Characteristics  Sediment Type			
(D) Calculated Core Length (PD+ Estimated Penetration  Description of Core Drive  Refusal Encountered?  Total Core Length Recovered  Core  Characteristics  Sediment Type		5.5'	
Estimated Penetration  Description of Core Drive  Refusal Encountered?  Total Core Length Recovered  Core  Characteristics  Sediment Type		6.5'	
Description of Core Drive  Refusal Encountered?  Total Core Length Recovered  Core  Characteristics  Sediment Type	(D) Calculated Core Length (PD+OD-C=D)		
Refusal Encountered? Total Core Length Recovered Core Characteristics Sediment Type		6.5'	
Total Core Length Recovered  Core Characteristics Sediment Type	Description of Core Drive		
Core Characteristics Sediment Type	Refusal Encountered?		
Characteristics Sediment Type	Total Core Length Recovered		
Sediment Color		cobble, gravel and C M F,	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		brown surface, olivine	gray, black, brown, brown surface, olivine
Sediment Odor		None slight, mod, strong H ₂ S, petroleum, septic	None, slight, mod, strong H ₂ S, petro teum, septic
Any Layering Homogenous		Thin tous of Sore 5'B.	23
Comments: EPE!6'	10	rate in all the same	- craft for Rin land
SRC-2010 - 1-2: 0-4.5'B.S. SRC-2010-1-2-B: 4.5'-6.5	- 1	Land 5.0'3.5.5.	



Fax: (707) 207-7916

Sediment	Core	<b>Collection</b>	<b>Form</b>
----------	------	-------------------	-------------

Station ID:	SRC-2010-1-3-	Date:	6/8/10
Project Name:	SRC-ZOIO-1-3-	Project No.:	16087
Coordinates:	770 -7 (-7441)	I ama/Eastinas	1-125-1
Lat/Northin	g: <u>37° 57. 5744′</u>		122°27.7880'
Vertical Datum:	(MLLW)	MLW	Other:
Depth Measurement:	Sounder	Leadli	ne
Project Depth:	8.0'	Overdredge:	Z' + Z'Extra
		Attempt 1	Attempt 2
	Time:	10:55	
(A) Measured Water	r Depth	9.0'	
(B) Tide Height		3.6'	
(C) Mudline Elevation (A–B=C)		5.4'	
(D) Calculated Core	Length (PD+OD-C=D)	6.6'	
Estimated Penetration	on	6.6'	
Description of Core	Drive	5MOOTA	
Refusal Encountered	d?	No	
Total Core Length Recovered		6.6'	
Core			
Characteristics			
Sediment Type		cobble, gravel, sand C M F,	cobble. gravel, sand C M F, silt clay, organic matter
Sediment Color		gray black, brown, brown surface, the surface	gray, black, brown, brown surface, olivine
Sediment Odor	_	R ₂ S, petroleum, septic	None, slight, mod strong H ₂ S, petroleum, septic
Any Layering Homo	ogenous	Homogeneus	
Comments: FPE: 6  SRC-2010-1-3:  SRC-2010-1-3-8:	0.0'- 4.6' Seolinest 4.6-6.6	uns chime from	Surface to 6.6.255.



Fax: (707) 207-7916

## **Sediment Core Collection Form**

Station ID:	SRC-2010-1-4	Date:	6/8/10
Project Name:	San Rafael Cha		16087
Coordinates:  Lat/Northing:	37°57.6236		122° 27,9629°
Vertical Datum:	MLLW	MLW	Other:
Depth Measurement:	Sounder	Leadlii	19
Project Depth:	8.0'	Overdredge:	Z' + Z' Extra
	4.	Attempt 1	Attempt 2
	Time:		
(A) Measured Water D	Pepth	9.Z 3.5'	
(B) Tide Height			
(C) Mudline Elevation (A–B=C)		5.7'	
(D) Calculated Core Length (PD+OD-C=D)		6.3'	
Estimated Penetration	<del></del>	6.3'	
Description of Core Drive		SM00Th	
Refusal Encountered?		No 6.3'	
Total Core Length Recovered		6.3'	
Core Characteristics			
Sediment Type		cobble, gravel, sand C M F,	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		fay black brown,	gray, black, brown, brown surface, olivine
Sediment Odor		None, slight, mod, strong H ₂ S, petroleum, septic	None, slight, mod, strong H ₂ S, petroleum, septic
Any Layering Homoge	enous	Capering *	
Comments: EPE: SRC-2010-1-4:0 SRC-2010-1-4-8:	4.3'-6.3' otherwi	Cogers at 1.75-Z.C	" arel 4.3'- 5.3', "groy in Color.
Recorded by:	2		



Fax: (707) 207-7916

#### **Sediment Core Collection Form**

Station ID:	SRC-2010 -2-1	Date:	6/8/26/1/10
Project Name: Coordinates:	SRC-2010 -2-1 San Rafael Cham	Project No.:	16087
Lat/Northing	37.57.69981	Long/Easting:	122° 28.1555'
Vertical Datum:	MLLW	MLW	Other:
Depth Measurement:	Sounder	Leadlin	ne
Project Depth:	8.01	Overdredge:	2.0'+20'Exta
		Attempt 1	Attempt 2
	Time:		
(A) Measured Water	Depth	6.7.	
(B) Tide Height		1.4' 5.3' 6.7'	
(C) Mudline Elevation (A–B=C)		5.3'	
(D) Calculated Core Length (PD+OD-C=D)		6.7'	
Estimated Penetration	l	6.7'	
Description of Core Drive		Smooth No	
Refusal Encountered?		No	
Total Core Length Re	covered	6.7'	
Core			
Characteristics			
Sediment Type		cobble, gravel, and C M F,	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		eray, black brown, frown surface, olivine	gray, black, brown, brown surface, olivine
Sediment Odor		Mond, slight, mod, strong H ₂ S, petroleum, septic	None, slight, mod, strong H₂S, petroleum, septic
Any Layering Homog	genous	Cagning *	
Comments: EPE: 6 SPC-2010-2-1: 5 SPC-2010-2-1-5:	0.0'.4.7' actor	tick black sand/classic makerial homogene	lager 1.0' B.S.S.



Fax: (707) 207-7916

### **Sediment Core Collection Form**

Station ID:	SRC-2010-2-Z	Date:	6/9/10
Project Name:	San Pafael Channe		16087
Coordinates: Lat/Northing	: 37.57.7405	Long/Easting:	122° 28.3144'
Vertical Datum:	MLLW	MLW	Other:
Depth Measurement:	Sounder	Leadlin	TE)
Project Depth:	8.0'	Overdredge:	2.0'+ 2.0' Extra
·		Attempt 1	Attempt 2
	Time:	68:45	
(A) Measured Water	Depth	6.8	
(B) Tide Height		1.9'	
(C) Mudline Elevation (A–B=C)		4.9	
	Length (PD+OD-C=D)	7.1′	
Estimated Penetration	1	7.1	
Description of Core I	Drive	Smooth.	
Refusal Encountered?		No. 7.1'	
Total Core Length Recovered		7.1.	
Core Characteristics		1 .	
Sediment Type		cobble, gravel, sand C M F, silt clay, organic matter	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		gra) black, brown. brown surface, olivine	gray, black, brown, brown surface, olivine
Sediment Odor	34,	None, slight, mod, strong H ₂ S, petroleum, septic	None, slight, med, strong H ₂ S, petroleum, septic
Any Layering Homog	genous	Cayoring	
Comments: EPE: 6  SEC-2010- Z - Z :  SEC-2010-2-Z-B :	0.0'- 5:1'	was Z" Thick.	and 5.25 B.s.s. each
Recorded by:	工程	1 24 -	



Sediment	Core	Collection	Form
Deamile	CULC	COHCCHOH	TOTAL

Station ID:	SRC-2010-2-3	Date:	6/9/10
			. ,
Project Name:	San Rajael Ch	Project No.:	1608 1
Coordinates: Lat/Northing:	37.57.7830	Long/Easting: _	122°29."4229'
Vertical Datum:	MLTW	MLW	Other:
Depth Measurement:	Sounder	r Leadlin	e
Project Depth:	8.0′	Overdredge: _	2.0'+ 2.0' Extra
		Attempt 1	Attempt 2
	Time		
(A) Measured Water I	Depth	8.4'	
(B) Tide Height		2.7'	
(C) Mudline Elevation (A–B=C)		5.7' 6.3'	
(D) Calculated Core Length (PD+OD-C=D)		6.3'	
Estimated Penetration		6.3'	
Description of Core D	rive	SMOOTH .	. /
Refusal Encountered?		No	1.
Total Core Length Recovered		6.3'	
Core Characteristics			
Sediment Type		cobble, gravel, and C M F,	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		gray, olack, brown, brown surface olivine	gray, black, brown, brown surface, oliving
Sediment Odor		H ₂ S, petroleum, septic	None, slight, moet, strong H ₂ S, petroleum, septic
Any Layering Homog		Cazering *	
Comments: FPE: 6  SRC-Z010-Z-3:  SRC-Z010-Z-3-8:	0.0'-4.3' Black 0.8'-6.3' OTher	Souly layer from a material gray silt	1.75'-2.0'8.5.5. all
Recorded by:	2	1 1/2	Р.



Fax: (707) 207-7916

#### **Sediment Core Collection Form**

Coordinates:	San Pafeel Channe		6/9/10
Coordinates:		el Project No.:	16087
Lat/Northing	•		7.4
Lat/100tilling.	37. 57. 8441	Long/Easting:	122° 28. 5872'
Vertical Datum:	MLLW	MLW	Other:
Depth	Sounder	< Leadli	ne
Measurement:			
Project Depth:	8.0'	Overdredge:	2.0'+ 2.0' Extra
		Attempt 1	Attempt 2
	Time:	/	
(A) Measured Water [	Depth	9.0'	
(B) Tide Height		3.3'	
(C) Mudline Elevation (A–B=C)		5.7'	
(D) Calculated Core L	ength (PD+OD-C=D)	6.3'	
Estimated Penetration		6.3'	
Description of Core Drive		SMOOTH	
Refusal Encountered?		No	
Total Core Length Recovered		6.3'	
Core			
Characteristics		Subble and CME	ushble group and CME
Sediment Type		cobble, gravel, sand C M F,	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		cray tolach, brown, brown surface, olivine	gray, black, brown, brown surface, olivine
Sediment Odor		Note, slight, mod, strong H ₂ S, petroleum, septic	None, slight, mod strong H ₂ S, petroleum, septic
Any Layering Homoge	enous	Cageins *	
Comments: EPE: [ SPC-2010-2-4 SPC-2010-2-4-8	6': 0.0'-43' a.: 4.3'-6.3'	in black layer of Clarel 2.5' B.S.S. Also, 6'00 5.3'-6.3' B.S.S.	dargray clay lage



Sediment	Core	<b>Collection</b>	Form
Committee	CULC	COMCOUNT	T (11

Station ID:	SRC-2010-3-1	Date:	6/9/10
Project Name:	San Rafuel Chan	Project No.:	16087
Coordinates: Lat/Northing:	37°57.8571	Long/Easting:	122. 28. 6511
Vertical Datum:	MLLW	MLW	Other:
Depth Measurement:	Sounder	Ceadlin	n
Project Depth:	8.0'	Overdredge:	2.0' + 2.0' Extra
		Attempt 1	Attempt 2
	Time	: 11:05	
(A) Measured Water D	epth	9.0'	
(B) Tide Height		3.7'	
(C) Mudline Elevation	(A-B=C)	5.3'	
(D) Calculated Core Le	ength (PD+OD-C=D)	6.7'	
Estimated Penetration		6.7'	
Description of Core Dr	rive	Smooth	
Refusal Encountered?		No	
Total Core Length Recovered		6.7'	
Core Characteristics			
Sediment Type		cobble, gravel, sand C M F,	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		gray black brown, frown surface, olivine	gray, black, brown, brown surface, oliving
Sediment Odor		None slight, mod, strong H ₂ S, petroleum, septic	None, slight, mod, strong H ₂ S, petroleum, septic
Any Layering Homoge		Cageing *	
Comments: EPE: 6'  SRC-2010 - 3 - 1:  SRC-2010-3-1-8:	* 5 B.	swo Surface Black 5' Ord 2.5' B.S.S.	Clay Cayes (1º Mich)



Se	dimer	at Co	re C	allec	tion	Form
75		11. 3.4	лсс	UHEL		T OI III

Station ID:	SRC-2010-3-2	Date:	6/9/10
Project Name:	San Ropel Channe	Project No.:	16087
Coordinates:		<del></del>	
Lat/Northing:	37" 57. 9123'	Long/Easting: _	122028.7784'
Vertical Datum:	MLLW	MLW	Other:
Depth Measurement:	Sounder	Leadlin	e) .
Project Depth:	8.0'	Overdredge:	2.0'+2.0'Ext
		Attempt 1	Attempt 2
	Time:	11:40	
(A) Measured Water D	Depth	8.0'	
(B) Tide Height		3. 9'	
(C) Mudline Elevation		4.1'	
(D) Calculated Core L	ength (PD+OD-C=D)	7.9	
Estimated Penetration		7.9'	
Description of Core Dr	rive	Sman Th	
Refusal Encountered?		Smooth No 7.9'	
Total Core Length Rec	covered	7.9'	
Core			
Characteristics	<u> </u>		111 1 101/5
Sediment Type		cobble, gravel, sand C M F, and clay, organic matter	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		gravolack, brown, brown surface, olivine	gray, black, brown, brown surface, olivine
Sediment Odor		None, slight, mod, strong H ₂ S, petroleum, septic	None, slight, mod strong H₂S, petroleum, septic
Any Layering Homoge	enous	Cazering *	
Comments: EPE: 6' SRC-2010-3-Z: SPC-2010-3-Z-8:	× 84	Lazing "  Lazing	0 Z.75-30' 8.S.S.



Fax: (707) 207-7916

Sediment	Core	Collection	Form
Deditions	$\sim$ $\sim$ $\sim$	COTTOCATOR	A V 1 1 1 1

Station ID:	SRC-2010-3-3		6/9/10
Project Name: Coordinates:	Son Rafael Chan	Project No.:	16087
	37.57.9442'	Long/Easting:	122°28.9166'
Vertical Datum:	MLLW	MLW	Other:
Depth Measurement:	Sounder	Leadli	ple
Project Depth:	8:0'	Overdredge:	2.0' + 2.0' Extra
		Attempt 1	Attempt 2
	Time		
(A) Measured Water I	Depth	8.0'	
(B) Tide Height		3.8' 4.z'	
(C) Mudline Elevation	<del>`</del>		
(D) Calculated Core L	ength (PD+OD-C=D)	7.8'	
Estimated Penetration		7.8'	
Description of Core D	rive	Smooth	
Refusal Encountered?		No 7.8'	
Total Core Length Recovered		7.8'	
Core Characteristics			
Sediment Type		cobble, gravel, sand C M F.	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		gray black, brown, frown surface, olivine	gray, black, brown, brown surface, olivine
Sediment Odor		Kon, slight, mod, strong H ₂ S, petroleum, septic	None, slight, mod, strong H ₂ S, petroleum, septic
Any Layering Homog		Caying *	
Comments: EPE: 6  SRC-2010- 3- 3  SRC-2010-3-3-B	10.0-5.8' F. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	Parts of black sit/clay	from 2.75-3.0° and n 7.2-7.9'8.s.s.



Fax: (707) 207-7916

<b>Sediment</b>	Core	Collection	Form
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	_ ~

Station ID:	SRC-2010-3-4	Date:	6/11/10		
Project Name:	San Refael Chan 37° 58.0032'		,		
			122029.05271		
Lat/Northing:	37 51.7454 00	Long/Easting:	122 28.9178 X		
Vertical Datum:	MLLW	MLW	Other:		
Depth Measurement:	Sounder	Leadli	ne		
Project Depth:	8.0'	Overdredge:	2.0' + 2.0' Extra		
		Attempt 1	Attempt 2		
	Time:				
(A) Measured Water [	Depth	Z.0'			
(B) Tide Height	(A. D. C)	-0.5			
(C) Mudline Elevation	·	2.5' 9.5'			
(D) Calculated Core L Estimated Penetration	ength (PD+OD-C=D)	7.5			
Estimated Penetration		7.3			
Description of Core Drive		Smoot2			
Refusal Encountered?		NO 9.5'			
Total Core Length Recovered		9.5'			
Core Characteristics					
Sediment Type		cobble, gravel, smc C Me,	cobble, gravel, sand C M F, silt clay, organic matter		
Sediment Color		eray black, brown, brown surface, olivine	gray, black, brown, brown surface, olivine		
Sediment Odor		Nond, slight, mod, strong H ₂ S, petroleum, septic	None, slight, mod, strong H ₂ S, petroleum, septic		
Any Layering Homogenous		Cazering			
Comments: EPE: 6	1 - 1º hand	1 Sent 10 - 7.0' AT	vivice all makriel ca		
SRC-2010-3-4	Comments: EPE: 6' - 1' band of Good @ - Z.O'. Otherine all material was  SPC-2010-3-4:00:75' Uniform (3 ay silt/clag).				
SRC-2010 -3-4-B	7.5'. 9.5'				



Station ID:	SRC-2010-4-1	Date:	6/11/10	
Project Name:	Son Rafael Chap	nne Project No.:	16087	
Coordinates: Lat/Northing:	37° 58.0442	Long/Easting:	122° 29. 1723	
Vertical Datum:	MLLW	MLW	Other:	
Depth Measurement:	Sounder	Leadline		
Project Depth:	8.0'	Overdredge:	Z.0'+Z.0' Extra	
	•	Attempt 1	Attempt 2	
	Time	: 08:40		
(A) Measured Water I	Depth	3.0'		
(B) Tide Height	T.	0-1'		
(C) Mudline Elevation	n (A–B=C)	Z.9'		
(D) Calculated Core I	Length (PD+OD-C=D)	9.1'		
Estimated Penetration	<u></u>	9.1'		
Description of Core Drive		5m0012		
Refusal Encountered?		No		
Total Core Length Re	covered	No 9.1'		
Core Characteristics				
Sediment Type		cobble, gravel, and C M F,	cobble, gravel, sand C M F, silt clay, organic matter	
Sediment Color		gra, black, brown, brown surface, olivine	gray, black, brown, brown surface, olivine	
Sediment Odor		None, slight, mod, strong H ₂ S, petroleum, septic	None, slight, mod, strong H ₂ S, petroleum, septic	
Any Layering Homog	genous	Carering		
Comments: EPE: 6	- 1"7	1 ( 2 1 1 2	T'ROO Otherwise	
SEC-2010-4-1		her cages of 50000 1.1	5'B.S.S. Otherwise	
SRC-2010-4.1-8		terral uniform in Color	and fexture.	
Recorded by:	· · · · · · · · · · · · · · · · · · ·			



Recorded by:

Pacific EcoRisk 2250 Cordelia Road Fairfield, CA 94534 Phone: (707) 207-7760

Sediment Core C	Collection Form		
Station ID:	SEC-2010-4-2	Date:	6/11/10
Project Name:	San Rafael Channe	Project No.:	16087
Coordinates:	37°58.0852'		122° 29.3285'
Vertical Datum:	MLLW	MLW	Other:
Depth Measurement:	Sounder	Leadli	ine
Project Depth:	8.01	Overdredge:	Z.0'+Z.0'Extra
		Attempt 1	Attempt 2
	Time:	09:15	
(A) Measured Water I	Depth	5.0'	
(B) Tide Height		0.8'	
(C) Mudline Elevation	n (A-B=C)	4.2'	
(D) Calculated Core L	ength (PD+OD-C=D)	8.3 7.8'	
Estimated Penetration		8.3ª 7.8'	
Description of Core Drive		S mooth	
Refusal Encountered?		No	
Total Core Length Re	covered	7.8	
Core Characteristics		, X	
Sediment Type		cobble, gravel, sand C M F, silt clay, organic matter	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		gray black, brown, brown surface, olivine	gray, black, brown, brown surface, olivine
Sediment Odor	. New .	Non, slight, mod, strong H ₂ S, petroleum, septic	None, slight, mod, strong H ₂ S, petroleum, septic
Any Layering Homogenous		Homogenous	
Comments: EPE: 6' SRC-2010 - 4- Z :	Entire (	are Consisted of gra	g silf/clay material.



Recorded by:

Pacific EcoRisk 2250 Cordelia Road Fairfield, CA 94534 Phone: (707) 207-7760

Sediment Core C	ollection Form		
Station ID:	SEC-2010-4-3	Date:	6/11/10
Project Name:	San Rafael Chan	Project No.:	16087
Coordinates: Lat/Northing:	37°58.1334'		<del>****</del> 122 ° 29.4386 '
<b>Vertical Datum:</b>	MLLW	MLW	Other:
Depth Measurement:	Sounder	(eadl)	ne
Project Depth:	8.0'	Overdredge:	2.0'+2.0'Extra
		Attempt 1	Attempt 2
	Time:	09:50	
(A) Measured Water D	Pepth	4.9'	
(B) Tide Height		1.4'	
(C) Mudline Elevation	(A-B=C)	3.5'	
(D) Calculated Core L	ength (PD+OD-C=D)	8.5'	
Estimated Penetration		8.5'	
Description of Core D	rive	SMOOTH No B.5'	
Refusal Encountered?		No	
Total Core Length Rec	covered	8.5	
Core			
Characteristics			
Sediment Type		cobble, gravel, sand C M F,	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		gray, black, brown, brown surface, olivine	gray, black, brown, brown surface, olivine
Sediment Odor		None, slight, mod, strong H ₂ S, petroleum, septic	None, slight, mod, strong H ₂ S, petroloum, septic
Any Layering Homoge	enous	Congeries	
Comments: EPE: 6'  SEC-2010-4-3-B:	2.0'-65' Z" thick 6.5-8.5' Ration uniform	hone of salment 1. dark gray in Color. a medium gray in color.	7' telor Pasago 8.5.5. Vervice salinent was



Sediment	Core	Collection	F	orm
> outility	O O Z O	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	_	V

Station ID:	SRC-2010-4-4		6/11/10
Project Name:	Son Refael Chan	ne C Project No.:	16087
	37° 58.16981		122° 29.5767'
Vertical Datum:	MLLW	MLW	Other:
Depth Measurement:	Sounder	Leadlin	19
Project Depth:	80'	Overdredge:	2.0' + 2.0' Extra
		Attempt 1	Attempt 2
	Time		
(A) Measured Water I	Depth	5.4'	
(B) Tide Height		2.1'	
(C) Mudline Elevation		3.3'	
	ength (PD+OD-C=D)	8.7'	
Estimated Penetration	· · · · · · · · · · · · · · · · · · ·	8.7'	
Description of Core Drive		Smooth	
Refusal Encountered?		No 8.7'	
Total Core Length Re	covered	8.7'	
Core Characteristics			
Sediment Type		cobble, gravel, sand C M F, officiary, organic matter	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		eray black, brown, brown surface, olivine	gray, black, brown, brown surface, olivine
Sedimen <b>t Odor</b>		None slight, mod, strong H ₂ S, petroleum, septic	None, slight, mod, strong H ₂ S, petroleum, septic
Any Layering Homogenous		Cageing	
Comments: <i>EPE: 6' SRC- 2010 - 4-4 + 0 SRC- 2010 - 4-4-B: 6</i>	1.0'-6.7' Two and 1.7' 8.7' sit/cl	larle gray bands of sex 75 B.s.s. Otherwise al	hment at 1.0' B.S.S. Unakiel was gray



Fax: (707) 207-7916

Station ID:	SRC-2010-5-1	Date:	6/8/10	
Project Name:	San Rafael Chan	neC Project No.:	16087	
Coordinates: Lat/Northing:	37:38, 190z		122. 29. 6279	
Vertical Datum:	MLLW	MLW	Other:	
Depth Measurement:	Sounder	Leadlin	е	
Project Depth:	6.0	Overdredge: _	Z.0' + Z.0' Extra	
		Attempt 1	Attempt 2	
	Time:			
(A) Measured Water I	Depth	¥ 5.8'		
(B) Tide Height		z.4'		
(C) Mudline Elevation	n (A–B=C)	2.480 3.4'		
(D) Calculated Core L	ength (PD+OD-C=D)	6.6°		
Estimated Penetration		6.6		
Description of Core D	rive	smooth		
Refusal Encountered?		No		
Total Core Length Recovered		6.6'		
Core				
Characteristics				
Sediment Type		cobble, gravel, sand C M F, silt clay organic matter	cobble, gravel, sand C M F, silt clay, organic matter	
Sediment Color		grav black, brown, brown surface, olivine	gray, black, brown, brown surface, oliving	
Sediment Odor		None slight, mod, strong H ₂ S, petroleum, septic	None, slight, mod, strong H ₂ S, petroleum, septic	
Any Layering Homog	enous	Cageing *		
Comments: EPE:6'  SRC-2010-5-1: 0.0'-4.6'  SRC-2010-5-1-B: 4.6'-6.6'  *I"bands of black subment @ 1.75 arel 20' B.S.S.  OTHERWISE all Galement gray and homogenous.				



Fax: (707) 207-7916

#### **Sediment Core Collection Form**

Station ID:	SRC-2010-5-2	Date:	6/8/10
Project Name:	San Rafael Chann	eC Project No.:	•
Coordinates: Lat/Northing:	37° 58 6923	Long/Easting:	16087 6923 122°29. <del>2115</del> ~
Vertical Datum:	MLLW		Other:
Depth Measurement:	Sounder	Leadlin	e)
Project Depth:	6.0'	Overdredge:	2.0' + 2.0' Extra
		Attempt 1	Attempt 2
	Time	15:10	
(A) Measured Water D	Depth	5.8'	
(B) Tide Height		2. 2'	
(C) Mudline Elevation	(A-B=C)	3.6	
(D) Calculated Core L	ength (PD+OD-C=D)	6.4'	
Estimated Penetration		6.9'	
Description of Core Di	rive	SM00 Th	
Refusal Encountered?		No 6.4'	
Total Core Length Rec	covered	6.4'	
Core Characteristics			
Sediment Type		cobble, gravel, sand C M F,	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		gray class, brown, frown surface, olivine	gray, black, brown, brown surface, oliving
Sediment Odor		None sligh, mod, strong H ₂ S, petroleum, septic	None, slight, mod, strong H ₂ S, petroleum, septic
Any Layering Homoge		Caze ins	
Comments: EPE: 6'  SRC-2010-5-2:  SRC-2010-5-2-8:	0.0'-4.4'   Blad 14.9'-6.9'   Sec	le Cayers of Salamenta To learn oclor observed ction of Care	1.0'and 2.0' 8.5.5. in SRC-2010-5-2-8



Fax: (707) 207-7916

Station ID:	SRC-2010-5-3	Date:	6/8/10
Project Name:	San Rafael Che	Project	No.: 16087
Coordinates: Lat/Northing:	37°58, 2060'	Long/E	asting: 122 · 29. 8990
Vertical Datum:	MLLW	MLW	Other:
Depth Measurement:	Sounde	r (	Leadline
Project Depth:	6.0'	Overdr	redge: Z.O'+ZD'Extra
		Attempt	1 Attempt 2
	Time		
(A) Measured Water I	Depth	6.0'	
(B) Tide Height		Z.4'	
(C) Mudline Elevation (A–B=C)		3.6'	
(D) Calculated Core L	Length (PD+OD-C=D)	6.4'	
Estimated Penetration		6.4'	
Description of Core D	Prive	SMOOTH	
Refusal Encountered?		No	
Total Core Length Recovered		6.4'	
Core Characteristics			a de la companya della companya della companya de la companya della companya dell
Sediment Type		cobble, gravel, sand C	
Sediment Color		gray, black, brown, brown surface, olivine	gray, black, brown, brown surface, olivine
Sediment Odor		None, ligh, mod, stro H ₂ S petroleum, septic	
Any Layering Homog	genous	Hamogenous	
Comments: EPE: 6 SRC-2010-5-3; SRC-2010-5-3-8	0.0'-4.4' Sa		viclent. Care was all Pie



Fax: (707) 207-7916

<b>Sediment Core Collection Form</b>
--------------------------------------

Station ID:	SRC-2010-5-4	Date:	6/9/10
Project Name:	San Rafael Chan	Project No.:	16087
Coordinates: Lat/Northing	: 37°58. 4558	Long/Easting:	122 . 29. 9558
Vertical Datum:	MLLW	MLW	Other:
Depth Measurement:	Sounder	Ceadlin	
Project Depth:	8.0° 6.0	Overdredge: _	2.0' + 2.0'E + tra
	error et	Attempt 1	Attempt 2
	Time:	13:35	2.3
(A) Measured Water	Depth	5-8'	
(B) Tide Height		P34-24 3.4	<u> </u>
(C) Mudline Elevatio	n (A-B=C)	2.4'	
(D) Calculated Core I	Length (PD+OD-C=D)	7.6'	
Estimated Penetration	1	7.6'	13
Description of Core I	Drive	SMOOTH	<b>/</b> • · · · · · · · · · · · · · · · · · ·
Refusal Encountered	?	No	
Total Core Length Re	ecovered	7.6	
Core		3 000	39-1
Characteristics			4
Sediment Type		cobble, gravel, sand C M F,	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		ora, black, brown, frown surface, olivine	gray, black, brown, brown surface, oliving
Sediment Odor		More, slight, mod, strong H ₂ S, petroleum, septic	None, slight, mod, strong H ₂ S, petroleupe, septic
Any Layering Homog	genous	/tomogenous	/ 7
Comments: EPE:6  SRC.2010-5-4:  SRC-2010-5-4-8:	0.0'-5.6' Unifor	for sediment surface, on in Color and textor	all meterial was



Sed	limen	t Core	Collecti	on Form
DUU			COHECH	VIII I VI III

Station ID:	SRC-2010-5-5	Date:	6/9/10
Project Name:	San Rofael Cham	nel Project No.:	16087
Coordinates:			- b
Lat/Northing	: 37.58.1529	Long/Easting:	122°30.0185
Vertical Datum:	MLLY	MLW	Other:
Depth Measurement:	Sounder	Leadli	
Project Depth:	6.0	Overdredge:	2.0' + 2.0 Extra
		Attempt 1	Attempt 2
	Time		
(A) Measured Water	Depth	6.0'	
(B) Tide Height		3.2 3.1'	
(C) Mudline Elevatio	n (A-B=C)	3 2.9'	
(D) Calculated Core	Length (PD+OD-C=D)	7.1'	
Estimated Penetration	1	7.1'	
Description of Core I	Orive	Smooth No	
Refusal Encountered	?	No	
Total Core Length Recovered		7.1'	
Core Characteristics			
Sediment Type		cobble, gravel, sand C M F, silt clay, organic matter	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		gray black, brown, brown surface, olivine	gray, black, brown, brown surface, olivine
Sediment Odor		None, (ligh), mod, strong H ₂ S petroleum, septic	None, slight, mod, strong H ₂ S, petroleum, septic
Any Layering Homos		Capring +	
Comments: EPE: SRC-2010-5-5  SRC-2010-5-5-8	6' - all m : 5.1'-7.1' B'-C	easterned gray except for shell fragments 3.0° B.s agus hael slight petn	2"banlof black cali c.s., cleum oclo



Station ID:	SPC-2010-5-6	Date:	6/9/10
	San Rafael Cham	nel Project No.:	16087
Coordinates: Lat/Northing:	37° 58.1056	Long/Easting:	122°30.1423
Vertical Datum:	MLLW	MLW	Other:
Depth Measurement:	Sounder	Leadlin	19
Project Depth:	6.0	Overdredge:	2.0' + 2.0' Extra
		Attempt 1	Attempt 2
	Time:		
(A) Measured Water I	Depth	7.3	
(B) Tide Height		7.8'	
(C) Mudline Elevation		4.5	
	Length (PD+OD-C=D)	5.5	
Estimated Penetration		5.5'	
Description of Core Drive		5MooTh No	
Refusal Encountered?		No	
Total Core Length Re	covered	5.5'	
Core Characteristics			
Sediment Type		cobble, gravel, sand C M F,	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		gra), black, brown, brown surface, olivine	gray, black, brown, brown surface, olivine
Sediment Odor		Mone. slight, mod, strong H ₂ S, petroleum, septic	None, slight, mod, strong H ₂ S, petroleum, septic
Any Layering Homog		Homogenous	
Comments: EPE: 6'  SPC- Z010-5-6: 0.0'-3.5'  SPC- Z010-5-6-B: 3.5'-5.5'  The brown surface.			with The exception of
Recorded by:			



Recorded by:

Pacific EcoRisk 2250 Cordelia Road Fairfield, CA 94534 Phone: (707) 207-7760

Sediment Core Collection Form					
<b>Station ID:</b>	SPC-2010-6-1	Date:	6/9/10		
Project Name:	San Refael Cham	Project No.:	16087		
Cool dillates	37°58 0627'		122°30.2888°		
Vertical Datum:	MLLW	MLW	Other:		
Depth Measurement:	Sounder	Leadlin	9		
Project Depth:	6.0"	Overdredge: _	2.0' + 2.0' Extra		
		Attempt 1	Attempt 2		
	Time:	15:30			
(A) Measured Water I	Depth	6.0'			
(B) Tide Height		2.5'			
(C) Mudline Elevation (A–B=C)		3.5'			
(D) Calculated Core Length (PD+OD-C=D)		6.5'			
Estimated Penetration		6.51			
Description of Core Drive		SMOOTA			
Refusal Encountered?		6.5'	4		
Total Core Length Re	covered	6.5'	/		
Core Characteristics					
Sediment Type		cobble, gravel, sand C M F, salt clay, organic matter	cobble, gravel, sand C M F, silt clay, organic matter		
Sediment Color		gray, black, brown, brown surface, olivine	gray, black, brown, brown surface, olivine		
Sediment Odor		None, slight, mod, strong H ₂ S, petroleum, septic	None, slight, mod, strong H ₂ S, petroleum, septic		
Any Layering Homogenous					
Comments: EPE: 6  SRC-2010-6-1-8:		for brown surface, entagy silf/clags.	hire Core was composed		



Station ID:	SRC-2010-6-2	Date:	6/9/10	
Project Name:	Son Pafael Cha	Project No.:	16087	
Coordinates: Lat/Northing:	30,58.0165	Long/Easting:	172°30.3673′	
Vertical Datum:	MILW	MLW (	Other:	
Depth Measurement:	Sounder	Leadlin		
Project Depth:	6.0'	Overdredge: _	2.0' + 2.0'Ext	
		Attempt 1	Attempt 2	
	Time	: 15:50		
(A) Measured Water I	Depth	5.8'		
(B) Tide Height		2.5'		
(C) Mudline Elevation	n (A-B=C)	3.3		
(D) Calculated Core I	Length (PD+OD-C=D)	6.7'		
Estimated Penetration		6.7'		
Description of Core D	Prive	SMOOTH		
Refusal Encountered?		No 6.71		
Total Core Length Re	covered	6.71		
Core Characteristics				
Sediment Type		cobble, gravel, sand C M F, silt clay, rganic matter	cobble, gravel, sand C M F, silt clay, organic matter	
Sediment Color		brown surface, olivine	gray, black, brown, brown surface, oliving	
Sediment Odor		None slight, mod, strong H ₂ S, petroleum, septic	None, slight, most, strong H ₂ S, petroleum, septic	
Any Layering Homog	genous	*		
Comments: EPE: 6. SRC- 2010 - 6 - 2: SRC- 2010-6-2-B:	Marble	ayering was evident, -like with gray/blace out Core.	but sediment was he alternating all	



Station ID:	SPC-2010-6-3	Date:	6/9/10	
Project Name:	San Rafael Chan		/	
Candinatas	37°57.4 <del>563</del> 4,			
<b>Vertical Datum:</b>	MLLW	MLW (	Other:	
Depth Measurement:	Sounder	Leadling		
Project Depth:	6.0'	Overdredge: _	2.0'+ 2.0'Extra	
	4.4.4	Attempt 1	Attempt 2	
	Time:			
(A) Measured Water I	Depth	6.5		
(B) Tide Height		2.5		
(C) Mudline Elevation	$A \cdot A - B = C$	4.0'		
(D) Calculated Core L	ength (PD+OD-C=D)	6.0'		
Estimated Penetration		6.0'		
Description of Core D	Prive	SMOTH		
Refusal Encountered?		5moTh No 6.0'		
Total Core Length Re	covered	6.0'		
Core Characteristics				
Sediment Type		cobble, gravel, sand C M F,	cobble, gravel, sand C M F, silt clay, organic matter	
Sediment Color		gray black, brown, brown surface, olivine	gray, black, brown, brown surface, olivine	
Sediment Odor		Mone slight, mod, strong H ₂ S, petroleum, septic	None, slight, mod, strong H ₂ S, petrol um, septic	
Any Layering Homog	enous	Homogenous		
Comments: EPE: 6 SRC-2010-6-3: SEC-2010-6-3-8:	0.0'-4.0'			
Recorded by:	2			



Sediment	Core	Collection	Form
D'CUIII CIII		COHCUMUN	

Scalinett Core C			·		
Station ID:	SR-2010-6-4	Date:	6/10/10		
Project Name:	San Rofael Channe	Project No.:	16087		
Coordinates:	37° 58.0439		122° 30.6349		
	MLLW		Other:		
Vertical Datum:		114211	22		
Depth Measurement:	Sounder	Leadli	ne		
Project Depth:	6.0'	Overdredge:	2.0'+2.0'		
		Attempt 1	Attempt 2		
	Time:	08:25	/		
(A) Measured Water [	Depth	5.4			
(B) Tide Height		0.8			
(C) Mudline Elevation	ı (A–B=C)	4.6			
(D) Calculated Core L	ength (PD+OD-C=D)	5.4			
Estimated Penetration		5.4'			
Description of Core D	rive	Smooth			
Refusal Encountered?		Smooth No			
Total Core Length Rec	covered	5.4'			
Core					
Characteristics					
Sediment Type		cobble, gravel, sand C M F, alt cray, organic matter	cobble, gravel, sand C M F, silt clay, organic matter		
Sediment Color		gray black, brown, brown surface, olivine	gray, black, brown, brown surface, olivine		
Sediment Odor		None, slight, mod, strong H ₂ S, petroleum, septic	None, flight, mod, strong H ₂ S, petroleum, septic		
Any Layering Homogo	enous	Hemogeneus			
Comments: EPE:6'					
SPC- 2010 - 6- 4 .	0.0'- 34'				
SRC- 2010 - 6 - 4 . 6 SRC- 2010 - 6 - 4 - B : 3	3.4'-5.4'	10.7			
		,			
Recorded by:	7				



**Sediment Core Collection Form** 

Pacific EcoRisk 2250 Cordelia Road Fairfield, CA 94534 Phone: (707) 207-7760

Fax: (707) 207-7916

brown surface, olivine

H₂S, petroleum, septic

None, slight, mod, strong

Station ID:	SRC-2010-7-1	Date:	6/10/10
	San Pala I Cham	Project No :	16087
Coordinates: Lat/Northing:	San Rafael Clan 37°58, 0688	Long/Easting:	122-30.6583
Vertical Datum:	MLLW	MLW	Other:
Depth Measurement:	Sounder	Leadli	ne
Project Depth:	6.0	Overdredge:	2.0' + 2.0' Extra
		Attempt 1	Attempt 2
-	Time:	09:00	
(A) Measured Water I	Depth	6.4'	
(B) Tide Height		1.4'	
(C) Mudline Elevation	(A-B=C)	5.0'	
(D) Calculated Core L	<del>. `                                   </del>	5.0'	
Estimated Penetration		50'	
Description of Core D		5-0' smooth Hit tespeale 5.0' B.S.S.	
Refusal Encountered?	-	Yes	
Total Core Length Recovered		5.0'	
Core			•
Characteristics			
Sediment Type		cobble, gravel, sand C M F, satt clay, organic matter	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		gray, black, brown	gray, black, brown,

brown surface, olivine

H₂S, petroleum, septic

None, slight, mod, strong

Entire love consisted of gray sit/clay, with The enception of hard brown clay markinal at bottom of core. This brown clay markinal was almost Dry.

Recorded by:

Sediment Odor

Any Layering Homogenous

Comments: EPI: 6'

SPC-2010-7-1-2:3.0-3.0

SPC-2010-7-1-2:3.0-3.5

SPC-2010-7-1-B:3.5-5.0

25



Fax: (707) 207-7916

	Sediment	Core	Collection	Form
--	----------	------	------------	------

****		****			
Station ID:	SRC-2010-7-2	Date:	6/10/10		
Project Name:	San Rofael Chann	Project No.:	16087		
Coordinates: Lat/Northing:	37° 58.0973'	Long/Easting:	122° 30. 7466'		
Vertical Datum:	MLLW	MLW	Other:		
Depth Measurement:	Sounder	Ceadli	ne		
Project Depth:	6.0'	Overdredge:	2.0' +2.0' Extra		
		Attempt 1	Attempt 2		
	Time:	09:40			
(A) Measured Water D	epth	7. 5			
(B) Tide Height		Z.1 '			
(C) Mudline Elevation	(A-B=C)	5.4			
(D) Calculated Core Le	ength (PD+OD-C=D)	5.4 4.6'			
Estimated Penetration		4.6			
Description of Core Dr	ive	Smooth			
Refusal Encountered?		Smooth No 4.6'			
Total Core Length Rec	overed	4.6'			
Core					
Characteristics					
Sediment Type		cobble, gravel, sand C M F,	cobble, gravel, sand C M F, silt clay, organic matter		
Sediment Color		gray black, brown, brown surface, olivine	gray, black, brown, brown surface, olivine		
Sediment Odor		Moe, slight, mod, strong H ₂ S, petroleum, septic	None, slight, mod strong H ₂ S, petroleum, septic		
Any Layering Homoge	nous				
Comments: EPE: 6'  SRC- 2010. 7- z: 6  SRC- 2010. 7- z-Z:  SRC- 2010-7-z-B:	-6-5/	ic lore composed of 1 surface to 4.6 B.S.	The same gray sittlelay S.		



S	edimen	t	Core	Collection	Form
v	cullicii	L.	CULC	COHCCHOIL	LVIII

Station ID:	SRC-2010- 7-3	Date:	6/10/10
Project Name:	Son Rafael Channe	Project No.:	16087
Coordinates: Lat/Northing:	Son Rafael Channe 37° 58, 0990'	Long/Easting:	(ZZ°30. 801Z'
Vertical Datum:	MLLW		Other:
Depth Measurement:	Sounder	Leadli	nje .
Project Depth:	6.0	Overdredge:	2.0' + 2.0' Extra
		Attempt 1	Attempt 2
	Time:		
(A) Measured Water I	Depth	6.5"	
(B) Tide Height		2.7'	
(C) Mudline Elevatior	<del></del>	3.8'	
(D) Calculated Core L	Length (PD+OD-C=D)	6.2'	
Estimated Penetration		6.Z'	
Description of Core D	Prive	Smooth	
Refusal Encountered?		No 6.2'	
Total Core Length Re	covered	6.2'	
Core Characteristics			re-pe
Sediment Type		cobble, gravel, sand C M F, sift clay, organic matter	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		gray, clack, brown, brown surface, olivine	gray, black, brown, brown surface, olivine
Sediment Odor		None, slight, noo, strong H ₂ S, petroleum, septic	None, slight, mod, strong H ₂ S, petroleum, septic
Any Layering Homog	enous	Cagering	
Comments: EPE 6	- Sectionent	Core gray from except	for black brubat
SEC-2010-7-3: 0	·0. 70 / Zn' Z	2' 2 6 42' 45	•
SRC-2010-7-3-2:4. SRC-2010-7-3-8:4.	2'-4.7' - moderate 1. 7'-6.2' 10 7-3	petroleum oder detectuil E. E. but not in 7-3-8.	in lave portion of 7-3 and
Recorded by:			



Station ID:	SRC-2010-7-4	Date:	6/10/10
Project Name: Coordinates:	San Rafael Chan	nel Project No.:	16087
	37° 58. 1290'	Long/Easting:	122 ° 30. 9375'
Vertical Datum:	MLLW	MLW	Other:
Depth Measurement:	Sounder	r Leadlin	19
Project Depth:	6.0	Overdredge:	Z.0' + Z.0' Extra
		Attempt 1	Attempt 2
	Time	e: 10:35	
(A) Measured Water I	Depth	7.7'	
(B) Tide Height		3.0' 4.7'	
(C) Mudline Elevation	(A-B=C)		
(D) Calculated Core L	ength (PD+OD-C=D)	5.3'	
Estimated Penetration		5.3'	
Description of Core D	rive	Sm00 12	
Refusal Encountered?		Smoot2 No 5.3'	
Total Core Length Rec	covered	5.3'	
Core Characteristics			97.
Sediment Type		cobble, gravel, sand C M F, silt clay, organic matter	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		gray place, brown, brown surface, olivine	gray, black, brown, brown surface, olivine
Sediment Odor		None, slight mod strong	None, slight, mod strong H ₂ S, petroleum, septic
Any Layering Homog			
Comments: EPE: 6'  SRC-2010-7-4: 0.0-  SRC-2010-7-4-2: 3.3'  SRC-2010-7-4-8: 3.8'	- Strong organic -38' - Moderate	HZS cola from 1.0' Material. Petro leunodor from 2	-2.0' BSS - lots of 2.5'-3. <b>8</b> ' B.S.S. ( Wook



Se	diment	Core	Colle	ction	Form
20	umem	CULE	COHE	CUUII	T. OI III

Station ID:	SRC-2010-7-5	Date:	6/10/10
	San Rofoel Channe 2: 3758.1418'		
Coordinates: ATT	2: 37.58 10.0'	•	122° 31. 070'
Lat/Northing:	37° 58. 1411'	Long/Easting:	122°31.0161'
Vertical Datum:	MLLW	MLW	Other:
Depth Measurement:	Sounder	Leadli	nè
Project Depth:	6.0'	Overdredge:	Z.O' + Z.O' Extra
		Attempt 1	Attempt 2
	Time:	11:00	11:15
(A) Measured Water D	Depth	7.0	6.7'
(B) Tide Height		33'	3.6
(C) Mudline Elevation	(A-B=C)	3.7'	3.11
(D) Calculated Core L	ength (PD+OD-C=D)	6.3'	6.9'
Estimated Penetration		3.7' 6.3' 4.3' 5.0'	6.9'
Description of Core D	rive	Hard refusal @ 5.0'	SMOOTh
Refusal Encountered?		Yes	No
Total Core Length Rec	covered	5.0'	6.9'
Core			
Characteristics		arble aroust and CMT	ashble arough cond CME
Sediment Type		cobble, gravel, sand C M F, silt clay, organic many	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		gray, tlack, brown, brown surface, olivine	brown surface, olivine
Sediment Odor		None, slight not, strong	None slight, mod strong
Any Layering Homogo			
Comments: EPE: 6  SRC. 2010- 7- 5: 4.5  SRC. 2010- 7-5- 8: 4.5	1-4.8 4.9.5.4" & Reformed	efusal at initial compliance of Channel to Collect of Zad Core.	g Location shift 0' feren Znel Core.
Recorded by:	full of organi material,	mild HzS octor. Colo	was block.
		A.	
- Moderate po Sit/Cla	etre bun alor from 5.	0'-6.9' 3.5.5 Selin	nt was all dark gray



Fax: (707) 207-7916

#### **Sediment Core Collection Form**

Station ID:	SRC-2010-8-1	Date:	6/10/10
	San Rafael Chann	Project No.:	16087
Coordinates: Lat/Northing:	37°58. 1357'	Long/Easting:	122 - 31.0571
Vertical Datum:	MLEW		Other:
Depth Measurement:	Sounder	Leadlin	ne)
Project Depth:	6.0'	Overdredge:	2.0' +2.0' Extra
		Attempt 1	Attempt 2
	Time:		
(A) Measured Water I	Depth	8.5"	
(B) Tide Height	,	4.0'	
(C) Mudline Elevation (A–B=C)		4.5' 5.5'	
(D) Calculated Core L	ength (PD+OD-C=D)	5.5	
Estimated Penetration		5.5'	
Description of Core D	rive	5moo Th	
Refusal Encountered?		No	
Total Core Length Recovered		5.5"	
Core Characteristics			
Sediment Type		cobble, gravel, sand C M F,	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		brown surface, olivine	gray, black, brown, brown surface, olivine
Sediment Odor		None, slight, nock, strong	None, slight, mod, strong H ₂ S, petroleum, septic
Any Layering Homog		Cagaring	
Comments: EPE: 6  SRC- 2010 - 8-1:  SRC- 2010 - 8-1-2:  SRC- 2010 - 8+1-8:	0.0.3.5'  - Top 0.5'-8 0.0.3.5'  - 0.5'-2.5'   3.5'-40'  - 2.5'- Botton 4.0'-5.5'   Odor	Black organic/s, lf mail of dork gray subment wi	kral 12 moderate petroleun



	<b>Sediment</b>	Core	Collection	<b>Form</b>
--	-----------------	------	------------	-------------

Station ID:	SRC-2010-8-Z	Date:	6/10/10
Project Name: Coordinates:	S.RC-2010-8-Z San Refuel Channe	Project No.:	,
	37° 58.1526"	Long/Easting:	122° 31. 0598'
Vertical Datum:	MLLW	MLW	Other:
Depth Measurement:	Sounder	Leadlin	ne
Project Depth:	6.0'	Overdredge:	2.0' +2.0' Extra
		Attempt 1	Attempt 2
	Time:	12:45	
(A) Measured Water I	Depth	7.5'	
(B) Tide Height		4.Z' 3.3'	
(C) Mudline Elevation (A–B=C)			
(D) Calculated Core Length (PD+OD-C=D)		6-7'	
Estimated Penetration		6.7'	
Description of Core D	Drive	SMOTH	
Refusal Encountered?		No 3.0'	
Total Core Length Re	covered	3.0'	/
Core Characteristics			
Sedimen <b>t Type</b>		cobble, gravel, sand C M F,	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		gray black, brown, brown surface, olivine	gray, black, brown, brown surface, olivine
Sediment Odor		None, slight, mod strong	None, slight, mod, strong H ₂ S, petraleum, septic
Any Layering Homogenous		Layering	
Comments: &PE: 6'  SRC- 2010-8-Z  SRC- 2010 · 8-Z-Z:  SRC- 2010 · 8-Z-B:	Core transported to Ca	b intact.	
Recorded by: De-			



Recorded by:

Pacific EcoRisk 2250 Cordelia Road Fairfield, CA 94534 Phone: (707) 207-7760

Sediment Core C	Collection Form	<u> </u>	
Station ID:	5RC-2010-8-3	Date:	6/10/10
Project Name:	San Refuel Chann	Project No.:	16087
Coordinates: Lat/Northing:	37° 58. 1605'		122°31.0974
Vertical Datum:	MLLW	MLW	Other:
Depth Measurement:	Sounder	Leadli	nd
Project Depth:	6.0	Overdredge:	2.0' + 2.0' Extra
		Attempt 1	Attempt 2
	Time:	/3:30	
(A) Measured Water D	Depth	5.8'	
(B) Tide Height		4.1'	
(C) Mudline Elevation	(A-B=C)	1.7'	
(D) Calculated Core L	ength (PD+OD-C=D)	8.3'	
Estimated Penetration		8.3'	
Description of Core D	rive	Smooth-	
Refusal Encountered?		Smooth No	17
Total Core Length Rec	covered	₹ 4.6°	/
Core Characteristics			
Sedimen <b>t Type</b>		cobble, gravel, sand C M F,	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		eray black, brown, brown surface, olivine	gray, black, brown, brown surface, olivine
Sediment Odor		None, slight, mod, strong	None, slight, prod, strong H ₂ S, petroleum, septic
Any Layering Homoge		Cayering	
Comments: EPE: 6'  SRC- 2010 - 8-3:  SRC- 2010 - 8-3-2:  SRC - 2010 - 8-3-8:	- Kept Core intact for	sectioning of PER	



C - 1!4	C	Callagation	II a manage
Seaiment	Core	Collection	rorm

Project Name:			6/11/10
J	San Rafuel Channe	Project No.:	16087
Coordinates:  Lat/Northing:	San Robel Channe 37° 58. 1658 37° 58. 1665 &	Long/Easting:	122°31,1227 +22°31.1265×
Vertical Datum:	MILLW	MLW	Other:
Depth Measurement:	Sounder	Leadli	ne
Project Depth:	6.0'	Overdredge:	2.0'+2.0' Extra
		Attempt 1	Attempt 2
	Time	11:40	
(A) Measured Water D	Pepth	5.0'	
(B) Tide Height		3.5'	
(C) Mudline Elevation	(A-B=C)	1.5'	
(D) Calculated Core Length (PD+OD-C=D)		8.5'	
Estimated Penetration		5.5'	
Description of Core Dr	rive	5.5' Hand Refuel @ 5.5'	
Refusal Encountered?		Yes	
Total Core Length Rec	covered	5.5'	/
Core Characteristics			
Sediment <b>Type</b>		cobble, gravel, game CM F, silt clay organic matter	cobble, gravel, sand C M F, silt clay, organic matter
Sediment Color		gray, vaco, brown, brown surface, olivine	gray, black, brown brown surface, onvine
Sedimen <b>t Odor</b>		None, slight, mod, strong	None, slight, mod, strong H ₂ S, petroleum, septic
Any Layering Homoge	enous	Cooping	
Comments: EPE:6'	- Hard Refusal @ -5.  gravel below Prot.  - Retained Core intact	s' organic Makerial o	n Suface, Saral corel

# Appendix B

**Analytical Chemistry Laboratory Data Report Submitted by Columbia Analytical Services** 



July 20, 2010

Analytical Report for Service Request No: K1006480

Jeffrey Cotsifas Pacific EcoRisk Laboratories 2250 Cordelia Road Fairfield, CA 94534

RE: ACOE San Rafael Channel/16087

Dear Jeffrey:

Enclosed is the revised report for the rush samples submitted to our laboratory on June 23, 2010. For your reference, these analyses have been assigned our service request number K1006480.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Divvela Project Chemist

PD/cb

Page 1 of 4

REVISED

5:42 pm, Jul 20, 2010

REVISED

3:51 pm, Jul 23, 2010

### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

### Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOO/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value that was detected outside the quantitation range.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

### Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

# Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number	
Alaska DEC UST	UST-040	
Arizona DHS	AZ0339	
Arkansas - DEQ	88-0637	
California DHS	2286	
Colorado DPHE	-	
Florida DOH	E87412	
Hawaii DOH	-	
Idaho DHW	-	
Indiana DOH	C-WA-01	
Louisiana DEQ	3016	
Louisiana DHH	LA050010	
Maine DHS	WA0035	
Michigan DEQ	9949	
Minnesota DOH	053-999-368	
Montana DPHHS	CERT0047	
Nevada DEP	WA35	
New Jersey DEP	WA005	
New Mexico ED	-	
North Carolina DWQ	605	
Oklahoma DEQ	9801	
Oregon - DHS	WA200001	
South Carolina DHEC	61002	
Utah DOH	COLU	
Washington DOE	C1203	
Wisconsin DNR	998386840	
Wyoming (EPA Region 8)	_	







**Case Narrative** 

Client:

Pacific EcoRisk Laboratories ACOE San Rafael Channel

**Service Request No.:** 

K1006480 06/23/10

Project: Sample Matrix:

Sediment

Date Received:

### CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

### Sample Receipt

One sediment sample was received for analysis at Columbia Analytical Services on 06/23/10. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

### **General Chemistry Parameters**

No anomalies associated with the analysis of these samples were observed.

### **Total Metals**

### **Matrix Spike Recovery Exceptions:**

The control criteria for matrix spike recovery of Lead for the Batch QC sample were not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

No other anomalies associated with the analysis of these samples were observed.

### PCB Aroclors by EPA Method 8082

### **Elevated Detection Limits:**

The detection limits were elevated for Aroclors 1016 thru 1254 in sample SRC-2010-8-Comp. The chromatogram indicated the presence of Organochlorine pesticides and other non-target background components. The matrix interference prevented adequate resolution of the target compounds at the normal limits. The results were flagged to indicate the matrix interference.

No other anomalies associated with the analysis of these samples were observed.

### **Organotin Compounds**

### Calibration Verification (CCV) Exceptions:

The analysis of Butyltins requires the use of dual column confirmation. When the (CCV criterion is met for both columns, the higher of the two sample results is generally reported. The primary evaluation criteria were not met on the confirmation column for Di-n-butyltin. The results were reported from the column with an acceptable CCV. The data quality was not affected. No further corrective action was necessary.

No other anomalies associated with the analysis of these samples were observed.

Approved by REVISED

5:41 pm, Jul 20, 2010

_Date_07/20110

### Polynuclear Aromatic Hydrocarbons by EPA Method 8270C

No anomalies associated with the analysis of these samples were observed.

### Organochlorine Pesticides by EPA 8081

### Sample Confirmation Notes:

The confirmation comparison criteria of 40% difference for at least one analyte was exceeded in sample SRC-2010-8-Comp. The higher of the two values was reported when no evidence of a matrix interference was observed, or the lower of the two values was reported when there was an apparent interference on the alternate column that produced the higher value.

### **Elevated Detection Limits:**

The detection limit was elevated for a few analytes in sample SRC-2010-8-Comp. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compounds at the normal limit. The results were flagged to indicate the matrix interference.

No other anomalies associated with the analysis of these samples were observed.

Approved by

**REVISED** 5:41 pm, Jul 20, 2010

**Chain of Custody** 

# ANALYTE LIST

Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534

Project Proponent:	Pacific EcoRisk	_
Project #:	16087	_
Site #:	Samples on COC #004	_
Standard Ocean Disposal L	ist (SF Bay)	
Solids, Total	160.3	X
Solids, Volatile	160.4	
Total Organic Carbon	ASTM D4129-82M	X
Sulfides	9030M	
Particle Size	PSEP	X
Ammonia as Nitrogen	350.3M	
Arsenic	6020	X
Cadmium	6020	X
Chromium	6020	X
Copper	6020	X
Lead	6020	X
Nickel	6020	X
Silver	6020	X
Zinc	6020	X
Mercury	7471Ă	X
Selenium	7740 - GFAA	X
2,4'-DDD	8081A	X
2,4'-DDE	8081A	X
2,4'-DDT	8081A	X
4,4'-DDD	8081A	X
4,4'-DDE	8081A	X
4,4'-DDT	8081A	X
Aldrin	8081A	X
alpha-BHC	8081A	X
alpha-Chlordane	8081A	X
beta-BHC	8081A	X
Chlordane	8081A	X
delta-BHC	8081A	X
Dieldrin	8081A	X
Endosulfan I	8081A	X
Endosulfan II	8081A	X
Endosulfan Sulfate	8081A	X
Endrin	8081A	X
Endrin Aldehyde	8081A	X
gamma-BHC (Lindane)	8081A	X
gamma-Chlordane	8081A	X
Heptachlor	8081A	X
Heptachlor Epoxide	8081A	X
Toxaphene	8081A	X
Aroclor 1016	8082	X
Aroclor 1221	8082	X
Aroclor 1232	8082	
		X
Aroclor 1242	8082	X
Aroclor 1248	8082	X
Aroclor 1254	8082	X

1 1260		[ <del></del>
Aroclor 1260	8082	X
Aroclor 1262	8082	X
Aroclor 1268	8082	X
Acenaphthene	8270C-SIM PAH	X
Acenaphthylene	8270C-SIM PAH	X
Anthracene	8270C-SIM PAH	X
Benz(a)anthracene	8270C-SIM PAH	X
Benzo(a)pyrene	8270C-SIM PAH	X
Benzo(b)fluoranthene	8270C-SIM PAH	X
Benzo(g,h,i)perylene	8270C-SIM PAH	X
Benzo(k)fluoranthene	8270C-SIM PAH	X
Chrysene	8270C-SIM PAH	X
Dibenz(a,h)anthracene	8270C-SIM PAH	X
Fluoranthene	8270C-SIM PAH	X
Fluorene	8270C-SIM PAH	X
Indeno(1,2,3-cd)pyrene	8270C-SIM PAH	X
Naphthalene	8270C-SIM PAH	X
Phenanthrene	8270C-SIM PAH	X
Pyrene	8270C-SIM PAH	X
Di-n-butyltin	Organotins	X
n-Butyltin	Organotins	X
Tetra-n-butyltin	Organotins	X
Tri-n-butyltin	Organotins	X
QA/QC	-	<u> </u>
DMMO QA/QC Performed on	one of these site samples.	X
	•	·

If you have any questions regarding this request as checked, please call Jeff Cotsifas at (707)207-7760

Performed as per San Rafael SOW and as PN 01.1

# Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

PC Pradeop
------------

Page_1_of____

Client / Project: PUL FORISK Service Request K10 0 6 480	
Received: 6 18/10 Opened: 6 28/10 By:	
1. Samples were received via? Mail Fed Ex UPS DHL PDX Courier Hand Delivered  2. Samples were received in: (circle) Cooler Box Envelope Other	NA
2. Samples were received in: (circle) Cooler Box Envelope Other  3. Were custody seals on coolers? NA Y N If yes, how many and where?	(VA
If present, were custody seals intact?  Y  N  If present, were they signed and dated?	Y N
Cooler Temp Thermometer Cooler/COC	
Temp °C         Blank °C         ID         ID         NA         Tracking Number         N           0.3         1.0         249         748784387489	A Filed
1.0 5.4 923 19316161755787	
7. Packing material used. Inserts Baggies Bubble Wrap Gel Packs Wet Ice Sleeves Other	
8. Were custody papers properly filled out (ink, signed, etc.)?  NA	/X′) N
9. Did all bottles arrive in good condition (unbroken)? <i>Indicate in the table below.</i> NA	Y N
10. Were all sample labels complete (i.e analysis, preservation, etc.)?	N (M
11. Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA	N (Š
12. Were appropriate bottles/containers and volumes received for the tests indicated?	Й
13. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below	Y N
14. Were VOA vials received without headspace? <i>Indicate in the table below.</i>	Y N
15. Was C12/Res negative?	Y N
Sample ID on Bottle Sample ID on COC Identified by:	
Bottle Count Out of Head- Volume Reagent Lot Sample ID Bottle Type Temp space Broke pH Reagent added Number Initia	
Sample ID Bottle Type Temp space Broke pH Reagent added Number Initia	ls Time
Notes, Discrepancies, & Resolutions:	

**Total Solids** 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Chan/16087

Sample Matrix:

Sediment

**Total Solids** 

Prep Method: Analysis Method:

**NONE** 

160.3M

Units: PERCENT

Service Request: K1006480

Basis: Wet

**Test Notes:** 

Sample Name

Lab Code

Date Collected

Received 06/23/2010

Date

Analyzed

Date

Result

SRC-2010-8-Comp

K1006480-001

06/10/2010

06/26/2010

54.4

Result Notes

Printed: 06/29/2010 09:10

 $u:\Stealth\Crystal.rpt\Solids.rpt$ 

SuperSet Reference: W1006191

13

1 of 1

Page

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE San Rafael Chan/16087

Sample Matrix:

Sediment

Service Request: K1006480

**Date Collected:** 06/10/2010 **Date Received:** 06/23/2010

**Date Analyzed:** 06/26/2010

**Duplicate Sample Summary Total Solids** 

Prep Method: Analysis Method: **NONE** 

Units: PERCENT

Basis: Wet

**Test Notes:** 

160.3M

**Duplicate** Relative Sample Percent Sample Result Result Difference Notes Result Sample Name Lab Code Average 7 54.4 58.3 56.4 SRC-2010-8-Comp K1006480-001

Printed: 06/29/2010 09:10 u:\Stealth\Crystal.rpt\Solids.rpt

Page

1 of 1

14

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Chan/16087

Sample Matrix:

Sediment

**Total Solids** 

Prep Method:

NONE

Analysis Method: Test Notes:

160.3M

Service Request: K1006480

Units: PERCENT

Basis: Wet

Sample Name

Lab Code

Date Collected

Date Received

Date Analyzed

Result

K1006480-001

06/10/2010

06/26/2010

54.4

Result

SRC-2010-8-Comp

06/23/2010

Notes

Printed: 07/01/2010 10:40 u:\Stealth\Crystal.rpt\Solids.rpt

SuperSet Reference: W1006191

15

1 of 1Page

**General Chemistry Parameters** 

## Analytical Report

Client:

Pacific EcoRisk Laboratories ACOE San Rafael Channel

Service Request: K1006480

Project Name:

**Date Collected:** 06/10/10

Project Number: 16087 Sample Matrix: SEDIMENT

Date Received: 06/23/10

Carbon, Total Organic (TOC)

Prep Method:

Method

Units: Percent

Analysis Method:

ASTM D4129-82M

Basis: Dry, per method

Test Notes:

Sample Name	Lab Code	MRL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Result	Result Notes
SRC-2010-8-Comp Method Blank	K1006480-001 K1006480-MB	0.050 0.050	0.020 0.020	1	6/24/2010 NA	07/10/10 07/10/10	4.26 ND	

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project Name:

ACOE San Rafael Channel

Project Number: 16087

Sample Matrix:

**SEDIMENT** 

Service Request: K1006480

Date Collected: NA Date Received: NA Date Prepared: NA

Date Analyzed: 07/10/10

**Duplicate Summary Inorganic Parameters** 

Sample Name:

Batch QC

Lab Code: Test Notes: K1006477-001DUP

Units: Percent

Basis: Dry, per method

Duplicate Relative Prep Analysis Sample Sample Percent Result Result Average Difference Notes Analyte Method Method Result MRL Carbon, Total Organic (TOC) Method ASTM D4129-82M 0.050 19 4.33 3.56 3.95

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project Name:

ACOE San Rafael Channel

Project Number: 16087

Sample Matrix:

**SEDIMENT** 

Service Request: K1006480

Date Collected: NA

Date Received: NA Date Prepared: NA

**Date Analyzed:** 07/10/10

Matrix Spike/Duplicate Matrix Spike Summary

Sample Name:

Batch QC

Lab Code: Test Notes: K1006477-001MS

K1006477-001DMS

Units: Percent

Basis: Dry, per method

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level	Sample Result	Spike MS	Result DMS	Rec	oike overy DMS	CAS Acceptance		Result Notes
Carbon, Total Organic	Method	ASTM	0.050	12.0	10.8	4.33	14.8	15.5	87	103	Limits 77-155	Difference	. (000
(TOC)		D4129-82M		,				15.5	07	103	77-133	1,	

QA/QC Report

Client:

Pacific EcoRisk Laboratories

**Project Name:** Project Number: Sample Matrix:

ACOE San Rafael Channel

16087

SOIL

Service Request: K1006480

Date Collected: NA Date Received: NA Date Prepared: NA

Date Analyzed:

Laboratory Control Sample Summary **Inorganic Parameters** 

Sample Name:

Lab Control Sample

Lab Code:

K1006480-LCS

Test Notes:

Units: Percent

07/10/10

Basis: Dry, per method

87

CAS Percent Recovery Prep Analysis Acceptance Percent Result Method Method Limits True Value Result Recovery Notes

Carbon, Total Organic (TOC)

Analyte

Method

ASTM D4129-82M

0.550

0.476

82-119

Report By: MKANALY

Printed: 7/12/2010 2:28:33PM

20

QA/QC Report

Client: Pacific EcoRisk Laboratories
Project: ACOE San Rafael Channel

Service Request: K1006480

Date Collected: NA
Date Received: NA

Carbon, Total Organic (TOC) ASTM D4129-82M Units: Percent

# **CONTINUING CALIBRATION VERIFICATION (CCV)**

	Date Analyzed	True Value	Measured Value	Percent Recovery
CCV1 Result	7/10/2010	20.0	19.7	99
CCV2 Result	7/10/2010	20.0	19.6	98
CCV3 Result	7/10/2010	20.0	19.1	96

Printed: 7/12/2010 2:29:06PM

QA/QC Report

Client: Pacific EcoRisk Laboratories

Project: ACOE San Rafael Channel

Service Request: K1006480

Date Collected: NA
Date Received: NA

Carbon, Total Organic (TOC) ASTM D4129-82M Units: Percent

# **CONTINUING CALIBRATION BLANK (CCB)**

	Date		Blank
	Analyzed	MRL	Value
CCB1 Result	7/10/2010	0.050	ND
CCB2 Result	7/10/2010	0.050	ND
CCB3 Result	7/10/2010	0.050	ND

Printed: 7/12/2010 2:29:06PM

# Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request: Date Collected:

K1006480 6/10/2010

Date Received:

6/23/2010

Date Analyzed:

6/25/2010

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-8-Comp

Lab Code:

K1006480-001

Sand Fraction: Dry Weight (Grams)

30.4661

Sand Fraction: Weight Recovered (Grams)

30.3107

Sand Fraction: Percent Recovery

99.5

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	3.4749	8.91
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	2.7814	7.13
Sand, Coarse (0.50	0 to 1 Ø	3.6610	9.39
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	8.4088	21.6
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	8.0306	20.6
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	3.2141	8.24
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	5.6200	14.4
Clay (< 0.0039 mm)	> 8 Ø	3.3150	8.50
	Total	38.5058	98.8

## Analytical Report

Client: Pacific EcoRisk Laboratories Service Request: K1006480

Project: ACOE Sep Refeel Channel/16087

Project:ACOE San Rafael Channel/16087Date Collected:NASample Matrix:SedimentDate Received:NADate Analyzed:6/29/2010

Particle Size Determination
Puget Sound Estuary Program Protocol

Sample Name: Batch QC Lab Code: K1006482-002

Sand Fraction:Dry Weight (Grams)27.9243Sand Fraction:Weight Recovered (Grams)27.9318Sand Fraction:Percent Recovery100

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	5.5516	16.9
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	2.5425	7.73
Sand, Coarse (0.50	0 to 1 Ø	3.6567	11.1
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	6.5425	19.9
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	2.9954	9.10
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	6.1913	18.8
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	2.9100	8.84
Clay (< 0.0039 mm)	> 8 Ø	2.2950	6.97
	Total	32.6850	99.3

## Analytical Report

Client:

Pacific EcoRisk Laboratories

**Project:** 

ACOE San Rafael Channel/16087

Sample Matrix: Sediment

**Service Request:** 

K1006480

Date Collected: Date Received: NA NA

Date Analyzed:

6/29/2010

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: Batch QC

Lab Code:

K1006482-002DUP

Sand Fraction: Dry Weight (Grams)

27.4730

Sand Fraction: Weight Recovered (Grams)

27.4749

Sand Fraction: Percent Recovery

100

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	6.3628	20.6
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	2.7957	9.06
Sand, Coarse (0.50	0 to 1 Ø	3.4387	11.1
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	6.3038	20.4
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	5.7238	18.6
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	2.4253	7.86
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	2.8800	9.34
Clay (< 0.0039 mm)	> 8 Ø	2.2200	7.20
	Total	32.1501	104

## Analytical Report

Client:

Pacific EcoRisk Laboratories

**Project:** 

ACOE San Rafael Channel/16087

Sample Matrix: Sediment

**Service Request:** 

K1006480

Date Collected: Date Received: NA NA

Date Analyzed:

6/29/2010

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: Batch QC

Lab Code:

K1006482-002TRP

Sand Fraction: Dry Weight (Grams) 30.1017 Sand Fraction: Weight Recovered (Grams) 30.6925 Sand Fraction: Percent Recovery 102

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	6.3363	20.5
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	2.9863	9.68
Sand, Coarse (0.50	0 to 1 Ø	4.1688	13.5
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	7.2684	23.6
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	7.0336	22.8
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	2.5376	8.23
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	1.0450	3.39
Clay (< 0.0039 mm)	> 8 Ø	2.3050	7.47
	Total	33.6810	109

# Columbia Analytical Services

## - Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Project Name:

ACOE San Rafael Channel

Project No.:

16087

Service Request: K1006480

Sample Name:	Lab Code:
Batch QC1D	K1006477-001D
Batch QC1S	K1006477-001S
SRC-2010-8-Comp	K1006480-001
SRC-2010-8-CompD	K1006480-001D
SRC-2010-8-CompS	K1006480-001S
Method Blank	K1006480-MB
Batch QC2D	K1006518-001D
Batch QC2S	K1006518-001S

Co	m	m	en	ts	:
----	---	---	----	----	---

Approved By:	- marriannis	Date:	epitus-6904	Transition of the Control of the Con
Approved by.		Date.	Belant Entered Ophysics	14110

## - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006480

Project No.:

16087

Date Collected: 06/10/10

Project Name: ACOE San Rafael Channel

Date Received: 06/23/10

Matrix:

SEDIMENT

Units: mg/Kg

Basis: DRY

Sample Name:

SRC-2010-8-Comp

Lab Code:

K1006480-001

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	n	Q
Arsenic	6020	0.51	0.05	5.0	07/08/10	07/12/10	5.58		
Cadmium	6020	0.020	0.004	5.0	07/08/10	07/12/10	0.363		
Chromium	6020	0.20	0.02	5.0	07/08/10	07/12/10	47.8		
Copper	6010B	2.0	0.6	2.0	07/08/10	07/09/10	52.7		
Lead	6020	0.051	0.006	5.0	07/08/10	07/12/10	60.3		
Mercury	7471A	0.020	0.002	1.0	06/30/10	07/02/10	0.279		
Nickel	6020	0.20	0.02	5.0	07/08/10	07/12/10	61.4		
Selenium	7742	0.10	0.03	2.0	07/08/10	07/09/10	0.12		
Silver	6020	0.020	0.008	5.0	07/08/10	07/13/10	0.152		
Zinc	6020	0.5	0.2	5.0	07/08/10	07/12/10	184		

% Solids:

54.4

Comments:

## - 1 -**INORGANIC ANALYSIS DATA PACKAGE**

Client:

Pacific EcoRisk Laboratories

Service Request: K1006480

Project No.:

16087

Date Collected:

Project Name: ACOE San Rafael Channel

Date Received:

Units: mg/Kg

Basis: DRY

Matrix:

SEDIMENT

Sample Name:

Method Blank

Lab Code:

K1006480-MB

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.50	0.05	5.0	07/08/10	07/12/10	0.05	บ	
Cadmium	6020	0.020	0.004	5.0	07/08/10	07/12/10	0.004	U	
Chromium	6020	0.20	0.02	5.0	07/08/10	07/12/10	0.08	J	
Copper	6010B	2.0	0.6	2.0	07/08/10	07/09/10	0.6	Ü	
Lead	6020	0.050	0.006	5.0	07/08/10	07/12/10	0.030	J	
Mercury	7471A	0.020	0.002	1.0	06/30/10	07/02/10	0.002	Ü	
Nickel	6020	0.20	0.02	5.0	07/08/10	07/12/10	0.02	Ü	
Selenium	7742	0.10	0.03	2.0	07/08/10	07/08/10 07/09/10		Ü	
Silver	6020	0.020	0.008	5.0	07/08/10	07/13/10	0.008	บ	
Zinc	6020	0.5	0.2	5.0	07/08/10	07/12/10	0.2	บ	

% Solids:

100.0

Comments:

- 5A -

## SPIKE SAMPLE RECOVERY

Client:

Pacific EcoRisk Laboratories

Service Request: K1006480

Project No.:

16087

Units: MG/KG

Project Name: ACOE San Rafael Channel

Basis:

DRY

Matrix:

SEDIMENT

% Solids:

51.0

Sample Name:

Batch QC1S

Lab Code: K1006477-001S

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	%R	Q	Method
Arsenic	57 - 133	114	11.4	101.60	101.0		6020
Cadmium	68 - 137	12.3	1.190	10.16	109.4		6020
Chromium	34 - 175	136	93.6	40.64	104.3	Ī	6020
Lead		567	427	101.60	137.8		6020
Nickel	59 - 132	212	103	101.60	107.3		6020
Selenium	57 - 134	2.30	0.34	2.05	95.6	ĺ	7742
Zinc	37 - 162	450	306	101.60	141.7		6020

- 5A -

### SPIKE SAMPLE RECOVERY

Client:

Pacific EcoRisk Laboratories

Service Request: K1006480

Project No.: 16087

Units: MG/KG

Project Name: ACOE San Rafael Channel

Basis: DRY

Matrix:

SEDIMENT

% Solids:

54.4

Sample Name: SRC-2010-8-CompS

Lab Code: K1006480-001S

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	%R	Q	Method
Copper	24 - 173	106	52.7	50.50	105.5		6010B
Silver	62 - 131	10.6	0.152	10.10	103.4		6020

- 5A -

## SPIKE SAMPLE RECOVERY

Client:

Pacific EcoRisk Laboratories

Service Request: K1006480

Project No.: 16087

Units: MG/KG

Project Name: ACOE San Rafael Channel

Basis: DRY

Matrix:

SEDIMENT

% Solids: 56.6

Sample Name: Batch QC2S

Lab Code: K1006518-001S

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	%R Q	Method
Mercury	60 - 135	0.474	0.046	0.49	87.3	7471A

- 6 -

## **DUPLICATES**

Client:

Pacific EcoRisk Laboratories

Service Request: K1006480

Project No.: 16087

Units: MG/KG

Project Name: ACOE San Rafael Channel

Basis: DRY

Matrix:

SEDIMENT

% Solids:

51.0

Sample Name:

Batch QC1D

Lab Code:

K1006477-001D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic	20	11.4		11.3		0.9		6020
Cadmium	20	1.190		1.230		3.3		6020
Chromium	20	93.6		90.1		3.8		6020
Lead	20	427		427		0.0	*********	6020
Nickel	20	103		98.1		4.9		6020
Selenium		0.34		0.33		3.0		7742
Zinc	20	306		309		1.0		6020

- 6 -

## **DUPLICATES**

Client:

Pacific EcoRisk Laboratories

Service Request: K1006480

Project No.:

16087

Units:

MG/KG

Project Name: ACOE San Rafael Channel

Basis:

DRY

Matrix:

SEDIMENT

% Solids:

54.4

Sample Name:

SRC-2010-8-CompD

Lab Code:

K1006480-001D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Copper	30	52.7		63.0		17.8		6010B
Silver	20	0.152		0.152		0.0		6020

- 6 -

## **DUPLICATES**

Client:

Pacific EcoRisk Laboratories

Service Request: K1006480

Project No.:

16087

Units:

MG/KG

Project Name: ACOE San Rafael Channel

Basis:

DRY

Matrix:

SEDIMENT

% Solids:

56.6

Sample Name:

Batch QC2D

Lab Code:

K1006518-001D

Analyte	Control Limit	Sample	(S)	С	Duplicate (D)	С	RPD	Q	Method
Mercury			0.046		0.046		0.0		7471A

#### Metals

- 7 -

#### LABORATORY CONTROL SAMPLE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006480

Project No.: 16087

Project Name: ACOE San Rafael Channel

Aqueous LCS Source:

Solid LCS Source: ERA D065540

	Aqueous: ug/L			Solid: mg/kg					
Analyte	True	Found	%R	True	Found C	Limits	₹R		
Arsenic				88.3	92.3	78	122 104.		
Cadmium	T T			91	100	81	119 109.		
Chromium				144	152	80	119 105.		
Copper	l			237	255	83	116 107.		
Lead				104	121	79	121 116.		
Mercury				6.8	6.580	71	128 96.		
Nickel				200	223	81	118 111.		
Selenium	l			192	191	80	120 99.		
Silver				76.4	83.5	66	134 109.		
Zinc			ĺ	292	286	73	121 97.		

# **Butyltins**

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480

**Date Collected:** 06/10/2010 **Date Received:** 06/23/2010

**Butyltins** (as cation)

Sample Name:

SRC-2010-8-Comp

Lab Code:

K1006480-001

**Extraction Method:** 

**SOC-OSWT** 

**Analysis Method:** 

Krone

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	1.9	0.81	1	06/24/10	07/14/10	KWG1006888	
Tri-n-butyltin Cation	5.9	1.9	0.79	1	06/24/10	07/14/10	KWG1006888	
Di-n-butyltin Cation	12	1.9	0.35	1	06/24/10	07/14/10	KWG1006888	
n-Butyltin Cation	12	1.9	0.48	1	06/24/10	07/14/10	KWG1006888	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	72	18-95	07/14/10	Acceptable	

Comments:

Printed: 07/15/2010 16:47:14  $u: \label{lem:limin} u: \label{lem:limin} u: \label{lem:limin} Im \label{lem:limin} limin \ u: \label{lem:limin} u: \label{lem:limin}$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480

**Date Collected:** NA **Date Received:** NA

**Butyltins (as cation)** 

Sample Name:

Method Blank

Lab Code:

KWG1006888-4

**Extraction Method:** 

SOC-OSWT

Analysis Method:

Krone

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	0.97	0.44	1	06/24/10	07/14/10	KWG1006888	
Tri-n-butyltin Cation	ND U	0.97	0.43	1	06/24/10	07/14/10	KWG1006888	
Di-n-butyltin Cation	ND U	0.97	0.19	1	06/24/10	07/14/10	KWG1006888	
n-Butyltin Cation	ND U	0.97	0.26	1	06/24/10	07/14/10	KWG1006888	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	89	18-95	07/14/10	Acceptable	

Comments:

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480

Surrogate Recovery Summary Butyltins (as cation)

**Extraction Method: Analysis Method:** 

SOC-OSWT

Krone

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>
SRC-2010-8-Comp	K1006480-001	72
Method Blank	KWG1006888-4	89
Batch QC	K1006486-001	60
Batch QCMS	KWG1006888-1	95
Batch QCDMS	KWG1006888-2	70
Lab Control Sample	KWG1006888-3	76

Surrogate Recovery Control Limits (%)

SurI = Tri-n-propyltin

18-95

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/15/2010 16:47:21

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page 1 of 1 SuperSet Reference: RR116764

41

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480

**Date Extracted:** 06/24/2010

**Date Analyzed:** 07/14/2010

#### Matrix Spike/Duplicate Matrix Spike Summary **Butyltins** (as cation)

Sample Name:

Batch QC

Lab Code:

K1006486-001

**Extraction Method: Analysis Method:** 

SOC-OSWT

Krone

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006888

Batch QCMS KWG1006888-1

Batch QCDMS KWG1006888-2

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetra-n-butyltin	ND	57.0	56.7	101	44.6	56.4	79	10-120	24	40
Tri-n-butyltin Cation	3.3	44.9	50.3	83	34.3	50.1	62	10-118	27	40
Di-n-butyltin Cation	3.6	40.6	43.5	85	29.4	43.3	60	10-145	32	40
n-Butyltin Cation	9.4	52.8	35.4	123	47.6	35.2	109	10-126	10	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/15/2010 16:47:24 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

Page

1 of 1

42

SuperSet Reference: RR116764

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480 **Date Extracted:** 06/24/2010

**Date Analyzed:** 07/14/2010

Lab Control Spike Summary **Butyltins** (as cation)

Extraction Method: SOC-OSWT

**Analysis Method:** 

Krone

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1006888

Lab Control Sample KWG1006888-3

	Lab	Control Spik	e 	%Rec
Analyte Name	Result	Expected	%Rec	Limits
Tetra-n-butyltin	19.1	25.0	76	30-110
Tri-n-butyltin Cation	20.1	22.2	91	25-101
Di-n-butyltin Cation	12.6	19.2	66	35-108
n-Butyltin Cation	18.5	15.6	119	20-123

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

1 of 1

SuperSet Reference:

**Polychlorinated Biphenyls** 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480 **Date Collected:** 06/10/2010

**Date Received:** 06/23/2010

## Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-8-Comp

Lab Code:

K1006480-001

Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

Units: ug/Kg

Analysis Method: 8082

Analyte Name	Result O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND Ui	23	23	1	06/24/10	07/08/10	KWG1006548	
Aroclor 1221	ND Ui	19	6.4	1	06/24/10	07/08/10	KWG1006548	
Aroclor 1232	ND Ui	29	29	1	06/24/10	07/08/10	KWG1006548	
Aroclor 1242	ND Ui	39	39	1	06/24/10	07/08/10	KWG1006548	
Aroclor 1248	ND Ui	38	38	1	06/24/10	07/08/10	KWG1006548	
Aroclor 1254	ND Ui	57	57	1	06/24/10	07/08/10	KWG1006548	
Aroclor 1260	60	9.2	2.1	1	06/24/10	07/08/10	KWG1006548	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	102	35-133	07/08/10	Acceptable	

Comments:

Printed: 07/12/2010 08:31:16 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480

Date Collected: NA
Date Received: NA

#### Polychlorinated Biphenyls (PCBs)

Sample Name:

Method Blank

Lab Code:

KWG1006548-4

Extraction Method:

EPA 3541

Analysis Method:

8082

Units: ug/Kg
Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Aroclor 1016	ND U	5,0	2.1	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1221	ND U	10	2.1	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1232	ND U	5.0	2.1	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1242	ND U	5.0	2.1	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1248	ND U	5.0	2.1	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1254	ND U	5.0	2.1	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1260	ND U	5.0	2.1	1	06/24/10	07/07/10	KWG1006548	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	87	35-133	07/07/10	Acceptable	

Comments:

Printed: 07/12/2010 08:31:20 u:\Stealth\Crystal.rpt\Form\m\New.rpt

Merged

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480

Surrogate Recovery Summary Polychlorinated Biphenyls (PCBs)

**Extraction Method:** EPA 3541 Analysis Method:

8082

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>
SRC-2010-8-Comp	K1006480-001	102
Method Blank	KWG1006548-4	87
Batch QC	K1006486-001	78
Batch QCMS	KWG1006548-1	74
Batch QCDMS	KWG1006548-2	68
Lab Control Sample	KWG1006548-3	88

Surrogate Recovery Control Limits (%)

Sur1 = Decachlorobiphenyl

35-133

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/12/2010 08:31:25 u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

47

Page

1 of 1

SuperSet Reference: RR116483

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480 **Date Extracted:** 06/24/2010

**Date Analyzed:** 07/08/2010

Matrix Spike/Duplicate Matrix Spike Summary Polychlorinated Biphenyls (PCBs)

Sample Name:

Batch QC

Lab Code:

K1006486-001

**Extraction Method:** 

Analysis Method: 8082

EPA 3541

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006548

Batch QCMS

Batch QCDMS KWG1006548-2

KWG1006548-1

Analyte Name	Sample	M	Matrix Spike		Duplic	%Rec		RPD		
	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Aroclor 1016	ND	162	227	71	144	227	63	27-174	12	40
Aroclor 1260	3.7	179	227	77	157	227	67	20-185	13	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/12/2010 08:31:28 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic 48

1 of 1 Page

SuperSet Reference: RR116483

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

**Service Request:** K1006480 **Date Extracted:** 06/24/2010

**Date Analyzed:** 07/07/2010

Lab Control Spike Summary Polychlorinated Biphenyls (PCBs)

Extraction Method:

EPA 3541

Analysis Method:

8082

Units: ug/Kg Basis: Dry

Level: Low
Extraction Lot: KWG1006548

Lab Control Sample KWG1006548-3

Lab Control Spike %Rec Limits Analyte Name Result Expected %Rec Aroclor 1016 169 200 84 48-121 Aroclor 1260 177 200 88 53-129

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/12/2010 08:31:31 u:\Stealth\Crystal.rpt\Form3LCS.rpt

**Polynuclear Aromatic Hydrocarbons** 

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

**Project:** 

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480 **Date Collected:** 06/10/2010 **Date Received:** 06/23/2010

#### Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-8-Comp

Lab Code:

K1006480-001

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	10	4.5	0.60	1	06/24/10	07/01/10	KWG1006323	
Acenaphthylene	5.6	4.5	0.59	1	06/24/10	07/01/10	KWG1006323	
Acenaphthene	93	4.5	0.76	1	06/24/10	07/01/10	KWG1006323	
Fluorene	85	4.5	0.61	1	06/24/10	07/01/10	KWG1006323	
Phenanthrene	1400	4.5	1.4	1	06/24/10	07/01/10	KWG1006323	
Anthracene	300	4.5	0.58	1	06/24/10	07/01/10	KWG1006323	
Fluoranthene	2100 D	23	4.9	5	06/24/10	07/06/10	KWG1006323	
Pyrene	<b>22</b> 00 D	23	3.8	5	06/24/10	07/06/10	KWG1006323	
Benzo(b)fluoranthene	790	4.5	0.92	1	06/24/10	07/01/10	KWG1006323	
Benzo(k)fluoranthene	280	4.5	0.87	1	06/24/10	07/01/10	KWG1006323	
Benz(a)anthracene	1000	4.5	0.72	1	06/24/10	07/01/10	KWG1006323	
Chrysene	900	4.5	0.80	1	06/24/10	07/01/10	KWG1006323	
Benzo(a)pyrene	680	4.5	0.76	1	06/24/10	07/01/10	KWG1006323	
Indeno(1,2,3-cd)pyrene	450	4.5	0.87	1	06/24/10	07/01/10	KWG1006323	
Dibenz(a,h)anthracene	97	4.5	0.80	1	06/24/10	07/01/10	KWG1006323	
Benzo(g,h,i)perylene	480	4.5	0.85	1	06/24/10	07/01/10	KWG1006323	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	50	17-104	07/01/10	Acceptable	,
Fluoranthene-d10	56	27-106	07/01/10	Acceptable	
Terphenyl-d14	59	35-109	07/01/10	Acceptable	

Comments:

Merged

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480

Date Collected: NA Date Received: NA

## Polynuclear Aromatic Hydrocarbons

Sample Name:

Method Blank

Lab Code:

KWG1006323-5

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	<b>2.3</b> J	2.4	0.60	1	06/24/10	07/01/10	KWG1006323	
Acenaphthylene	ND U	2.4	0.59	1	06/24/10	07/01/10	KWG1006323	
Acenaphthene	ND U	2.4	0.76	1	06/24/10	07/01/10	KWG1006323	
Fluorene	ND U	2.4	0.61	1	06/24/10	07/01/10	KWG1006323	
Phenanthrene	ND U	2.4	1.4	1	06/24/10	07/01/10	KWG1006323	
Anthracene	ND U	2.4	0.58	1	06/24/10	07/01/10	KWG1006323	
Fluoranthene	ND U	2.4	0.98	1	06/24/10	07/01/10	KWG1006323	
Pyrene	ND U	2.4	0.76	1	06/24/10	07/01/10	KWG1006323	
Benzo(b)fluoranthene	ND U	2.4	0.92	1	06/24/10	07/01/10	KWG1006323	
Benzo(k)fluoranthene	ND U	2.4	0.87	1	06/24/10	07/01/10	KWG1006323	
Benz(a)anthracene	ND U	2.4	0.72	1	06/24/10	07/01/10	KWG1006323	
Chrysene	ND U	2.4	0.80	1	06/24/10	07/01/10	KWG1006323	
Benzo(a)pyrene	ND U	2.4	0.76	1	06/24/10	07/01/10	KWG1006323	
Indeno(1,2,3-cd)pyrene	ND U	2.4	0.87	1	06/24/10	07/01/10	KWG1006323	
Dibenz(a,h)anthracene	ND U	2.4	0.80	1	06/24/10	07/01/10	KWG1006323	
Benzo(g,h,i)perylene	ND U	2.4	0.85	1	06/24/10	07/01/10	KWG1006323	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	68	17-104	07/01/10	Acceptable	
Fluoranthene-d10	67	27-106	07/01/10	Acceptable	
Terphenyl-d14	83	35-109	07/01/10	Acceptable	

Comments:

QA/QC Report

**Client:** 

Pacific EcoRisk Laboratories

**Project:** 

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

**Surrogate Recovery Summary** Polynuclear Aromatic Hydrocarbons

**Extraction Method:** EPA 3541

**Analysis Method:** 

8270C SIM

Service Request: K1006480

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	<u>Sur3</u>
SRC-2010-8-Comp	K1006480-001	50	56	59
Method Blank	KWG1006323-5	68	67	83
Batch QC	K1006486-001	56	63	67
Batch QCMS	KWG1006323-1	52	63	60
Batch QCDMS	KWG1006323-2	57	65	67
Lab Control Sample	KWG1006323-3	58	59	64
Duplicate Lab Control Sample	KWG1006323-4	72	70	80

#### Surrogate Recovery Control Limits (%)

Sur1 =	Fluorene-d10	17-104
Sur2 =	Fluoranthene-d10	27-106
Sur3 =	Terphenyl-d14	35-109

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/07/2010 13:48:17

Form 2A - Organic

Page

1 of 1

RR116341

QA/QC Report

Client: Project:

Pacific EcoRisk Laboratories ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480

Date Extracted: 06/24/2010

**Date Extracted:** 06/24/2010 **Date Analyzed:** 07/01/2010

## Matrix Spike/Duplicate Matrix Spike Summary Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code: Batch QC

**Extraction Method:** 

K1006486-001

**Analysis Method:** 

EPA 3541 8270C SIM Units: ug/Kg
Basis: Dry

Level: Low

Extraction Lot: KWG1006323

Batch QCMS KWG1006323-1 Batch QCDMS KWG1006323-2

	Sample	Matrix Spike			KWG1006323-2  Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec		RPD	Limit
Naphthalene	4.1	366	546	66	330	545	60	11-119	10	40
Acenaphthylene	1.3	395	546	72	356	545	65	32-106	11	40
Acenaphthene	1.1	392	546	72	361	545	66	29-110	8	40
Fluorene	3.1	413	546	75	395	545	72	29-117	4	40
Phenanthrene	13	495	546	88	448	545	80	19-128	10	40
Anthracene	2.1	414	546	75	401	545	73	31-115	3	40
Fluoranthene	38	497	546	84	454	545	76	22-138	9	40
Pyrene	50	478	546	78	477	545	78	11-148	0	40
Benzo(b)fluoranthene	30	447	546	76	432	545	74	15-136	3	40
Benzo(k)fluoranthene	10	434	546	78	420	545	75	29-126	3	40
Benz(a)anthracene	14	424	546	75	417	545	74	25-128	2	40
Chrysene	19	445	546	78	429	545	75	25-132	4	40
Benzo(a)pyrene	25	446	546	77	425	545	73	24-131	5	40
Indeno(1,2,3-cd)pyrene	32	475	546	81	464	545	79	20-136	2	40
Dibenz(a,h)anthracene	4.1	423	546	77	415	545	75	29-124	2	40
Benzo(g,h,i)perylene	41	508	546	86	500	545	84	24-127	2	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/07/2010 13:48:20 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

Page

1 of 1

SuperSet Reference: RR116341

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480 **Date Extracted:** 06/24/2010

**Date Analyzed:** 07/01/2010

#### Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

**Extraction Method:** EPA 3541 **Analysis Method:** 

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1006323

Lab Control Sample

**Duplicate Lab Control Sample** 

		KWG1006323-3 Lab Control Spike			KWG1006323-4  Duplicate Lab Control Spike				RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	%Rec Limits	RPD	Limit
Naphthalene	386	500	77	402	500	80	43-99	4	40
Acenaphthylene	417	500	83	439	500	88	41-110	5	40
Acenaphthene	406	500	81	428	500	86	44-104	5	40
Fluorene	424	500	85	459	500	92	49-105	8	40
Phenanthrene	406	500	81	470	500	94	47-104	15	40
Anthracene	427	500	85	454	500	91	47-112	6	40
Fluoranthene	395	500	79	435	500	87	51-111	10	40
Pyrene	441	500	88	456	500	91	48-113	4	40
Benzo(b)fluoranthene	431	500	86	437	500	87	51-113	1	40
Benzo(k)fluoranthene	444	500	89	467	500	93	56-114	5	40
Benz(a)anthracene	416	500	83	427	500	85	51-111	2	40
Chrysene	430	500	86	449	500	90	54-111	4	40
Benzo(a)pyrene	447	500	89	461	500	92	52-118	3	40
Indeno(1,2,3-cd)pyrene	444	500	89	460	500	92	42-123	3	40
Dibenz(a,h)anthracene	444	500	89	459	500	92	44-119	3	40
Benzo(g,h,i)perylene	474	500	95	493	500	99	46-114	4	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/07/2010 13:48:23 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page 1 of 1

RR116341

SuperSet Reference:

Analytical Results

Client: Project: Pacific EcoRisk Laboratories ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480

Date Collected: 06/10/2010

**Date Received:** 06/23/2010

#### **Organochlorine Pesticides**

Sample Name: Lab Code: SRC-2010-8-Comp

**Extraction Method:** 

K1006480-001

Analysis Method:

EPA 3541

EDA 2541

8081A

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	) MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	Ji 0.92	0.43	1	06/24/10	07/16/10	KWG1006549	
alpha-Chlordane	12	0.92	0.10	1	06/24/10	07/16/10	KWG1006549	
beta-BHC	ND U	0.92	0.18	1	06/24/10	07/16/10	KWG1006549	
gamma-BHC (Lindane)	ND U	Ji 0.92	0.22	1	06/24/10	07/16/10	KWG1006549	
delta-BHC	ND U	0.92	0.074	1	06/24/10	07/16/10	KWG1006549	
Heptachlor	ND U	0.92	0.12	1	06/24/10	07/16/10	KWG1006549	
Aldrin	0.55 JI	P 0.92	0.16	1	06/24/10	07/16/10	KWG1006549	
gamma-Chlordane†	18	0.92	0.090	1	06/24/10	07/16/10	KWG1006549	
Heptachlor Epoxide	ND U	0.92	0.92	1	06/24/10	07/16/10	KWG1006549	
Endosulfan I	<b>3.9</b> P	0.92	0.063	1	06/24/10	07/16/10	KWG1006549	
Dieldrin	3.1	0.92	0.14	1	06/24/10	07/16/10	KWG1006549	
4,4'-DDE	13 P	0.92	0.11	1	06/24/10	07/16/10	KWG1006549	
Endrin	ND U	i 0.92	0.92	1	06/24/10	07/16/10	KWG1006549	VWW/shirlshires
Endosulfan II	ND U	0.92	0.92	1	06/24/10	07/16/10	KWG1006549	
4,4'-DDD	22	0.92	0.11	1	06/24/10	07/16/10	KWG1006549	
Endrin Aldehyde	ND U	i 0.92	0.92	1	06/24/10	07/16/10	KWG1006549	
Endosulfan Sulfate	ND U	i 0.92	0.92	1	06/24/10	07/16/10	KWG1006549	
4,4'-DDT	ND U	i 4.3	4.3	1	06/24/10	07/16/10	KWG1006549	
Toxaphene	ND U	i 90	90	1	06/24/10	07/16/10	KWG1006549	
Chlordane	130	9.2	1.9	1	06/24/10	07/16/10	KWG1006549	
2,4'-DDE	ND U	i 1.5	1.5	1	06/24/10	07/16/10	KWG1006549	
2,4'-DDD	<b>4.0</b> P	0.92	0.13	1	06/24/10	07/16/10	KWG1006549	1071744
2,4'-DDT	<b>3.3</b> P	0.92	0.058	1	06/24/10	07/16/10	KWG1006549	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	54	21-112	07/16/10	Acceptable	
Decachlorobiphenyl	94	15-130	07/16/10	Accentable	

**REVISED** 

5:42 pm, Jul 20, 2010

Comments:

Printed: 07/19/2010 17:20:50 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

Page 1 of 2

SuperSet Reference: RR116887

Analytical Results

Client: Pacific EcoRisk Laboratories Project: ACOE San Rafael Channel/16087 Sample Matrix:

Sediment

Service Request: K1006480 **Date Collected:** 06/10/2010 **Date Received:** 06/23/2010

**Organochlorine Pesticides** 

Sample Name: SRC-2010-8-Comp Units: ug/Kg Lab Code: K1006480-001 Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

**REVISED** 

5:42 pm, Jul 20, 2010

Comments:

Printed: 07/19/2010 17:20:50

Merged

 $u: \S tealth \Crystal.rpt \Form \Im New.rpt$ 

Form 1A - Organic

Page 2 of 2

SuperSet Reference: RR116887

Analytical Results

Client: Pacific EcoRisk Laboratories

Project: ACOE San Rafael Channel/16087 Sample Matrix: Sediment

**Organochlorine Pesticides** 

Sample Name: Method Blank Lab Code: KWG1006549-10

**Extraction Method:** EPA 3541 **Analysis Method:** 8081A

Units:	ug/Kg
Basis:	Dry

Service Request: K1006480

Level: Low

Date Collected: NA

Date Received: NA

Dilution Date Date Extraction **Analyte Name** Result Q MRL **MDL Factor** Extracted Analyzed Lot Note alpha-BHC ND U 0.50 KWG1006549 0.11 1 06/24/10 07/16/10 alpha-Chlordane ND U 0.50 0.10 1 06/24/10 07/16/10 KWG1006549 beta-BHC ND U 0.50 0.18 1 06/24/10 07/16/10 KWG1006549 gamma-BHC (Lindane) ND U 0.50 0.080 1 06/24/10 07/16/10 KWG1006549 delta-BHC ND U 0.50 0.074 1 06/24/10 07/16/10 KWG1006549 Heptachlor ND U 0.50 0.12KWG1006549 1 06/24/10 07/16/10 Aldrin ND U 0.50 0.16 1 06/24/10 07/16/10 KWG1006549 gamma-Chlordane† ND U 0.50 0.090 KWG1006549 1 06/24/10 07/16/10 Heptachlor Epoxide ND U 0.50 0.084 KWG1006549 1 06/24/10 07/16/10 Endosulfan I ND U 0.50 0.063 1 06/24/10 07/16/10 KWG1006549 Dieldrin ND U 0.50 0.14 1 06/24/10 07/16/10 KWG1006549 4,4'-DDE ND U 0.50 0.11 1 06/24/10 07/16/10 KWG1006549 Endrin ND U 0.50 0.094 1 06/24/10 07/16/10 KWG1006549 Endosulfan II ND U 0.50 0.14 1 06/24/10 07/16/10 KWG1006549 4,4'-DDD ND U 0.50 0.11 1 KWG1006549 06/24/10 07/16/10 Endrin Aldehyde ND U 0.50 0.12 06/24/10 KWG1006549 1 07/16/10 Endosulfan Sulfate ND U 0.50 0.11 KWG1006549 1 06/24/10 07/16/10 4,4'-DDT ND U 0.50 0.17 1 06/24/10 07/16/10 KWG1006549 Toxaphene ND U 25 4.8 1 KWG1006549 06/24/10 07/16/10 Chlordane ND U 5.0 1.9 1 KWG1006549 06/24/10 07/16/10 2,4'-DDE ND U 0.50 0.16 1 06/24/10 07/16/10 KWG1006549 2,4'-DDD ND U 0.50 0.13 1 06/24/10 07/16/10 KWG1006549 2,4'-DDT ND U 0.50 0.058 1 KWG1006549 06/24/10 07/16/10

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	59	21-112	07/16/10	Acceptable	
Decachlorobiphenyl	64	15-130	07/16/10	Acceptable	

REVISED 5:42 pm, Jul 20, 2010

Comments:

Printed: 07/19/2010 17:20:53 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

Page 1 of

Analytical Results

Client: Pacific EcoRisk Laboratories **Service Request:** K1006480 **Project:** ACOE San Rafael Channel/16087 Date Collected: NA **Sample Matrix:** Sediment Date Received: NA

**Organochlorine Pesticides** 

Sample Name: Method Blank Units: ug/Kg Lab Code: KWG1006549-10 Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

**REVISED** 

5:42 pm, Jul 20, 2010

Comments:

Printed: 07/19/2010 17:20:53 Form 1A - Organic Page 2 of 2  $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} I m \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{le$ Merged

SuperSet Reference:

RR116887

QA/QC Report

**Client:** 

Pacific EcoRisk Laboratories

**Project:** 

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

**Surrogate Recovery Summary Organochlorine Pesticides** 

**Extraction Method: Analysis Method:** 

EPA 3541

8081A

Units: PERCENT

Level: Low

Service Request: K1006480

Sample Name	Lab Code	<u>Sur1</u>	<u>Sur2</u>
SRC-2010-8-Comp	K1006480-001	54	94
Method Blank	KWG1006549-10	59	64
Batch QC	K1006486-001	49	57
Batch QCMS	KWG1006549-1	51	57
Batch QCDMS	KWG1006549-2	45	54
Batch QCMS	KWG1006549-4	58	59
Batch QCDMS	KWG1006549-5	53	55
Batch QCMS	KWG1006549-7	50	57
Batch QCDMS	KWG1006549-8	51	59
Lab Control Sample	KWG1006549-3	61	71

**REVISED** 

5:42 pm, Jul 20, 2010

Surrogate Recovery Control Limits (%)

Surl = Tetrachloro-m-xylene Sur2 = Decachlorobiphenyl

21-112

15-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/19/2010 17:20:58

 $u:\Stealth\Crystal.rpt\Form2.rpt$ 

Form 2A - Organic

Page 1 of

SuperSet Reference: RR116887

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480 **Date Extracted:** 06/24/2010

**Date Analyzed:** 07/17/2010

#### Matrix Spike/Duplicate Matrix Spike Summary **Organochlorine Pesticides**

Sample Name:

Batch QC

Lab Code:

K1006486-001

**Extraction Method: Analysis Method:** 

EPA 3541 8081A

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006549

	Sample	Batch QCMS KWG1006549-1 Matrix Spike			Batch QCDMS KWG1006549-2 Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
alpha-BHC	ND	14.3	22.7	63	12.6	22.7	55	23-133	13	40
alpha-Chlordane	ND	13.0	22.7	57	12.3	22.7	54	24-132	6	40
beta-BHC	ND	12.9	22.7	57	11.6	22.7	51	22-142	11	40
gamma-BHC (Lindane)	ND	14.3	22.7	63	12.8	22.7	56	26-135	11	40
delta-BHC	ND	16.1	22.7	71	14.4	22.7	64	25-148	11	40
Heptachlor	ND	16.0	22.7	70	14.3	22.7	63	21-136	11	40
Aldrin	ND	14.2	22.7	63	12.6	22.7	55	22-135	12	40
gamma-Chlordane	ND	14.6	22.7	64	13.2	22.7	58	24-133	10	40
Heptachlor Epoxide	ND	14.5	22.7	64	13.1	22.7	58	25-129	10	40
Endosulfan I	ND	12.8	22.7	56	11.5	22.7	51	15-119	10	40
Dieldrin	ND	14.5	22.7	64	13.2	22.7	58	26-133	10	40
4,4'-DDE	ND	24.5	22.7	108	24.8	22.7	109	22-142	1	40
Endrin	ND	14.5	22.7	64	13.2	22.7	58	22-145	10	40
Endosulfan II	ND	13.0	22.7	57	11.9	22.7	52	13-129	9	40
4,4'-DDD	ND	24.4	22.7	107	23.4	22.7	103	19-143	4	40
Endrin Aldehyde	ND	13.6	22.7	60	12.4	22.7	55	10-129	9	40
Endosulfan Sulfate	ND	14.4	22.7	63	13.2	22.7	58	20-134	9	40
4,4'-DDT	0.26	18.8	22.7	82	18.2	22.7	79	19-154	4	40



Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/19/2010 17:21:01 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

61

1 of 1 Page

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

**Service Request:** K1006480

**Date Extracted:** 06/24/2010

**Date Analyzed:** 07/17/2010

#### Matrix Spike/Duplicate Matrix Spike Summary **Organochlorine Pesticides**

Sample Name:

Batch QC

Lab Code:

K1006486-001

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006549

Batch QCMS

**Batch QCDMS** 

KWG1006549-4

KWG1006549-5

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec		RPD	Limit
Toxaphene	ND	218	227	96	216	227	95	20-155	1	40
Chlordane	ND	182	227	80	167	227	74	46-139	8	40



Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/19/2010 17:21:04 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

Page 1 of

SuperSet Reference: RR116887

QA/QC Report

**Client: Project:**  Pacific EcoRisk Laboratories ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480

**Date Extracted:** 06/24/2010 **Date Analyzed:** 07/17/2010

#### Matrix Spike/Duplicate Matrix Spike Summary **Organochlorine Pesticides**

Sample Name: Lab Code:

Batch QC K1006486-001

**Extraction Method:** 

**Analysis Method:** 

EPA 3541 8081A

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1006549

Batch QCMS

Batch QCDMS

	Sample	KWG1006549-7  Matrix Spike			E V Duplio	%Rec		RPD		
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
2,4'-DDE	ND	14.3	22.7	63	15.3	22.7	68	24-141	7	40
2,4'-DDD	0.19	12.8	22.7	55	14.0	22.7	61	12-147	10	40
2,4'-DDT	0.42	15.4	22.7	66	17.0	22.7	73	15-141	10	40

**REVISED** 5:42 pm, Jul 20, 2010

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/19/2010 17:21:07  $u:\Stealth\Crystal.rpt\Form3DMS.rpt$ 

Form 3A - Organic

Page

1 of 1

SuperSet Reference: RR116887

QA/QC Report

Client: Pacific EcoRisk Laboratories

Project: ACOE San Rafael Channel/16087

Sample Matrix: Sediment

**Service Request:** K1006480 **Date Extracted:** 06/24/2010 **Date Analyzed:** 07/16/2010

Lab Control Spike Summary Organochlorine Pesticides

**Extraction Method:** EPA 3541 **Analysis Method:** 8081A

Units: ug/Kg
Basis: Dry
Level: Low

Extraction Lot: KWG1006549

Lab Control Sample KWG1006549-3 Lab Control Spike

				%Rec
Analyte Name	Result	Expected	%Rec	Limits
alpha-BHC	13.8	20.0	69	36-139
alpha-Chlordane	12.4	20.0	62	41-134
beta-BHC	13.2	20.0	66	38-142
gamma-BHC (Lindane)	13.9	20.0	69	40-142
delta-BHC	15.0	20.0	75	48-145
Heptachlor	12.0	20.0	60	39-135
Aldrin	13.3	20.0	66	37-134
gamma-Chlordane	13.6	20.0	68	41-135
Heptachlor Epoxide	13.9	20.0	69	45-118
Endosulfan I	12.6	20.0	63	35-121
Dieldrin	14.3	20.0	72	46-136
4,4'-DDE	17.6	20.0	88	46-141
Endrin	13.6	20.0	68	40-152
Endosulfan II	13.2	20.0	66	39-128
4,4'-DDD	18.6	20.0	93	46-146
Endrin Aldehyde	12.3	20.0	62	32-132
Endosulfan Sulfate	14.1	20.0	71	43-138
4,4'-DDT	17.0	20.0	85	46-151
Toxaphene	190	200	95	53-133
Chlordane	159	200	80	52-140
2,4'-DDE	15.1	20.0	75	49-112
2,4'-DDD	15.0	20.0	75	53-115
2,4'-DDT	16.0	20.0	80	44-120



5:42 pm, Jul 20, 2010

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/19/2010 17:21:10 u:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

Page 1 of 1

SuperSet Reference: RR116887



July 23, 2010

Analytical Report for Service Request No: K1006480

Jeffrey Cotsifas Pacific EcoRisk Laboratories 2250 Cordelia Road Fairfield, CA 94534

RE: ACOE San Rafael Channel/16087

Dear Jeffrey:

Enclosed are the additional pages for the sample submitted to our laboratory on June 23, 2010. For your reference, these analyses have been assigned our service request number K1006480.

Data for Methoxychlor by 8081A is enclosed.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Divvela Project Chemist

PD/afs

Page 65 of <u>7/</u>

ADDENDUM

Methoxychlor by EPA 8081A

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480

**Date Collected:** 06/10/2010 **Date Received:** 06/23/2010

## **Organochlorine Pesticides**

Sample Name:

SRC-2010-8-Comp

Lab Code:

K1006480-001

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

Analysis Method:

8081A

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Methoxychlor	ND Ui	2.0	2.0	1	06/24/10	07/16/10	KWG1006549	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	54	21-112	07/16/10	Acceptable	
Decachlorobiphenyl	94	15-130	07/16/10	Acceptable	

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480

Date Collected: NA Date Received: NA

## **Organochlorine Pesticides**

Sample Name:

Method Blank

Lab Code:

KWG1006549-10

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

Analysis Method:

8081A

A . N NY	<b>5</b> 1. 6	W 18 W W	THE ACT WAS AT	Dilution	Date	Date	Extraction	NT 4
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Methoxychlor	ND U	0.50	0.19	1	06/24/10	07/16/10	KWG1006549	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	59	21-112	07/16/10	Acceptable	
Decachlorobiphenyl	64	15-130	07/16/10	Acceptable	

Comments:

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480

**Surrogate Recovery Summary Organochlorine Pesticides** 

**Extraction Method:** EPA 3541

Analysis Method:

8081A

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2
SRC-2010-8-Comp	K1006480-001	54	94
Method Blank	KWG1006549-10	59	64
Batch QC	K1006486-001	49	57
Batch QCMS	KWG1006549-1	51	57
Batch QCDMS	KWG1006549-2	45	54
Lab Control Sample	KWG1006549-3	61	71

#### Surrogate Recovery Control Limits (%)

Sur1 =	Tetrachloro-m-xylene	21-112
Sur2 =	Decachlorobiphenyl	15-130

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/22/2010 15:29:15

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic 69

Page SuperSet Reference: RR117044

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480

Date Extracted: 06/24/2010

Date Analyzed: 07/17/2010

#### Matrix Spike/Duplicate Matrix Spike Summary **Organochlorine Pesticides**

Sample Name:

Batch QC

Lab Code:

K1006486-001

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

Analysis Method:

8081A

Extraction Lot: KWG1006549

Batch QCMS

KWG1006549-1

Batch QCDMS

KWG1006549-2

	Sample Result	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name		Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Methoxychlor	ND	17.7	22.7	78	16.5	22.7	73	24-151	7	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/22/2010 15:29:18

Form 3A - Organic

70

SuperSet Reference: RR117044

Page

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006480

Date Extracted: 06/24/2010

**Date Analyzed:** 07/16/2010

Lab Control Spike Summary **Organochlorine Pesticides** 

**Extraction Method:** EPA 3541 **Analysis Method:** 

8081A

Units: ug/Kg

Basis: Dry Level: Low

Extraction Lot: KWG1006549

Lab Control Sample KWG1006549-3

%Rec

Lab Control Spike

Result Expected %Rec

Limits

**Analyte Name** Methoxychlor

15.6

20.0

78

42-147

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/22/2010 15:29:21 u:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

SuperSet Reference: RR117044

Page



July 16, 2010

Analytical Report for Service Request No: K1006356

Jeffrey Cotsifas Pacific EcoRisk Laboratories 2250 Cordelia Road Fairfield, CA 94534

RE: USACE San Rafael Channel/16087

Dear Jeffrey:

Enclosed are the results of the rush samples submitted to our laboratory on June 18, 2010. For your reference, these analyses have been assigned our service request number K1006356.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Divvela Project Chemist

PD/ln

Page 1 of <u>433</u>

### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number

MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

### Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- U Tbe analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

### Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value that was detected outside the quantitation range.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

### Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

### Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

# Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-





# **Case Narrative**

Client: Project: Pacific EcoRisk Laboratories

USACE San Rafael Channel

**Date Received:** 

06/18/10 to 06/23/10

Sample Matrix:

Sediment

Service Request No.:

K1006356

### CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

### Sample Receipt

Twenty one sediment samples were received for analysis at Columbia Analytical Services between 06/18/10 and 06/23/10. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

### **General Chemistry Parameters**

No anomalies associated with the analysis of these samples were observed.

### **Total Metals**

### **Matrix Spike Recovery Exceptions:**

The control criteria for matrix spike recovery of Manganese for sample SRC-2010-1-Comp were not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

### **Relative Percent Difference Exceptions:**

The Relative Percent Difference (RPD) for the replicate analysis of Cadmium in sample SRC-2010-1-Comp was outside the normal CAS control limits (26% RPD versus a control limit of 20%). The variability in the results was attributed to the heterogeneous character of the sample. Standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

No other anomalies associated with the analysis of these samples were observed.

### Diesel Range Organics by EPA Method 8015B

### Sample Notes and Discussion:

The control criteria for matrix spike recovery of Residual Range Organics (RRO) for Batch QC were not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

No other anomalies associated with the analysis of these samples were observed.

_Date_H22110 Approved by

### Gasoline Range Organics by EPA Method 8015B

No anomalies associated with the analysis of these samples were observed.

### Organochlorine Pesticides by EPA Method 8081A

### **Sample Confirmation Notes:**

The confirmation comparison criteria of 40% difference for at least one analyte was exceeded in some samples. The higher of the two values was reported when no evidence of a matrix interference was observed, or the lower of the two values was reported when there was an apparent interference on the alternate column that produced the higher value.

### **Elevated Detection Limits:**

The detection limit was elevated for at least a few analytes in most samples. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compounds at the normal limit. The results were flagged to indicate the matrix interference.

Sample SRC-2010-7-5 required dilution due to the presence of elevated levels of target analyte. The reporting limits were adjusted to reflect the dilution.

No other anomalies associated with the analysis of these samples were observed.

### PCB Aroclors by EPA Method 8082

### **Elevated Detection Limits:**

The detection limit was elevated for Aroclors 1242, 1254 and 1260 in a few samples. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compounds at the normal limit. The results were flagged to indicate the matrix interference.

The detection limit was elevated for Aroclors 1016, 1221, 1232, 1242, 1248, 1254 in sample SRC-2010-8-Z-Comp. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compounds at the normal limit. The results were flagged to indicate the matrix interference.

### Sample Notes and Discussion:

Two Aroclors were identified in a few samples: Aroclor 1254 and Aroclor 1260. When mixtures of PCB Aroclors are present in a sample, correct identification and quantitative analysis of the individual Aroclors can be subjective.

### **Sample Confirmation Notes:**

The confirmation comparison criteria of 40% difference for Aroclor 1254 was exceeded in a few samples. The lower of the two values was reported due to an apparent interference on the alternate column that produced the higher value.

No other anomalies associated with the analysis of these samples were observed.

### Herbicides by EPA Method 8151

### Calibration Verification (CCV) Exceptions:

The upper control criterion was exceeded for MCPP and MCPA in CCV 0629F003, 0629F015, 0629F027, and 0629F036. The field samples analyzed in this sequence did not contain the analytes in question. Since the apparent problem indicated a potential high bias, the data quality was not affected. No further corrective action was required.

The primary evaluation criterion was exceeded for 2,4-Dichlorophenylacetic Acid in CCV 0629F003, 0629F015, 0629F027, and 0629F036. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was performed using the average percent recovery of all analytes in the verification standard. The standard met the alternative evaluation criteria.

Approved by ______ Date______

Results for 2,4-Dichlorophenylacetic Acid in all samples were reported from a column using average percent recovery of all analytes in the verification standard.

### **Matrix Spike Recovery Exceptions:**

The matrix spike recovery of MCPP for Batch QC was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. The matrix spike outlier suggested a potential low bias in this matrix. No further corrective action was appropriate.

### **Relative Percent Difference Exceptions:**

The Relative Percent Difference (RPD) for the replicate Matrix Spike analysis of MCPP and MCPA in sample Batch QC was outside the normal CAS control limits. The variability in the results was attributed to the heterogeneous character of the sample. The sample contained relatively large amounts of roots, grass, and leaves, which complicated the homogenization process. Standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

### **Elevated Detection Limits:**

The detection limits were elevated for all analytes in samples SRC-2010-7-Comp, SRC-2010-7-Z-Comp, SRC-2010-7-2, SRC-2010-7-3, SRC-2010-7-4, SRC-2010-7-5, and SRC-2010-8-Z-Comp. The sample extracts were diluted prior to instrumental analysis due to relatively high levels of non-target background components. The extracts were highly colored and viscous, which indicated the need to perform a dilution prior to injection into the instrument. A semiquantitative screen was performed prior to final analysis. The results of the screening indicated the need to perform a dilution. The results were flagged to indicate the matrix interference.

The detection limit was elevated for MCPP in a few samples. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compounds at the normal limit. The results were flagged to indicate the matrix interference.

No other anomalies associated with the analysis of these samples were observed.

### **Organotin Compounds**

No anomalies associated with the analysis of these samples were observed.

### Semivolatile Organic Compounds by EPA Method 8270C

### **Relative Percent Difference Exceptions:**

The Relative Percent Difference (RPD) for Pentachlorophenol in the replicate matrix spike analyses of SRC-2010-7-Z-Comp was outside control criteria. All spike recoveries in the MS, DMS, and associated Laboratory Control Sample (LCS) and Duplicate Laboratory Control Samples (DLCS) were within acceptance limits, indicating the analytical batch was in control. No further corrective action was appropriate.

### **Elevated Detection Limits:**

Several samples required dilutions due to the presence of elevated levels of non-target analytes. The extracts were very dark. The reporting limits were adjusted to reflect the dilutions.

No other anomalies associated with the analysis of these samples were observed.

### Polynuclear Aromatic Hydrocarbons by EPA Method 8270C

### **Elevated Detection Limits:**

The detection limits for sample Batch QC were elevated due to less than optimal sample mass extracted for analysis. The sample contained low percent solids which prevented extraction of the sample mass necessary to achieve target detection limits.

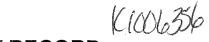
No other anomalies associated with the analysis of these samples were observed.

Approved by	Dete Date
11	

Chain of Custody

ustody




	Pacific Eco			÷		CAS CI	HAII	N-OF	-cus	ΓOD	Y RE	(M)	165 RD	36
2	250 Cordelia Rd.,	Fairfield, CA	94534										# 00	14
(7	707)207-7760												# 00	
Client Nam	e: F	Pacific Eco	Risk						REQU	ESTED	ANALYS	IS		[
Client Addre	ss: 2	2250 Corde	elia Rd.											T
	F	Fairfield, C	A 94534						i i					
Sampled B	y:	Mike McElr	oy											
Phone:	· (	707) 207-7	760								1 1			
FAX:	(	707) 207-7	'916				5 X	l "						
Project Mana	ger:	Jeff Cotsifa	s				<b>□</b>	Jagi I						
Project Nam	ne:	ACOE (Sar	n Rafael Cha	innel)		C Passana and a service and a	, e	Analyis						
PO Numbe		16087					See Scope of Work	Size,						
				Г 3 :			a S	l S l						
Client Sampl	e ID	Sample	Sample	Sample	Number	ntainer	⊸ Š	Grain						
000001010		Date	Time	Matrix*	<del> </del>	Туре	*	101			+			+
1 SRC-2010-1-C		6/8/10	9:20 *	Sed	2	8oz glass	X				+			+
2 SRC-2010-2-C		6/9/10	8:00	Sed	2	8oz glass	X				++		-	+
3 SRC-2010-3-C		6/9/10	11:05	Sed	2	8oz glass	X				-			+1
4 SRC-2010-4-C		6/11/10	8:40	Sed	2	8oz glass	X						-	+
5 SRC-2010-5-C		6/8/10	13:35	Sed	2	8oz glass	X	-			+ +		_	+
6 SRC-2010-6-C		6/9/10	15:30	Sed	2	8oz glass	X						_	+
7 SRC-2010-7-C		6/10/10	9:00	Sed	2	8oz glass	X				+			+
8 SRC-2010-8-Z-		6/10/10	11:55	Sed	2	8oz glass	X	<del>  </del>			-			+
9 SRC-2010-1-C		6/8/10	9:20	Sed	1	1 poly bag		X			+ +	-	-	+-+
SRC-2010-2-C		6/9/10	8:00	Sed	1 1	1 poly bag		×			+ +			+
SRC-2010-3-C		6/9/10	11:05	Sed	1	1 poly bag		×						+-
SRC-2010-4-C		6/11/10	8:40	Sed	1	1 poly bag		X						+
13 SRC-2010-5-C		6/8/10	13:35	Sed	1	1 poly bag		X			-			+
14 SRC-2010-6-C		6/9/10	15:30	Sed	1	1 poly bag		X			+-+	_		-
15 SRC-2010-7-C		6/10/10	9:00 -	Sed	1 1	1 poly bag		X						+-
I6 SRC-2010-8-Z-	····	6/10/10	11:55	Sed	<u> </u>	1 poly bag		X	OUNCUEDI	27/				
Correct Contai		Yes	* No	124		The state of the s		KELI	QUINSHED	3 Y	or control to the control	di mbaran da ara		
Sample Temper Sample Preserv		Ambient Yes	Cold No	Warm	Signature:	1/2	Ch	75	Signatu	e:				
Turnaround T		STD	Specify:		Print:	Mike	<u></u> M c	Elm	Print:					
* Analyze for all of th	e constituent	s in Table	1 of the AC	OE Master	Organizatio		-		Organiz	ation:		·		
SAP and the constitu						7612					· · · · · · · · · · · · · · · · · · ·			
Biological Opinion fo					DATE:	11/10	TIME	:1800	DATE:			TIN	IE:	
constituents that are					(1000)			RE	CEIVED BY	***************************************	Western stranger   bolottester	orino in management		
reporting limits than San Rafael Channel S					Signature:	Of ly			Signatu	е:	<del>ransolos prantos necessos</del>	o pienti nessami come		
					Print:	からん	Flo	, ( ,	Print:					
					Organizatio	on: A	S		Organiz	ation:		***************************************	LARLES ALVE	
					DATE: 6 - 18 - 10 TIME TOO DATE: TIME									



# Pacific EcoRisk

ENVIRONMENTAL CONSULTING & TESTING

2250 Cordelia Rd., Fairfield, CA 94534 (707)207-7760



## CAS CHAIN-OF-CUSTODY RECORD

# 002

ſ	Client Name:	Pacific Ecol	Risk			Account to the last transfer and tra	REQUESTED ANALYSIS								
	Client Address:	2250 Corde	lia Rd.							T			T		
		Fairfield, C/	94534	w											
	Sampled By:	Mike McElro	оу												
	Phone:	(707) 207-7	760												
	FAX:	(707) 207-7	916				ş X						1		
	Project Manager:	Jeff Cotsifa	S				of Work	Analyis							
	Project Name:	ACOE (San	Rafael Cha	nnel)			) e	An							
	PO Number:	16087			,		Scope	Size /							
-		Sample	Comple	Sample		ontainer	e)	Ë							
l	Client Sample ID	Date	Sample Time	Matrix*	Number	Type	* See	Grain							Ì
1	SRC-2010-1-B-Comp	6/8/10	9:20	Sed	1	8oz glass	* X		онизания канинация ком						
2	SRC-2010-2-B-Comp	6/9/10	8:00	Sed	1	8oz glass	X							-	
3	SRC-2010-3-B-Comp	6/9/10	11:05	Sed	1	8oz glass	X								
4	SRC-2010-4-B-Comp	6/11/10	8:40	Sed	1	8oz glass	X								
5	SRC-2010-5-B-Comp	6/8/10	13:35	Sed	1	8oz glass	X								
6	SRC-2010-6-B-Comp	6/9/10	15:30	Sed	1	8oz glass	Х								
7	SRC-2010-7-B-Comp	6/10/10	9:00	Sed 🍖	1	8oz glass	X								$\neg \neg$
× 8	SRC-2010-8-B-Comp	6/10/10	11:55	Sed	1	8oz glass	Х								
9	SRC-2010-1-B-Comp	6/8/10	9:20	Sed	1	1 poly bag		х							
10	SRC-2010-2-B-Comp	6/9/10	8:00	Sed	1	1 poly bag		х							
11	SRC-2010-3-B-Comp	6/9/10	11:05	Sed	1	1 poly bag		х							
12	SRC-2010-4-B-Comp	6/11/10	8:40	Sed	1	1 poly bag		х							
13	SRC-2010-5-B-Comp	6/8/10	13:35	Sed	1	1 poly bag		х							
14	SRC-2010-6-B-Comp	6/9/10	15:30	Sed	1	1 poly bag		х							
15	SRC-2010-7-B-Comp	6/10/10	9:00	Sed	1	1 poly bag		х							
<b>X</b> 16	SRC-2010-8-B-Comp	6/10/10	11:55	Sed	1	1 poly bag		х			· · · · · · · · · · · · · · · · · · ·				
	Correct Containers:	Yes	No	100 miles				REL	QUINSHE	D BY					
	Sample Temperature:	Ambient	Cold	Warm	Signature:	20	1	5	Signa	ture.					
	Sample Preservative:	Yes	No		Oignataro.		V12	wind statement with		ture.					
-	Turnaround Time: Comments:	STD	Specify:	-	Print:	Mike 1	Uce	$\leq 100$	→ Print:						
	* Analyze for all of the constitue		of the ACC	DE Master	Organizati	on: PC O			Organ	nizatio	n:				
	SAP. Analyte list to follow via em	ıail.			DATE: 6	1 pour l'amount	TIME	180		-			TIME		
					DATE.	17/10	I HVIE:					10000000000000000000000000000000000000	I HAIC		
								R	ECEIVED	RA		(Andrews trained			
					Signature:	119	ACCEPTANCE OF THE PARTY OF THE		Signa	ture:					
					Print:	Joh. fl	<b>ં</b>		Print:						
					Organizati	on: CA	5		Organ	nizatio	n:				
					DATE: 6	-18-10	TIME	900	DATE	:	***************************************		TIME		



# Pacific EcoRisk

2250 Cordelia Rd., Fairfield, CA 94534 (707)207-7760



# CAS CHAIN-OF-CUSTODY RECORD

# 003

	Client Name: Pacific EcoRisk							REQUESTED ANALYSIS									
	Client Address:	2250 Corde Fairfield, CA						ين ا									
<u> </u>	Sampled By:	Mike McElro				The second like and second sec	1	米									
	Phone:	(707) 207-7	<del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del>	į			1	*									
	FAX:	(707) 207-7	916	V	•		농										
	Project Manager:	Jeff Cotsifa:	S			***************************************	of Work	Size Analyis									
	Project Name:	ACOE (San	Rafael Cha	innel)		14 20.20 (2.00)	Scope o	Ans									
	PO Number:	16087															
		Sample	Sample	Sample		See S	Ë										
	Client Sample ID	Date	Time	Matrix*	Number	ontainer Type	\ X	Grain					The state of the s				
1	SRC-2010-7-1	6/10/10	9:00	Sed	1	8oz glass	×		iniania sciniaren mercini			<del> </del>	<del>                                     </del>				
2	SRC-2010-7-2	6/10/10	9:40	Sed	1	8oz glass	×										
3	SRC-2010-7-3	6/10/10	10:10	Sed	1	8oz glass	х										
4	SRC-2010-7-4	6/10/10	10:35	Sed	1	8oz glass	х										
5	SRC-2010-7-5	6/10/10	11:00	Sed	1	8oz glass	х										
6	SRC-2010-7-1	6/10/10	9:00	Sed		1 poly bag		Х									
7	SRC-2010-7-2	6/10/10	9:40	Sed	100000000000000000000000000000000000000	1 poly bag	<u></u>	х									
8	SRC-2010-7-3	6/10/10	10:10	Sed	- more contractions and a	1 poly bag-		х									
9	SRC-2010-7-4	6/10/10	10:35	Sed	4	1 poly bag		х									
10	SRC-2010-7-5	6/10/10	11:00	Sed	Telemontrace (consequence	1 poly bag		X									
	Correct Containers:	Yes	No					RE	LIQUI	JINSHED BY							
<u> </u>	Sample Temperature:	Ambient	Cold	Warm	Signature	hich	12			Signature	:						
-	Sample Preservative: Turnaround Time:	Yes STD	No Specify:		<b>-</b>	<u> </u>					<del>-</del>						
Co	mments:	1 010	opcony.		Print:	Mike Mc.	EIr	01		Print:							
	Analyze for all of the constitu P and the constituents ident				Organizat	ion: PER				Organizat	ion:						
Bio	ological Opinion for placeme	nt at the HWI	RP. The HW	VRP specific	DATE:	10/10	TIME	: 18°C	C)	DATE:				TIME			
1	porting limits than the Master								RECE	IVED BY							
Sa	n Rafael Channel SOW. Anai OXINS FOR THESE INDIVIDU	lyte list to fol			Signature	112				Signature	:						
					Print:	John F	-101	• ) e-	THE STATE OF THE S	Print:							
7	* please take go	please take grain size from jur. We Organization: CAS								Organizat	ion:						
	were volume	imita.			DATE: 6	18-10	TIME	:90	<del>20</del>	DATE:				TIME		***************************************	

### Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form Pac Febrush Service Request *K10* Received: PDXFed Ex DHLHand Delivered Samples were received via? UPS Courier Mail Samples were received in: (circle) Cooler BoxEnvelope Other NA(N) Were custody seals on coolers? NA Y If yes, how many and where? Y N If present, were they signed and dated? Y If present, were custody seals intact? N Cooler/COC Cooler Temp Thermometer NΑ Tracking Number NA Filed Blank °C ŧΩ Temp °C ID 1.3 5.4 Bubble Wrap Gel Packs Wet Ice Sleeves Other Packing material used. Inserts Baggies (Ñ Were custody papers properly filled out (ink, signed, etc.)? NA Υ (Y) NA Did all bottles arrive in good condition (unbroken)? Indicate in the table below. N NA Were all sample labels complete (i.e analysis, preservation, etc.)? N Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA Y (N) Were appropriate bottles/containers and volumes received for the tests indicated? NA (Y) N Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below Y N Were VOA vials received without headspace? Indicate in the table below. Y N Y 15. Was C12/Res negative? N Sample ID on Bottle Identified by: Sample ID on COC Reagent Lot **Bottle Count** Out of Head-Volume Sample ID added Number Initials **Bottle Type** Temp space Broke Reagent Time

	Columbia Analytica Cooler Receipt and Pi	•	PC	
Client / Project: Pacific EcoRist	K/ACOE	Service Request K10	06256	
		By: 5 F	V W JJY	
1. Samples were received via? Mail	Fed Ex UPS DH	L PDX Courier	Hand Delivered	
2. Samples were received in: (circle)	Cooler Box Enve	lope Other		NA .
3. Were <u>custody seals</u> on coolers?	NA Y N If	yes, how many and where?		
If present, were custody seals intact?	Y N	If present, were they signed	d and dated?	Y N
Cooler Temp Thermor	neter Cooler/COC	Trac	king Number	NA Filed
0.0 // 2 /	5	7936 4944	0189	
0.2 NA 787		7987 7709	5646	
7. Packing material used. <i>Inserts Bag</i>	The same of the sa	cks Wet Ice Sleeves O	Other	
8. Were custody papers properly filled out			NA	Y N
9. Did all bottles arrive in good condition		able below.	NA	YN
10. Were all sample labels complete (i.e an			NA	Y (N
11. Did all sample labels and tags agree wi		· -	. 0	Y (N)
12. Were appropriate bottles/containers and			NA	Ý N
13. Were the pH-preserved bottles (see SMC				YN
14. Were VOA vials received without head	Ispace? <i>Indicate in the table b</i>	elow.	NA	YN
15. Was C12/Res negative?			(NA)	) Y N
Sample ID on Bottle	Sample ID on COC		Identified by:	
SRC-2010-7-Z	SRC-7010-	3-Z elin	rination,	1 Date
		Ctime	e don't mate	4)
		<u> </u>		
1000000000000000000000000000000000000	Count Out of Head- e Type Temp space Broke	pH Reagent adde		nitials Time
Notes, Discrepancies, & Resolutions:_				***************************************
Missing Ski	C-5016-8-	B-Comp	Jar	& Bag
<u> </u>				て、 ノ
	The state of the s			
***************************************				1

**Total Solids** 

Analytical Results

Client: Project: Pacific EcoRisk Laboratories USACE San Rafael Cha/16087

Sample Matrix:

Sediment

Service Request: K1006356

### **Total Solids**

Prep Method: Analysis Method: NONE 160.3M

Ξ

Units: PERCENT

Basis: Wet

Test Notes:

		Date	Date	Date	<b>7</b>	Result Notes
Sample Name	Lab Code	Collected	Received	Analyzed	Result	Notes
SRC-2010-1-Comp	K1006356-001	06/08/2010	06/18/2010	06/23/2010	44.6	
SRC-2010-2-Comp	K1006356-002	06/09/2010	06/18/2010	06/23/2010	46.7	
SRC-2010-3-Comp	K1006356-003	06/09/2010	06/18/2010	06/23/2010	48.3	
SRC-2010-4-Comp	K1006356-004	06/11/2010	06/18/2010	06/23/2010	47.2	
SRC-2010-5-Comp	K1006356-005	06/08/2010	06/18/2010	06/23/2010	44.2	
SRC-2010-6-Comp	K1006356-006	06/09/2010	06/18/2010	06/23/2010	40.9	
SRC-2010-7-Comp	K1006356-007	06/10/2010	06/18/2010	06/23/2010	42.0	
SRC-2010-8-Z-Comp	K1006356-008	06/10/2010	06/18/2010	06/23/2010	47.5	
SRC-2010-1-B-Comp	K1006356-009	06/08/2010	06/18/2010	06/23/2010	50.4	
SRC-2010-2-B-Comp	K1006356-010	06/09/2010	06/18/2010	06/23/2010	50.9	
SRC-2010-3-B-Comp	K1006356-011	06/09/2010	06/18/2010	06/23/2010	49.2	
SRC-2010-4-B-Comp	K1006356-012	06/11/2010	06/18/2010	06/23/2010	51.4	
SRC-2010-5-B-Comp	K1006356-013	06/08/2010	06/18/2010	06/23/2010	49.1	
SRC-2010-6-B-Comp	K1006356-014	06/09/2010	06/18/2010	06/23/2010	45.6	
SRC-2010-7-B-Comp	K1006356-015	06/10/2010	06/18/2010	06/23/2010	53.0	
SRC-2010-7-1	K1006356-016	06/10/2010	06/18/2010	06/23/2010	39.0	
SRC-2010-7-2	K1006356-017	06/10/2010	06/18/2010	06/23/2010	41.7	
SRC-2010-7-3	K1006356-018	06/10/2010	06/18/2010	06/23/2010	41.3	
SRC-2010-7-4	K1006356-019	06/10/2010	06/18/2010	06/23/2010	39.8	
SRC-2010-7-5	K1006356-020	06/10/2010	06/18/2010	06/23/2010	43.8	

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Cha/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

**Date Analyzed**: 06/23/2010

**Duplicate Sample Summary Total Solids** 

Prep Method:

NONE

Analysis Method:

160.3M

Units: PERCENT

Basis: Wet

Test Notes:

Duplicate Relative Sample Percent Result Sample Result Difference Notes Result Average Lab Code Sample Name 44.0 44.3 1 44.6 SRC-2010-1-Comp K1006356-001

Page

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Cha/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

**Date Analyzed:** 06/23/2010

**Duplicate Sample Summary Total Solids** 

Prep Method:

**NONE** 

Analysis Method:

160.3M

Units: PERCENT

Basis: Wet

Test Notes:

Relative **Duplicate** Sample Percent Result Sample Difference Result Notes Result Average Lab Code Sample Name 3 47.7 48.5 49.2 K1006356-011 SRC-2010-3-B-Comp

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Cha/16087

Sample Matrix:

Sediment

**Total Solids** 

Prep Method:

NONE

Analysis Method: Test Notes:

160.3M

Service Request: K1006356

Units: PERCENT

Basis: Wet

Sample Name

Lab Code

Date Collected

Date Received

Date Analyzed

Result

Notes

SRC-2010-8-Z-Comp

K1006356-021

06/10/2010

06/23/2010

06/26/2010

44.0

Result

Printed: 06/29/2010 05:02  $u:\Stealth\Crystal.rpt\Solids.rpt$ 

SuperSet Reference: W1006191

Page

QA/QC Report

Client:

Pacific EcoRisk Laboratories USACE San Rafael Cha/16087

Project: Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received**: 06/23/2010

**Date Analyzed:** 06/26/2010

**Duplicate Sample Summary Total Solids** 

Prep Method:

NONE

Units: PERCENT

Analysis Method:

160.3M

Basis: Wet

Test Notes:

Sample Name

Sample Result Lab Code

Average

Percent Difference

SRC-2010-8-Z-Comp

K1006356-021

44.0

46.7

Duplicate

Sample

Result

45.4

6

Relative

Result Notes

Printed: 06/29/2010 05:02 u:\Stealth\Crystal.rpt\Solids.rpt

SuperSet Reference: W1006191

20

**General Chemistry Parameters** 

### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project Name:

USACE San Rafael Channel

Project Number: 16087

Sample Matrix: **SEDIMENT**  Service Request: K1006356

**Date Collected:** 06/08-11/10

**Date Received:** 06/18-23/10

Units: Percent

Basis: Dry

Carbon, Total Organic

Prep Method: Analysis Method: CAS SOP

9060M

Test Notes:

Sample Name	Lab Code	MRL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Result	Result Notes
SRC-2010-1-Comp	K1006356-001	0.050			-	•		
			0.020	i	6/22/2010	06/25/10	1.38	
SRC-2010-2-Comp	K1006356-002	0.050	0.020	1	6/22/2010	06/25/10	1.28	
SRC-2010-3-Comp	K1006356-003	0.050	0.020	1	6/22/2010	06/25/10	1.15	
SRC-2010-4-Comp	K1006356-004	0.050	0.020	1	6/22/2010	06/25/10	1.29	
SRC-2010-5-Comp	K1006356-005	0.050	0.020	1	6/22/2010	06/25/10	1.45	
SRC-2010-6-Comp	K1006356-006	0.050	0.020	1	6/22/2010	06/25/10	1.56	
SRC-2010-7-Comp	K1006356-007	0.050	0.020	1	6/22/2010	06/25/10	2.84	
SRC-2010-7-Z-Comp	K1006356-008	0.050	0.020	1	6/22/2010	06/25/10	0.558	
SRC-2010-1-B-Comp	K1006356-009	0.050	0.020	1	6/22/2010	06/28/10	1.33	
SRC-2010-2-B-Comp	K1006356-010	0.050	0.020	1	6/22/2010	06/28/10	1.36	
SRC-2010-3-B-Comp	K1006356-011	0.050	0.020	1	6/22/2010	06/28/10	1.27	
SRC-2010-4-B-Comp	K1006356-012	0.050	0.020	1	6/22/2010	06/28/10	1.299	
SRC-2010-5-B-Comp	K1006356-013	0.050	0.020	1	6/22/2010	06/28/10	1.497	
SRC-2010-6-B-Comp	K1006356-014	0.050	0.020	1	6/22/2010	06/28/10	1.56	
SRC-2010-7-B-Comp	K1006356-015	0.050	0.020	1	6/22/2010	06/28/10	1.64	
SRC-2010-7-1	K1006356-016	0.050	0.020	1	6/22/2010	06/28/10	1.77	
SRC-2010-7-2	K1006356-017	0.050	0.020	1	6/22/2010	06/28/10	1.61	
SRC-2010-7-3	K1006356-018	0.050	0.020	1	6/22/2010	06/28/10	1.96	
SRC-2010-7-4	K1006356-019	0.050	0.020	1	6/22/2010	06/28/10	3.83	
SRC-2010-7-5	K1006356-020	0.050	0.020	1	6/22/2010	06/28/10	4.91	
SRC-2010-8-Z-Comp	K1006356-021	0.050	0.020	1	6/24/2010	06/28/10	4.75	
Method Blank	K1006356-MB	0.050	0.020	1	NA	06/25/10	ND	
Method Blank	K1006356-MB	0.050	0.020	1	NA	06/28/10	ND	

QA/QC Report

Client:

Pacific EcoRisk Laboratories

**Project Name:** 

USACE San Rafael Channel

Project Number: 16087

Sample Matrix:

**SEDIMENT** 

Service Request: K1006356

 $\textbf{Date Collected:} \ \ 6/9/2010$ 

Date Received: 6/18/2010

**Date Prepared:** 06/22/10 **Date Analyzed:** 06/28/10

Duplicate Summary Inorganic Parameters

Sample Name:

SRC-2010-3-B-Comp

K1006356-011DUP

Lab Code: Test Notes: Units: Percent

Basis: Dry

Relative **Duplicate** Prep Analysis Sample Sample Percent Result Average Difference Notes Method Result Result Analyte Method MRL 9060M 0.050 1.26 2 Carbon, Total Organic CAS SOP 1.27 1.25

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project Name:

USACE San Rafael Channel

Project Number: 16087

Sample Matrix:

SEDIMENT

Service Request: K1006356

Date Collected: NA

Date Received: NA

Date Prepared: NA Date Analyzed: 06/28/10

**Duplicate Summary** Inorganic Parameters

Sample Name:

Batch QC

Lab Code:

K1006377-001DUP

Units: Percent

Basis: Dry

Test Notes:

					Duplicate		Relative	
Analyte	Prep Method	Analysis Method	MRL	Sample Result	Sample Result	Avorago	Percent Difference	Result
rinary to	Method	Wichiou	MINI	Acsuit	Result	Average	Difference	Notes
Carbon, Total Organic	CAS SOP	9060M	0.050	0.473	0.454	0.464	4	

QA/QC Report

Client:

Pacific EcoRisk Laboratories

**Project Name:** 

USACE San Rafael Channel

Project Number: 16087 Sample Matrix:

**SEDIMENT** 

Service Request: K1006356

**Date Collected:** 6/9/2010

**Date Received:** 6/18/2010

**Date Prepared:** 06/22/10 Date Analyzed: 06/28/10

Matrix Spike/Duplicate Matrix Spike Summary

Sample Name: Lab Code:

SRC-2010-3-B-Comp

K1006356-011MS

K1006356-011DMS

Units: Percent

Basis: Dry

Test Notes:

	Prep	Analysis		Spike	Level	Sample	Spike	Result		ike overy	CAS Acceptance	Relative Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Carbon, Total Organic	CAS SOP	9060M	0.050	4.14	10.2	1.27	5.94	11.6	113	101	77-155	11	

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project Name:

USACE San Rafael Channel

Project Number: 16087 Sample Matrix:

**SEDIMENT** 

Service Request: K1006356

Date Collected: NA Date Received: NA

Date Prepared: NA

Date Analyzed: 06/28/10

Matrix Spike/Duplicate Matrix Spike Summary

Sample Name:

Batch QC

Lab Code:

K1006377-001MS

K1006377-001DMS

Units: Percent

Basis: Dry

Test Notes:

	Prep	Analysis		Spike	Level	Sample	Spike	Result		oike overy	CAS Acceptance	Relative Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Carbon, Total Organic	CAS SOP	9060M	0.050	9.20	4.40	0.473	9.45	4.98	98	102	77-155	4	

QA/QC Report

Client:

Pacific EcoRisk Laboratories

USACE San Rafael Channel

16087

Project Number: Sample Matrix:

Project Name:

**SEDIMENT** 

Service Request:

K1006356

Date Collected:

NA NA

Date Received:

NA

Date Prepared: Date Analyzed:

06/25/10

Laboratory Control Sample Summary **Inorganic Parameters** 

Sample Name:

Lab Control Sample

Units:

Percent

K1006356-LCS

Lab Code: Test Notes: Basis:

Dry

CAS Percent

Recovery Acceptance Prep Analysis Percent Result Limits Analyte Method Method True Value Result Recovery Notes Carbon, Total Organic CAS SOP 9060M 0.550 0.517 94 82-119

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project Name:

USACE San Rafael Channel

Service Request: K1006356 Date Collected:

Date Received:

NA NA

Project Number:

16087

Date Prepared:

NA

Sample Matrix:

**SEDIMENT** 

Date Analyzed:

06/28/10

Laboratory Control Sample Summary Inorganic Parameters

Sample Name:

Laboratory Control Sample

Units:

Percent

Lab Code:

K1006356-LCS

Basis:

Dry

Test Notes:

CAS Percent Recovery Acceptance Analysis Percent Result Prep Method Method True Value Result Recovery Limits Notes Analyte CAS SOP 9060M 0.550 0.484 88 82-119 Carbon, Total Organic

### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request:

K1006356

Date Collected:

6/8/2010

Date Received:

6/18/2010

Date Analyzed:

6/21/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-1-Comp

Lab Code:

K1006356-001

Sand Fraction: Dry Weight (Grams)

5.5531

Sand Fraction: Weight Recovered (Grams)

5.4398

Sand Fraction: Percent Recovery

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	2.3556	18.6
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	0.5789	4.58
Sand, Coarse (0.50	0 to 1 Ø	0.6425	5.09
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	0.4470	3.54
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	0.1462	1.16
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	0.3595	2.85
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	3.9800	31.5
Clay (< 0.0039 mm)	> 8 Ø	4.5550	36.1
1 7 3	Total	13.0647	103

### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request:

K1006356

**Date Collected:** 

6/8/2010

Date Received: Date Analyzed:

6/18/2010 6/21/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-1-Comp

Lab Code:

K1006356-001DUP

Sand Fraction: Dry Weight (Grams)

6.2286

Sand Fraction: Weight Recovered (Grams)

6.1502

Sand Fraction: Percent Recovery

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	2.6797	15.7
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	0.5007	2.93
Sand, Coarse (0.50	0 to 1 Ø	0.5724	3.34
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	0.1275	0.74
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	1.2747	7.45
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	0.3402	1.99
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	6.3500	37.1
Clay (< 0.0039 mm)	> 8 Ø	4.0750	23.8
	Total	15.9202	93.0

### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request:

K1006356

Date Collected:

6/8/2010

Date Received:

6/18/2010

Date Analyzed:

6/21/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-1-Comp

Lab Code:

K1006356-001TRP

Sand Fraction: Dry Weight (Grams)

5.0219

Sand Fraction: Weight Recovered (Grams)

11.7955

5.2082

Sand Fraction: Percent Recovery

104

107

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	0.3205	2.90
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	1.6211	14.7
Sand, Coarse (0.50	0 to 1 Ø	0.9489	8.58
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	0.3149	2.85
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	0.5479	4.95
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	0.6972	6.30
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	3.1800	28.8
Clay (< 0.0039 mm)	> 8 Ø	4.1650	37.7

Total

### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

**Service Request:** 

K1006356

Date Collected:

6/9/2010 6/18/2010

Date Received: Date Analyzed:

6/21/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-2-Comp

Lab Code:

K1006356-002

Sand Fraction: Dry Weight (Grams)

10.5713

Sand Fraction: Weight Recovered (Grams)

10.4627

Sand Fraction: Percent Recovery

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	3.2902	. 16.8
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	3.4451	17.6
Sand, Coarse (0.50	0 to 1 Ø	1.5358	7.85
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	0.6764	3.46
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	0.6098	3.12
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	0.8639	4.41
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	3.8250	19.5
Clay (< 0.0039 mm)	> 8 Ø	3.6300	18.5
- 1	Total	17.8762	913

### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

**Service Request:** 

K1006356

Date Collected:

6/9/2010

Date Received:

6/18/2010

Date Analyzed:

6/21/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-3-Comp

Lab Code:

K1006356-003

Sand Fraction: Dry Weight (Grams)

9.4867

Sand Fraction: Weight Recovered (Grams)

9.2965

Sand Fraction: Percent Recovery

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	0.1392	0.64
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	3.6254	16.6
Sand, Coarse (0.50	0 to 1 Ø	1.7032	7.78
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	0.2318	1.06
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	0.4622	2.11
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	1.7310	7.91
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	6.7500	30.8
Clay (< 0.0039 mm)	> 8 Ø	6.5700	30.0
	Total	21 2128	96.9

### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request:

K1006356

**Date Collected:** Date Received: 6/11/2010

Date Analyzed:

6/18/2010 6/21/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-4-Comp

Lab Code:

K1006356-004

Sand Fraction: Dry Weight (Grams)

19.0694

Sand Fraction: Weight Recovered (Grams)

18.7951

Sand Fraction: Percent Recovery

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-10	7.3346	23.2
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	4.7095	14.9
Sand, Coarse (0.50	0 to 1 Ø	2.1579	6.82
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	2.0217	6.39
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	0.8062	2.55
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	0.3923	1.24
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	6.1200	19.3
Clay (< 0.0039 mm)	> 8 Ø	6.9050	21.8
d.	Total	30.4472	96.2

### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request:

K1006356

Date Collected:

6/8/2010

Date Received: Date Analyzed:

6/18/2010 6/21/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name:

SRC-2010-5-Comp

Lab Code:

K1006356-005

Sand Fraction: Dry Weight (Grams)

9.6607

Sand Fraction: Weight Recovered (Grams)

9.4601

Sand Fraction: Percent Recovery

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	1.8407	10.5
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	2.6610	15.2
Sand, Coarse (0.50	0 to 1 Ø	1.5345	8.76
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	0.5012	2.86
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	0.9661	5.51
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	<b>.</b> 0.6078	3.47
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	4.4800	25.6
Clay (< 0.0039 mm)	> 8 Ø	4.7100	26.9
1	Total	17.3013	98.7

### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request:

K1006356

Date Collected: Date Received:

6/9/2010 6/18/2010

Date Analyzed:

6/21/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name:

SRC-2010-6-Comp

Lab Code:

K1006356-006

Sand Fraction: Dry Weight (Grams)

10.0891

Sand Fraction: Weight Recovered (Grams)

9.8831

Sand Fraction: Percent Recovery

	DI C	Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	1.0152	4.04
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	3.1592	12.6
Sand, Coarse (0.50	0 to 1 Ø	2.2057	8.77
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	0.5279	2.10
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	0.6169	2.45
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	1.3242	5.27
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	6.1500	24.5
Clay (< 0.0039 mm)	> 8 Ø	10.5050	41.8
J. Comments of the comments of	Total	25.5041	101

### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request:

K1006356

**Date Collected:** 

6/10/2010

Date Received:

6/18/2010

Date Analyzed:

6/21/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-7-Comp

Lab Code:

K1006356-007

Sand Fraction: Dry Weight (Grams)

9.8913

Sand Fraction: Weight Recovered (Grams)

9.5265

Sand Fraction: Percent Recovery

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-10	1.9993	9.18
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	1.8333	8.42
Sand, Coarse (0.50	0 to 1 Ø	1.1347	5.21
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	0.9289	4.27
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	0.9378	4.31
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	1.4191	6.52
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	2.2600	10.4
Clay (< 0.0039 mm)	> 8 Ø	9.1250	41.9
5 3	Total	19.6381	90.2

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request:

K1006356

**Date Collected:** Date Received: 6/10/2010

Date Analyzed:

6/18/2010 6/21/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-7-Z-Comp

Lab Code:

K1006356-008

Sand Fraction: Dry Weight (Grams)

13.1565

Sand Fraction: Weight Recovered (Grams)

12.9076

Sand Fraction: Percent Recovery

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	1.7388	7.71
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	2.5944	11.5
Sand, Coarse (0.50	0 to 1 Ø	2.3567	10.4
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	0.4620	2.05
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	1.5924	7.06
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	2.7144	12.0
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	4.8350	21.4
Clay (< 0.0039 mm)	> 8 Ø	5.8700	26.0
	Total	22.1637	98.3

## Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

Sample Matrix: Sediment

USACE San Rafael Channel/16087

**Service Request: Date Collected:**  K1006356 6/8/2010

Date Received:

6/18/2010

Date Analyzed:

6/21/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-1-B-Comp

Lab Code:

K1006356-009

Sand Fraction: Dry Weight (Grams)

24.8280

Sand Fraction: Weight Recovered (Grams)

24.6927

99.5

Sand Fraction: Percent Recovery

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-10	5.4264	15.8
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	5.3338	15.5
Sand, Coarse (0.50	0 to 1 Ø	4.0456	11.8
Sand. Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	1.3109	3.82
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	2.9003	8.44
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	4.1787	12.2
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	5.5650	16.2
Clay (< 0.0039 mm)	> 8 Ø	6.1250	17.8
1	Total	34.8857	102

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request:

K1006356

Date Collected:

6/9/2010

Date Received:

6/18/2010

Date Analyzed:

6/21/2010

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-2-B-Comp

Lab Code:

K1006356-010

Sand Fraction: Dry Weight (Grams)

7.9484

Sand Fraction: Weight Recovered (Grams)

7.7995

Sand Fraction: Percent Recovery

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-I Ø	3.9896	15.4
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	0.9344	3.61
Sand, Coarse (0.50	0 to 1 Ø	0.7433	2.87
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	0.4988	1.93
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	0.4094	1.58
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	0.6040	2.33
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	6.5000	25.1
Clay (< 0.0039 mm)	> 8 Ø	10.3450	40.0
LL	Total	24.0245	92.8

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

**Service Request:** 

K1006356

**Date Collected:** Date Received:

6/9/2010 6/18/2010

Date Analyzed:

6/21/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-3-B-Comp

Lab Code:

K1006356-011

Sand Fraction: Dry Weight (Grams)

18.1075

Sand Fraction: Weight Recovered (Grams)

17.8190

Sand Fraction: Percent Recovery

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	9.7410	33.5
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	2.4118	8.30
Sand, Coarse (0.50	0 to 1 Ø	1.6252	5.60
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	0.9794	3.37
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	0.6938	2.39
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	1.1772	4.05
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	5.7300	19.7
Clay (< 0.0039 mm)	> 8 Ø	6.4900	22.3
4	Total	28.8484	99.3

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

**Service Request:** 

K1006356

**Date Collected:** 

6/11/2010

Date Received: Date Analyzed: 6/18/2010 6/21/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-4-B-Comp

Lab Code:

K1006356-012

Sand Fraction: Dry Weight (Grams)

17.0500

Sand Fraction: Weight Recovered (Grams)

17.1041

Sand Fraction: Percent Recovery

100

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	10.1442	35.3
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	2.6932	9.37
Sand, Coarse (0.50	0 to 1 Ø	1.4715	5.12
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	0.8531	2.97
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	0.5435	1.89
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	0.6592	2.29
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	5.3500	18.6
Clay (< 0.0039 mm)	> 8 Ø	6.6950	. 23:3
	Total	28.4097	98.9

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request:

K1006356

**Date Collected:** 

6/8/2010

Date Received: Date Analyzed:

6/18/2010 6/21/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-5-B-Comp

Lab Code:

K1006356-013

Sand Fraction: Dry Weight (Grams)

11.5646

Sand Fraction: Weight Recovered (Grams)

11.4069

Sand Fraction: Percent Recovery

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-10	4.3524	15.6
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	1.5413	5.54
Sand, Coarse (0.50	0 to 1 Ø	1.5238	5.48
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	1.1507	4.14
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	0.7811	2.81
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	0.9556	3.43
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	7.3350	26.4
Clay (< 0.0039 mm)	> 8 Ø	10.0600	36.2
	Total	27.6999	100

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request:

K1006356

**Date Collected:** 

6/9/2010

Date Received: Date Analyzed:

6/18/2010 6/21/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-6-B-Comp

Lab Code:

K1006356-014

Sand Fraction: Dry Weight (Grams)

10.9887

Sand Fraction: Weight Recovered (Grams)

10.9157

Sand Fraction: Percent Recovery

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	3.8552	14.1
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	1.3432	4.90
Sand, Coarse (0.50	0 to 1 Ø	1.5037	5.49
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	1.3384	4.88
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	1.0049	3.67
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	0.7081	2.58
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	6.4500	23.5
Clay (< 0.0039 mm)	> 8 Ø	10.4500	38.1
U	Total	26.6535	97.2

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request:

K1006356

Date Collected: Date Received:

6/10/2010 6/18/2010

Date Analyzed:

6/21/2010

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name:

SRC-2010-7-B-Comp

Lab Code:

K1006356-015

Sand Fraction: Dry Weight (Grams)

6.7172

Sand Fraction: Weight Recovered (Grams)

6.6306

Sand Fraction: Percent Recovery

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	1.2429	4.64
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	1.5060	5.63
Sand, Coarse (0.50	0 to 1 Ø	1.2842	4.80
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	0.7962	2.97
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	0.5679	2.12
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	0.7160	2.67
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	10.8550	40.6
Clay (< 0.0039 mm)	> 8 Ø	10.4450	39.0
	Total	27.4132	102

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request:

K1006356

**Date Collected:** Date Received: 6/10/2010 6/18/2010

Date Analyzed:

6/21/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-7-1

Lab Code:

K1006356-016

Sand Fraction: Dry Weight (Grams)

6.3634

Sand Fraction: Weight Recovered (Grams)

6.1497

Sand Fraction: Percent Recovery

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	1.3073	5.68
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	1.6549	7.19
Sand, Coarse (0.50	0 to 1 Ø	0.9617	4.18
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	0.9784	4.25
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	0.3678	1.60
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	0.4042	1.76
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	7.8500	34.1
Clay (< 0.0039 mm)	> 8· Ø	10.3100	. 44.8
<u> </u>	Total	23.8343	104

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request:

K1006356

**Date Collected:** 

6/10/2010

Date Received:

6/18/2010

Date Analyzed:

6/21/2010

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-7-2

Lab Code:

K1006356-017

Sand Fraction: Dry Weight (Grams)

16.6760

Sand Fraction: Weight Recovered (Grams)

16.4674

Sand Fraction: Percent Recovery

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	12.6734	42.1
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	0.8854	2.94
Sand, Coarse (0.50	0 to 1 Ø	1.1098	3.69
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	0.4272	1.42
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	0.5311	1.77
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	0.3684	1.22
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	6.6400	22.1
Clay (< 0.0039 mm)	> 8 Ø	7.9900	26.6
	Total	30.6253	102

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request:

K1006356

**Date Collected:** Date Received: 6/10/2010

Date Analyzed:

6/18/2010 6/21/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name:

SRC-2010-7-3

Lab Code:

K1006356-018

Sand Fraction: Dry Weight (Grams)

10.1095

Sand Fraction: Weight Recovered (Grams)

9.9482

Sand Fraction: Percent Recovery

	Dry Weight	Percent of Total
Phi Size	(Grams)	Weight Recovered
<-1 Ø	5.3428	23.6
-1 to 0 Ø	0.5447	2.41
0 to 1 Ø	0.6584	2.91
1 to 2 Ø	0.8211	3.63
2 to 3 Ø	0.8576	3.79
3 to 4 Ø	0.9145	4.04
4 to 8 Ø	6.7700	29.9
> 8 Ø	6.9400	30.7
Total	22.8491	101
	<pre>&lt;-1 Ø -1 to 0 Ø 0 to 1 Ø 1 to 2 Ø 2 to 3 Ø 3 to 4 Ø 4 to 8 Ø &gt; 8 Ø</pre>	Phi Size (Grams)  <-1 Ø 5.3428  -1 to 0 Ø 0.5447  0 to 1 Ø 0.6584  1 to 2 Ø 0.8211  2 to 3 Ø 0.8576  3 to 4 Ø 0.9145  4 to 8 Ø 6.7700  > 8 Ø 6.9400

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request:

K1006356

**Date Collected:** 

6/10/2010

Date Received: Date Analyzed:

6/18/2010

6/21/2010

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-7-4

Lab Code:

K1006356-019

Sand Fraction: Dry Weight (Grams)

7.8757

Sand Fraction: Weight Recovered (Grams)

7.7674

Sand Fraction: Percent Recovery

		Dry Weight	Percent of Total Weight Recovered
Description	Phi Size	(Grams)	
Gravel (>2.00 mm)	<-1 Ø	1.1364	5.36
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	1.4045	6.63
Sand, Coarse (0.50	0 to 1 Ø	1.0709	5.05
Sand. Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	1.2167	5.74
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	1.1387	5.37
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	1.2285	5.80
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	7.6150	35.9
Clay (< 0.0039 mm)	> 8 Ø	6.2000	29.3
	Total	21.0107	99.1

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

**Service Request:** 

K1006356

**Date Collected:** Date Received: 6/10/2010

6/18/2010

Date Analyzed:

6/21/2010

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-7-5

Lab Code:

K1006356-020

Sand Fraction: Dry Weight (Grams)

13.1517

Sand Fraction: Weight Recovered (Grams)

12.9482

Sand Fraction: Percent Recovery

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	2.4309	10.0
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	1.8551	7.65
Sand, Coarse (0.50	0 to 1 Ø	1.3794	5.69
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	0.9736	4.01
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	1.7721	7.30
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	3.6317	15.0
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	6.7300	27.7
Clay (< 0.0039 mm)	> 8 Ø	5.3800	22.2
A	Total	24.1528	99.5

## Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

**Service Request:** 

K1006356

**Date Collected:** Date Received: 6/10/2010 6/23/2010

Date Analyzed:

6/29/2010

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-8-Z-Comp

Lab Code:

K1006356-021

Sand Fraction: Dry Weight (Grams)

20.2363

Sand Fraction: Weight Recovered (Grams)

20.3156

Sand Fraction: Percent Recovery

100

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	2.0746	7.25
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	1.5715	5.49
Sand, Coarse (0.50	0 to 1 Ø	1.4317	5.01
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	4.0949	14.3
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	7.4645	26.1
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	3.0525	10.7
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	5.1900	18.1
Clay (< 0.0039 mm)	> 8 Ø	4.4650	15.6
<u> </u>	Total	29.3447	103

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request:

K1006356

Date Collected:

6/10/2010

Date Received: Date Analyzed:

6/23/2010 6/29/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-8-Z-Comp

Lab Code:

K1006356-021DUP

Sand Fraction: Dry Weight (Grams)

20.4739

Sand Fraction: Weight Recovered (Grams)

20.5302

Sand Fraction: Percent Recovery

100

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	2.0003	6.96
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	1.2778	4.45
Sand, Coarse (0.50	0 to 1 Ø	1.3671	4.76
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	4.1210	14.3
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	7.8876	27.4
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	3.3297	11.6
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	5.4750	19.1
Clay (< 0.0039 mm)	> 8 Ø	3.3350	11.6
10.1007	Total	28.7935	100

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request:

K1006356

Date Collected:

6/10/2010

Date Received:

6/23/2010

Date Analyzed:

6/29/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-8-Z-Comp

Lab Code:

K1006356-021TRP

Sand Fraction: Dry Weight (Grams)

23.9934

Sand Fraction: Weight Recovered (Grams)

23.7720

Sand Fraction: Percent Recovery

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	2.0026	6.44
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	1.6671	5.36
Sand, Coarse (0.50	0 to 1 Ø	1.6751	5.39
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	4.9359	15.9
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	8.7863	28.3
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	3.8555	12.4
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	4.5050	14.5
Clay (< 0.0039 mm)	> 8 Ø	3.6300	11.7
	Total	31.0575	99.9

Metals

# Columbia Analytical Services

# - Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories USACE San Rafael Channel

Project Name: Project No.:

16087

Service Request: K1006356

Sample Name:	Lab Code:
SRC-2010-1-Comp	K1006356-001
SRC-2010-1-CompD	K1006356-001D
SRC-2010-1-CompS	K1006356-001S
SRC-2010-2-Comp	K1006356-002
SRC-2010-1-CompD	K1006356-002D
SRC-2010-1-CompS	K1006356-002S
SRC-2010-3-Comp	K1006356-003
SRC-2010-4-Comp	K1006356-004
SRC-2010-5-Comp	K1006356-005
SRC-2010-6-Comp	K1006356-006
SRC-2010-7-Comp	K1006356-007
SRC-2010-7-Z-Comp	K1006356-008
SRC-2010-1-B-Comp	K1006356-009
SRC-2010-2-B-Comp	K1006356-010
SRC-2010-3-B-Comp	K1006356-011
SRC-2010-4-B-Comp	K1006356-012
SRC-2010-5-B-Comp	K1006356-013
SRC-2010-6-B-Comp	K1006356-014
SRC-2010-7-B-Comp	K1006356-015
SRC-2010-7-1	K1006356-016
SRC-2010-7-2	K1006356-017
SRC-2010-7-3	K1006356-018
SRC-2010-7-4	K1006356-019
SRC-2010-7-5	K1006356-020
SRC-2010-8-Z-Comp	K1006356-021
SRC-2010-8-Z-CompD	K1006356-021D
SRC-2010-8-Z-CompS	K1006356-021S
Method Blank	K1006356-MB1
Method Blank	K1006356-MB2
Batch QCD	K1006518-001D
Batch QCS	K1006518-001S

Com	m	ent	s:
-----	---	-----	----

Approved By:

Date:

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.:

16087

Date Collected:

6/8/2010

Project Name: USACE San Rafael Channel

**Date Received:** 6/18/2010

Matrix:

SEDIMENT

Basis:

DRY

Sample Name:

SRC-2010-1-Comp

Lab Code:

K1006356-001

Units: mg/Kg

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.62	0.06	5.0	06/24/10	06/28/10	10.4		
Barium	6010B	2.5	0.4	2.0	06/24/10	07/02/10	52.2		
Beryllium	6020	0.025	0.004	5.0	06/24/10	06/28/10	0.566		
Boron	6010B	12	0.4	2.0	06/24/10	07/02/10	24		
Cadmium	6020	0.025	0.005	5.0	06/24/10	06/28/10	0.221		
Chromium	6020	0.25	0.02	5.0	06/24/10	06/28/10	76.6		
Cobalt	6020	0.025	0.001	5.0	06/24/10	06/28/10	17.9		
Copper	6020	0.13	0.10	5.0	06/24/10	06/28/10	53.0		
Lead	6020	0.062	0.007	5.0	06/24/10	06/28/10	23.1		
Manganese	6010B	2.46	0.05	2.0	06/24/10	07/02/10	733		
Mercury	7471A	0.019	0.002	1.0	06/30/10	07/02/10	0.311		
Nickel	6020	0.25	0.03	5.0	06/24/10	06/28/10	87.3		
Selenium	7742	0.12	0.04	2.0	06/24/10	06/28/10	0.27		
Silver	6020	0.025	0.010	5.0	06/24/10	06/25/10	0.243		
Vanadium	6010B	2.5	0.5	2.0	06/24/10	07/02/10	69.9		
Zinc	6010B	2.5	0.4	2.0	06/24/10	07/02/10	123		

% Solids:

44.6

## -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.: 16087

Date Collected: 6/9/2010

Project Name: USACE San Rafael Channel

**Date Received:** 6/18/2010

Matrix:

SEDIMENT

Units: mg/Kg

Basis: DRY

Sample Name:

SRC-2010-2-Comp

Lab Code:

K1006356-002

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.59	0.06	5.0	06/24/10	06/28/10	9.95		
Barium	6010B	2.4	0.4	2.0	06/24/10	07/02/10	46.6		
Beryllium	6020	0.024	0.004	5.0	06/24/10	06/28/10	0.535		
Boron	6010B	12	0.4	2.0	06/24/10	07/02/10	22		
Cadmium	6020	0.024	0.005	5.0	06/24/10	06/28/10	0.189		
Chromium	6020	0.24	0.02	5.0	06/24/10	06/28/10	74,7		
Cobalt	6020	0.024	0.001	5.0	06/24/10	06/28/10	17.0		
Copper	6020	0.12	0.10	5.0	06/24/10	06/28/10	49.7		
Lead	6020	0.059	0.007	5.0	06/24/10	06/28/10	22.1		
Manganese	6010B	2.35	0.05	2.0	06/24/10	07/02/10	654		
Mercury	7471A	0.019	0.002	1.0	06/30/10	07/02/10	0.287		
Nickel	6020	0.24	0.02	5.0	06/24/10	06/28/10	85.1		
Selenium	7742	0.12	0.04	2.0	06/24/10	06/28/10	0.35		
Silver	6020	0.024	0.009	5.0	06/24/10	06/25/10	0.246		
Vanadium	6010B	2.4	0.5	2.0	06/24/10	07/02/10	64.1	-	
Zinc	6010B	2.4	0.4	2.0	06/24/10	07/02/10	112		

% Solids:

46.7

### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.: 16087

Date Collected: 6/9/2010

Date Received: 6/18/2010

Matrix:

SEDIMENT

Project Name: USACE San Rafael Channel

Basis: DRY

Sample Name:

SRC-2010-3-Comp

Lab Code:

K1006356-003

Units: mg/Kg

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Ω
Arsenic	6020	0.58	0.06	5.0	06/24/10	06/28/10	9.73		
Barium	6010B	2.3	0.3	2.0	06/24/10	07/02/10	47.3		
Beryllium	6020	0.023	0.003	5.0	06/24/10	06/28/10	0.503		
Boron	6010B	11	0.3	2.0	06/24/10	07/02/10	24		
Cadmium	6020	0.023	0.005	5.0	06/24/10	06/28/10	0.184		
Chromium	6020	0.23	0.02	5.0	06/24/10	06/28/10	71.9		
Cobalt	6020	0.023	0.001	5.0	06/24/10	06/28/10	16.1		
Copper	6020	0.12	0.09	5.0	06/24/10	06/28/10	46.6		
Lead	6020	0.058	0.007	5.0	06/24/10	06/28/10	21.8		
Manganese	6010B	2.29	0.05	2.0	06/24/10	07/02/10	619		
Mercury	7471A	0.020	0.002	1.0	06/30/10	07/02/10	0.306		
Nickel	6020	0.23	0.02	5.0	06/24/10	06/28/10	79.7		
Selenium	7742	0.11	0.03	2.0	06/24/10	06/28/10	0.27		
Silver	6020	0.023	0.009	5.0	06/24/10	06/25/10	0.246		
Vanadium	6010B	2.3	0.5	2.0	06/24/10	07/02/10	66.7		
Zinc	6010B	2.3	0.3	2.0	06/24/10	07/02/10	122		

% Solids:

48.3

### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.:

16087

Date Collected: 6/11/2010

Project Name: USACE San Rafael Channel

**Date Received:** 6/18/2010

Matrix:

SEDIMENT

Units: mg/Kg

Basis: DRY

Sample Name:

SRC-2010-4-Comp

Lab Code:

K1006356-004

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.59	0.06	5.0	06/24/10	06/28/10	9.97		
Barium	6010B	2.3	0.4	2.0	06/24/10	07/02/10	49.6		
Beryllium	6020	0.024	0.004	5.0	06/24/10	06/28/10	0.543		
Boron	6010B	12	0.4	2.0	06/24/10	07/02/10	25		
Cadmium	6020	0.024	0.005	5.0	06/24/10	06/28/10	0.182		
Chromium	6020	0.24	0.02	5.0	06/24/10	06/28/10	75.0		
Cobalt	6020	0.024	0.001	5.0	06/24/10	06/28/10	16.3		
Copper	6020	0.12	0.09	5.0	06/24/10	06/28/10	51.3		
Lead	6020	0.059	0.007	5.0	06/24/10	06/28/10	24.7		
Manganese	6010B	2.34	0.05	2.0	06/24/10	07/02/10	659		
Mercury	7471A	0.020	0.002	1.0	06/30/10	07/02/10	0.309		
Nickel	6020	0.24	0.02	5.0	06/24/10	06/28/10	83.9		
Selenium	7742	0.12	0.04	2.0	06/24/10	06/28/10	0.36		
Silver	6020	0.023	0.009	5.0	06/24/10	06/25/10	0.263		
Vanadium	6010B	2.3	0.5	2.0	06/24/10	07/02/10	71.0		
Zinc	6010B	2.3	0.4	2.0	06/24/10	07/02/10	142		

% Solids:

47.2

## - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.: 16087

Date Collected: 6/8/2010

Project Name: USACE San Rafael Channel

**Date Received:** 6/18/2010

Matrix:

SEDIMENT

Units: mg/Kg

Basis: DRY

Sample Name:

SRC-2010-5-Comp

Lab Code:

K1006356-005

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.63	0.06	5.0	06/24/10	06/28/10	10.5		
Barium	6010B	2.5	0.4	2.0	06/24/10	07/02/10	48.1		
Beryllium	6020	0.025	0.004	5.0	06/24/10	06/28/10	0.626		
Boron	6010B	12	0.4	2.0	06/24/10	07/02/10	25		
Cadmium	6020	0.025	0.005	5.0	06/24/10	06/28/10	0.203		
Chromium	6020	0.25	0.02	5.0	06/24/10	06/28/10	81.1		
Cobalt	6020	0.025	0.001	5.0	06/24/10	06/28/10	17.8		
Copper	6020	0.13	0.10	5.0	06/24/10	06/28/10	60.0		
Lead	6020	0.062	0.007	5.0	06/24/10	06/28/10	27.9		
Manganese	6010B	2.49	0.05	2.0	06/24/10	07/02/10	598		
Mercury	7471A	0.019	0.002	1.0	06/30/10	07/02/10	0.395		
Nickel	6020	0.25	0.03	5.0	06/24/10	06/28/10	89.9		
Selenium	7742	0.13	0.04	2.0	06/24/10	06/28/10	0.39		
Silver	6020	0.025	0.010	5.0	06/24/10	06/25/10	0.285		
Vanadium	6010B	2.5	0.5	2.0	06/24/10	07/02/10	68.8		
Zinc	6010B	2.5	0.4	2.0	06/24/10	07/02/10	158		

% Solids:

44.2

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.: 16087

Date Collected: 6/9/2010

Project Name: USACE San Rafael Channel

**Date Received:** 6/18/2010

Matrix:

SEDIMENT

Basis: DRY

Sample Name:

SRC-2010-6-Comp

Lab Code:

K1006356-006

Units: mg/Kg

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.68	0.07	5.0	06/24/10	06/28/10	11.0		
Barium	6010B	2.7	0.4	2.0	06/24/10	07/02/10	51.5		
Beryllium	6020	0.027	0.004	5.0	06/24/10	06/28/10	0.643		
Boron	6010B	13	0.4	2.0	06/24/10	07/02/10	28		
Cadmium	6020	0.027	0.005	5.0	06/24/10	06/28/10	0.236		
Chromium	6020	0.27	0.02	5.0	06/24/10	06/28/10	84.8		
Cobalt	6020	0.027	0.001	5.0	06/24/10	06/28/10	17.6		
Copper	6020	0.14	0.11	5.0	06/24/10	06/28/10	76.4		
Lead	6020	0.068	0.008	5.0	06/24/10	06/28/10	39.1		
Manganese	6010B	2.69	0.05	2.0	06/24/10	07/02/10	506		
Mercury	7471A	0.019	0.002	1.0	06/30/10	07/02/10	0.356		
Nickel	6020	0.27	0.03	5.0	06/24/10	06/28/10	93.5		
Selenium	7742	0.14	0.04	2.0	06/24/10	06/28/10	0.30		
Silver	6020	0.027	0.011	5.0	06/24/10	06/25/10	0.338		
Vanadium	6010B	2.7	0.5	2.0	06/24/10	07/02/10	73.2		
Zinc	6010B	2.7	0.4	2.0	06/24/10	07/02/10	185		

% Solids:

40.9

### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.: 16087

Date Collected: 6/10/2010

Date Received: 6/18/2010

Project Name: USACE San Rafael Channel

Matrix:

SEDIMENT

Units: mg/Kg

Basis: DRY

Sample Name:

SRC-2010-7-Comp

Lab Code:

K1006356-007

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.66	0.07	5.0	06/24/10	06/28/10	10.9		
Barium	6010B	2.7	0.4	2.0	06/24/10	07/02/10	65.4		
Beryllium	6020	0.026	0.004	5.0	06/24/10	06/28/10	0.653		
Boron	6010B	13	0.4	2.0	06/24/10	07/02/10	33		
Cadmium	6020	0.026	0.005	5.0	06/24/10	06/28/10	0.441		, energy
Chromium	6020	0.27	0.02	5.0	06/24/10	06/28/10	91.1		
Cobalt	6020	0.026	0.001	5.0	06/24/10	06/28/10	17.0		
Copper	6020	0.13	0.11	5.0	06/24/10	06/28/10	104.0		
Lead	6020	0.066	0.008	5.0	06/24/10	06/28/10	78.3		
Manganese	6010B	2.65	0.05	2.0	06/24/10	07/02/10	392		
Mercury	7471A	0.020	0.002	1.0	06/30/10	07/02/10	0.461		
Nickel	6020	0.27	0.03	5.0	06/24/10	06/28/10	101		
Selenium	7742	0.13	0.04	2.0	06/24/10	06/28/10	0.45		
Silver	6020	0.026	0.011	5.0	06/24/10	06/25/10	0.358		
Vanadium	6010B	2.7	0.5	2.0	06/24/10	07/02/10	64.0		
Zinc	6010B	2.7	0.4	2.0	06/24/10	07/02/10	248		

% Solids:

42.0

### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.:

16087

Date Collected:

6/10/2010

6/18/2010

Project Name: USACE San Rafael Channel

Date Received:

Matrix:

SEDIMENT

Units: mg/Kg

DRY Basis:

Sample Name:

SRC-2010-7-Z-Comp

Lab Code:

K1006356-008

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.58	0.06	5.0	06/24/10	06/28/10	11.9		
Barium	6010B	2.3	0.3	2.0	06/24/10	07/02/10	64.7		
Beryllium	6020	0.023	0.003	5.0	06/24/10	06/28/10	0.704		
Boron	6010B	12	0.3	2.0	06/24/10	07/02/10	27		
Cadmium	6020	0.023	0.005	5.0	06/24/10	06/28/10	0.505		
Chromium	6020	0.23	0.02	5.0	06/24/10	06/28/10	101		
Cobalt	6020	0.023	0.001	5.0	06/24/10	06/28/10	17.7		
Copper	6020	0.12	0.09	5.0	06/24/10	06/28/10	109.0		
Lead	6020	0.058	0.007	5.0	06/24/10	06/28/10	138		
Manganese	6010B	2.31	0.05	2.0	06/24/10	07/02/10	382		
Mercury	7471A	0.019	0.002	1.0	06/30/10	07/02/10	0.728		
Nickel	6020	0.23	0.02	5.0	06/24/10	06/28/10	110		
Selenium	7742	0.12	0.04	2.0	06/24/10	06/28/10	0.22		
Silver	6020	0.023	0.009	5.0	06/24/10	06/25/10	0.490		
Vanadium	6010B	2.3	0.5	2.0	06/24/10	07/02/10	66.2		
Zinc	6010B	2.3	0.3	2.0	06/24/10	07/02/10	227		

% Solids:

47.5

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.:

16087

Date Collected:

6/8/2010

Project Name: USACE San Rafael Channel

Date Received: 6/18/2010

Matrix:

SEDIMENT

Units: mg/Kg

Basis: DRY

Sample Name:

SRC-2010-1-B-Comp

Lab Code:

K1006356-009

Analyte	Analysis Method	MRL	MDL `	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.55	0.06	5.0	06/24/10	06/28/10	11.1		
Barium	6010B	2.2	0.3	2.0	06/24/10	07/02/10	58.0		
Boron	6010B	11	0.3	2.0	06/24/10	07/02/10	25		
Cadmium	6020	0.022	0.004	5.0	06/24/10	06/28/10	0.270		
Chromium	6020	0.22	0.02	5.0	06/24/10	06/28/10	78.1		
Copper	6020	0.11	0.09	5.0	06/24/10	06/28/10	54.3		
Lead	6020	0.055	0.007	5.0	06/24/10	06/28/10	26.3		
Manganese	6010B	2.18	0.04	2.0	06/24/10	07/02/10	831		
Mercury	7471A	0.019	0.002	1.0	06/30/10	07/02/10	0.362		
Nickel	6020	0.22	0.02	5.0	06/24/10	06/28/10	90.2		
Selenium	7742	0.11	0.03	2.0	06/24/10	06/28/10	0.23		
Silver	6020	0.022	0.009	5.0	06/24/10	06/25/10	0.308		
Vanadium	6010B	2.2	0.4	2.0	06/24/10	07/02/10	71.0		
Zinc	6010B	2.2	0.3	2.0	06/24/10	07/02/10	126		

% Solids:

50.4

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.:

16087

Date Collected:

6/9/2010

Project Name: USACE San Rafael Channel

**Date Received:** 6/18/2010

Matrix:

SEDIMENT

Units: mg/Kg

DRY

Basis:

Sample Name:

SRC-2010-2-B-Comp

Lab Code:

K1006356-010

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.54	0.05	5.0	06/24/10	06/28/10	12.0		
Barium	6010B	2.2	0.3	2.0	06/24/10	07/02/10	50.4		
Boron	6010B	11	0.3	2.0	06/24/10	07/02/10	24		
Cadmium	6020	0.022	0.004	5.0	06/24/10	06/28/10	0.270		
Chromium	6020	0.22	0.02	5.0	06/24/10	06/28/10	80.0		
Copper	6020	0.11	0.09	5.0	06/24/10	06/28/10	57.5		
Lead	6020	0.054	0.007	5.0	06/24/10	06/28/10	29.1		
Manganese	6010B	2.16	0.04	2.0	06/24/10	07/02/10	773		
Mercury	7471A	0.019	0.002	1.0	06/30/10	07/02/10	0.393		
Nickel	6020	0.22	0.02	5.0	06/24/10	06/28/10	89.8		
Selenium	7742	0.11	0.03	2.0	06/24/10	06/28/10	0.38		
Silver	6020	0.022	0.009	5.0	06/24/10	06/25/10	0.329	·	
Vanadium	6010B	2.2	0.4	2.0	06/24/10	07/02/10	70.9		
Zinc	6010B	2.2	0.3	2.0	06/24/10	07/02/10	129		

% Solids:

50.9

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.:

16087

Date Collected:

6/9/2010

Project Name: USACE San Rafael Channel

Date Received:

6/18/2010

Matrix:

SEDIMENT

Units: mg/Kg

Basis:

DRY

Sample Name:

SRC-2010-3-B-Comp

Lab Code:

K1006356-011

Analyte	Analysis Method	MRL.	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.56	0.06	5.0	06/24/10	06/28/10	11.3		
Barium	6010B	2.3	0.3	2.0	06/24/10	07/02/10	54.4		
Boron	6010B	11	0.3	2.0	06/24/10	07/02/10	26		
Cadmium	6020	0.022	0.004	5.0	06/24/10	06/28/10	0.253		
Chromium	6020	0.23	0.02	5.0	06/24/10	06/28/10	76.2		
Copper	6020	0.11	0.09	5.0	06/24/10	06/28/10	53.4		
Lead	6020	0.056	0.007	5.0	06/24/10	06/28/10	27.5		
Manganese	6010B	2.26	0.05	2.0	06/24/10	07/02/10	763		
Mercury	7471A	0.018	0.002	1.0	06/30/10	07/02/10	0.359		
Nickel	6020	0.23	0.02	5.0	06/24/10	06/28/10	86.6		
Selenium	7742	0.11	0.03	2.0	06/24/10	06/28/10	0.38		
Silver	6020	0.023	0.009	5.0	06/24/10	06/25/10	0.332		
Vanadium	6010B	2.3	0.5	2.0	06/24/10	07/02/10	76.3		
Zinc	6010B	2.3	0.3	2.0	06/24/10	07/02/10	140		

% Solids:

49.2

### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.:

16087

Date Collected:

06/11/10

Project Name: USACE San Rafael Channel

Date Received:

06/18/10

Matrix:

SEDIMENT

mg/Kg

DRY

Units: Basis:

Sample Name:

SRC-2010-4-B-Comp

Lab Code:

K1006356-012

<del></del>			·	· · · · · · · · · · · · · · · · · · ·			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.53	0.05	5.0	06/24/10	06/28/10	11.0		
Barium	6010B	2.1	0.3	2.0	06/24/10	07/02/10	45.6		
Boron	6010B	11	0.3	2.0	06/24/10	07/02/10	26		
Cadmium	6020	0.021	0.004	5.0	06/24/10	06/28/10	0.212		
Chromium	6020	0.21	0.02	5.0	06/24/10	06/28/10	75.4		
Copper	6020	0.11	0.09	5.0	06/24/10	06/28/10	54.7		
Lead	6020	0.053	0.006	5.0	06/24/10	06/28/10	29.1		
Manganese	6010B	2.14	0.04	2.0	06/24/10	07/02/10	653		
Mercury	7471A	0.018	0.002	1.0	06/30/10	07/02/10	0.366		
Nickel	6020	0.21	0.02	5.0	06/24/10	06/28/10	84.0		
Selenium	7742	0.11	0.03	2.0	06/24/10	06/28/10	0.31		
Silver	6020	0.021	0.009	5.0	06/24/10	06/25/10	0.335		
Vanadium	6010B	2.1	0.4	2.0	06/24/10	07/02/10	68.1		
Zinc	6010B	2.1	0.3	2.0	06/24/10	07/02/10	134		

% Solids:

51.4

### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.:

16087

Date Collected:

6/8/2010

Project Name: USACE San Rafael Channel

Date Received: 6/18/2010

Matrix:

SEDIMENT

Units: mg/Kg

DRY

Basis:

Sample Name:

SRC-2010-5-B-Comp

Lab Code:

K1006356-013

				_				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.57	0.06	5.0	06/24/10	06/28/10	12.3		
Barium	6010B	2.2	0.3	2.0	06/24/10	07/02/10	48.1		
Boron	6010B	11	0.3	2.0	06/24/10	07/02/10	26		
Cadmium	6020	0.023	0.005	5.0	06/24/10	06/28/10	0.272		
Chromium	6020	0.23	0.02	5.0	06/24/10	06/28/10	84.9		
Copper	6020	0.11	0.09	5.0	06/24/10	06/28/10	62.4		
Lead	6020	0.057	0.007	5.0	06/24/10	06/28/10	42.1	·	
Manganese	6010B	2.24	0.05	2.0	06/24/10	07/02/10	510		
Mercury	7471A	0.019	0.002	1.0	06/30/10	07/02/10	0.424		
Nickel	6020	0.23	0.02	5.0	06/24/10	06/28/10	90.8		
Selenium	7742	0.11	0.03	2.0	06/24/10	06/28/10	0.23		
Silver	6020	0.022	0.009	5.0	06/24/10	06/25/10	0.423		
Vanadium	6010B	2.2	0.4	2.0	06/24/10	07/02/10	71.0		
Zinc	6010B	2.2	0.3	2.0	06/24/10	07/02/10	154		

% Solids:

49.1

## -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.: 16087

Date Collected: 6/9/2010

Project Name: USACE San Rafael Channel

Matrix:

SEDIMENT

**Date Received:** 6/18/2010

Units: mg/Kg Basis: DRY

Sample Name:

SRC-2010-6-B-Comp

Lab Code:

K1006356-014

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	C	Q
Arsenic	6020	0.60	0.06	5.0	06/24/10	06/28/10	12.6		
Barium	6010B	2.4	0.4	2.0	06/24/10	07/02/10	51.1		
Boron	6010B	12	0.4	2.0	06/24/10	07/02/10	27		
Cadmium	6020	0.024	0.005	5.0	06/24/10	06/28/10	0.310		
Chromium	6020	0.24	0.02	5.0	06/24/10	06/28/10	86.2		
Copper	6020	0.12	0.10	5.0	06/24/10	06/28/10	72.5		
Lead	6020	0.060	0.007	5.0	06/24/10	06/28/10	55.6		
Manganese	6010B	2.41	0.05	2.0	06/24/10	07/02/10	489		
Mercury	7471A	0.019	0.002	1.0	06/30/10	07/02/10	0.525	-	
Nickel	6020	0.24	0.02	5.0	06/24/10	06/28/10	92.8		
Selenium	7742	0.12	0.04	2.0	06/24/10	06/28/10	0.20		
Silver	6020	0.024	0.010	5.0	06/24/10	06/25/10	0.518		
Vanadium	6010B	2.4	0.5	2.0	06/24/10	07/02/10	71.2		
Zinc	6010B	2.4	0.4	2.0	06/24/10	07/02/10	169		

% Solids:

45.6

### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.: 16087

Date Collected: 6/10/2010

Project Name: USACE San Rafael Channel

Date Received: 6/18/2010

Matrix:

SEDIMENT

Units: mg/Kg

DRY

Basis:

Sample Name:

SRC-2010-7-B-Comp

Lab Code:

K1006356-015

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.52	0.05	5.0	06/24/10	06/28/10	12.4		
Barium	6010B	2.1	0.3	2.0	06/24/10	07/02/10	81.7		
Boron	6010B	11	0.3	2.0	06/24/10	07/02/10	21		
Cadmium	6020	0.021	0.004	5.0	06/24/10	06/28/10	0.438		
Chromium	6020	0.21	0.02	5.0	06/24/10	06/28/10	202	-	
Copper	6020	0.10	0.08	5.0	06/24/10	06/28/10	65.3		
Lead	6020	0.052	0.006	5.0	06/24/10	06/28/10	71.5		
Manganese	6010B	2.10	0.04	2.0	06/24/10	07/02/10	501		
Mercury	7471A	0.020	0.002	1.0	06/30/10	07/02/10	0.652		
Nickel	6020	0.21	0.02	5.0	06/24/10	06/28/10	214		
Selenium	7742	0.11	0.03	2.0	06/24/10	06/28/10	0.23		
Silver	6020	0.021	0.008	5.0	06/24/10	06/25/10	0.358	<del></del>	
Vanadium	6010B	2.1	0.4	2.0	06/24/10	07/02/10	69.7		
Zinc	6010B	2.1	0.3	2.0	06/24/10	07/02/10	155		

% Solids:

53.0

# INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.: 16087

Date Collected: 6/10/2010

Project Name: USACE San Rafael Channel

**Date Received:** 6/18/2010

Matrix:

SEDIMENT

Units: mg/Kg

Basis: DRY

Sample Name:

SRC-2010-7-1

Lab Code:

K1006356-016

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.71	0.07	5.0	06/24/10	06/28/10	9.14		
Barium	6010B	2.9	0.4	2.0	06/24/10	07/02/10	48.8		
Beryllium	6020	0.028	0.004	5.0	06/24/10	06/28/10	0.638		
Boron	6010B	14	0.4	2.0	06/24/10	07/02/10	33		
Cadmium	6020	0.028	0.006	5.0	06/24/10	06/28/10	0.191		
Chromium	6020	0.29	0.02	5.0	06/24/10	06/28/10	80.6		
Cobalt	6020	0.028	0.001	5.0	06/24/10	06/28/10	16.5		
Copper	6020	0.14	0.11	5.0	06/24/10	06/28/10	88.2		
Lead	6020	0.071	0.009	5.0	06/24/10	06/28/10	33.3		
Manganese	6010B	2.85	0.06	2.0	06/24/10	07/02/10	444		
Mercury	7471A	0.020	0.002	1.0	06/30/10	07/02/10	0.359		
Nickel	6020	0.29	0.03	5.0	06/24/10	06/28/10	88.6		
Selenium	7742	0.14	0.04	2.0	06/24/10	06/28/10	0.40		
Silver	6020	0.028	0.011	5.0	06/24/10	06/25/10	0.268		
Vanadium	6010B	2.9	0.6	2.0	06/24/10	07/02/10	70.7		
Zinc	6010B	2.9	0.4	2.0	06/24/10	07/02/10	207		

% Solids:

39.0

### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.:

16087

Date Collected: 6/10/2010

**Date Received:** 6/18/2010

Project Name: USACE San Rafael Channel

Matrix:

SEDIMENT

Units: mg/Kg

Basis: DRY

Sample Name:

SRC-2010-7-2

Lab Code:

K1006356-017

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.67	0.07	5.0	06/24/10	06/28/10	11.5		
Barium	6010B	2.6	0.4	2.0	06/24/10	07/02/10	54.1		
Beryllium	6020	0.027	0.004	5.0	06/24/10	06/28/10	0.739		
Boron	6010B	13	0.4	2.0	06/24/10	07/02/10	28		
Cadmium	6020	0.027	0.005	5.0	06/24/10	06/28/10	0.278	7	
Chromium	6020	0.27	0.02	5.0	06/24/10	06/28/10	89.9		
Cobalt	6020	0.027	0.001	5.0	06/24/10	06/28/10	17.7		
Copper	6020	0.13	0.11	5.0	06/24/10	06/28/10	88.3		
Lead	6020	0.067	0.008	5.0	06/24/10	06/28/10	57.7		
Manganese	6010B	2.64	0.05	2.0	06/24/10	07/02/10	496		
Mercury	7471A	0.019	0.002	1.0	06/30/10	07/02/10	0.534		
Nickel	6020	0.27	0.03	5.0	06/24/10	06/28/10	98.7		
Selenium	7742	0.13	0.04	2.0	06/24/10	06/28/10	0.33		
Silver	6020	0.026	0.011	5.0	06/24/10	06/25/10	0.392		
Vanadium	6010B	2.6	0.5	2.0	06/24/10	07/02/10	74.5		
Zinc	6010B	2.6	0.4	2.0	06/24/10	07/02/10	210		

% Solids:

41.7

## -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.: 16087

Date Collected: 6/10/2010

Project Name: USACE San Rafael Channel

**Date Received:** 6/18/2010

Matrix:

SEDIMENT

Units: mg/Kg

Basis: DRY

Sample Name:

SRC-2010-7-3

Lab Code:

K1006356-018

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.67	0.07	5.0	06/24/10	06/28/10	10.5		
Barium	6010B	2.7	0.4	2.0	06/24/10	07/02/10	56.3		
Beryllium	6020	0.027	0.004	5.0	06/24/10	06/28/10	0.651		
Boron	6010B	13	0.4	2.0	06/24/10	07/02/10	30		
Cadmium	6020	0.027	0.005	5.0	06/24/10	06/28/10	0.295		
Chromium	6020	0.27	0.02	5.0	06/24/10	06/28/10	86.3		
Cobalt	6020	0.027	0.001	5.0	06/24/10	06/28/10	16.6		
Copper	6020	0.13	0.11	5.0	06/24/10	06/28/10	101.0		
Lead	6020	0.067	0.008	5.0	06/24/10	06/28/10	49.6		
Manganese	6010B	2.66	0.05	2.0	06/24/10	07/02/10	463		
Mercury	7471A	0.019	0.002	1.0	06/30/10	07/02/10	0.412		
Nickel	6020	0.27	0.03	5.0	06/24/10	06/28/10	95.8		
Selenium	7742	0.14	0.04	2.0	06/24/10	06/28/10	0.24		
Silver	6020	0.027	0.011	5.0	06/24/10	06/25/10	0.346		
Vanadium	6010B	2.7	0.5	2.0	06/24/10	07/02/10	71.5		
Zinc	6010B	2.7	0.4	2.0	06/24/10	07/02/10	227		

% Solids:

41.3

## -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.: 16087

Date Collected: 6/10/2010

Project Name: USACE San Rafael Channel

**Date Received:** 6/18/2010

Matrix:

SEDIMENT

Units: mg/Kg

Basis: DRY

Sample Name:

SRC-2010-7-4

Lab Code: K1006356-019

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Ω
Arsenic	6020	0.69	0,07	5.0	06/24/10	06/28/10	11.6		
Barium	6010B	2.8	0.4	2.0	06/24/10	07/02/10	62.5		
Beryllium	6020	0.028	0.004	5.0	06/24/10	06/28/10	0.767		
Boron	6010B	14	0.4	2.0	06/24/10	07/02/10	38		
Cadmium	6020	0.028	0.006	5.0	06/24/10	06/28/10	0.517		
Chromium	6020	0.28	0.02	5.0	06/24/10	06/28/10	97.0		
Cobalt	6020	0.028	0.001	5.0	06/24/10	06/28/10	17.8		
Copper	6020	0.14	0.11	5.0	06/24/10	06/28/10	129.0		
Lead	6020	0.069	0.008	5.0	06/24/10	06/28/10	91.3		
Manganese	6010B	2.76	0.06	2.0	06/24/10	07/02/10	364		
Mercury	7471A	0.019	0.002	1.0	06/30/10	07/02/10	0.438		
Nickel	6020	0.28	0.03	5.0	06/24/10	06/28/10	109		
Selenium	7742	0.14	0.04	2.0	06/24/10	06/28/10	0.18		
Silver	6020	0.028	0.011	5.0	06/24/10	06/25/10	0.332		
Vanadium	6010B	2.8	0.6	2.0	06/24/10	07/02/10	64.4		
Zinc	6010B	2.8	0.4	2.0	06/24/10	07/02/10	272		

% Solids:

39.8

# INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.: 16087

Date Collected: 6/10/2010

Project Name: USACE San Rafael Channel

**Date Received:** 6/18/2010

Matrix:

SEDIMENT

Units: mg/Kg Basis: DRY

Sample Name:

SRC-2010-7-5

Lab Code:

K1006356-020

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.63	0.06	5.0	06/24/10	06/28/10	11.5		
Barium	6010B	2.5	0.4	2.0	06/24/10	07/02/10	80.4		
Beryllium	6020	0.025	0.004	5.0	06/24/10	06/28/10	0.741		
Boron	6010B	13	0.4	2.0	06/24/10	07/02/10	47		
Cadmium	6020	0.025	0.005	5.0	06/24/10	06/28/10	0.726		
Chromium	6020	0.25	0.02	5.0	06/24/10	06/28/10	101		
Cobalt	6020	0.025	0.001	5.0	06/24/10	06/28/10	17.2		
Copper	6020	0.13	0.10	5.0	06/24/10	06/28/10	95.7		
Lead	6020	0.063	0.008	5.0	06/24/10	06/28/10	162		
Manganese	6010B	2.51	0.05	2.0	06/24/10	07/02/10	347		
Mercury	7471A	0.019	0.002	1.0	06/30/10	07/02/10	0.541		
Nickel	6020	0.25	0.03	5.0	06/24/10	06/28/10	119		
Selenium	7742	0.13	0.04	2.0	06/24/10	06/28/10	0.31		
Silver	6020	0.025	0.010	5.0	06/24/10	06/25/10	0.419		
Vanadium	6010B	2.5	0,5	2.0	06/24/10	07/02/10	58.1		
Zinc	6010B	2.5	0.4	2.0	06/24/10	07/02/10	298		

% Solids:

43.8

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.: 16087

Date Collected: 6/10/2010

Project Name: USACE San Rafael Channel

**Date Received:** 6/23/2010

Matrix:

SEDIMENT

Basis: DRY

Sample Name:

SRC-2010-8-Z-Comp

Lab Code:

K1006356-021

Units: mg/Kg

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.63	0.06	5.0	06/25/10	06/28/10	12.1		
Barium	6010B	2.5	0.4	2.0	06/25/10	07/02/10	98.9		
Beryllium	6020	0.025	0.004	5.0	06/25/10	06/28/10	0.721		
Boron	6010B	13	0.4	2.0	06/25/10	07/02/10	40		
Cadmium	6020	0.025	0.005	5.0	06/25/10	06/28/10	0.845		*
Chromium	6020	0.25	0.02	5.0	06/25/10	06/28/10	106		
Cobalt	6020	0.025	0.001	5.0	06/25/10	06/28/10	17.6		
Copper	6020	0.13	0.10	5.0	06/25/10	06/28/10	107.0		
Lead ·	6020	0.063	0.008	5.0	06/25/10	06/28/10	200		·
Manganese	6010B	2.51	0.05	2.0	06/25/10	07/02/10	372		
Mercury	7471A	0.019	0.002	1.0	06/30/10	07/02/10	0.503		
Nickel	6020	0.25	0.03	5.0	06/25/10	06/28/10	127		
Selenium	7742	0.13	0.04	2.0	06/25/10	06/28/10	0.29		
Silver	6020	0.025	0.010	5.0	06/25/10	06/25/10	0.425		
Vanadium	6010B	2.5	0.5	2.0	06/25/10	07/02/10	63.6		
Zinc	6010B	2.5	0.4	2.0	06/25/10	07/02/10	323		

% Solids:

44.0

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client: Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.: 16087

Date Collected:

Project Name: USACE San Rafael Channel

Date Received:

Matrix: SEDIMENT

Units: mg/Kg

Basis: DRY

Sample Name:

Method Blank1

Lab Code: K1006356-MB1

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.50	0.05	5.0	06/24/10	06/28/10	0.05	บ	
Barium	6010B	2.0	0.3	2.0	06/24/10	07/02/10	0.3	บ	
Beryllium	6020	0.020	0.003	5.0	06/24/10	06/28/10	0.003	บ	
Boron	6010B	10	0.3	2.0	06/24/10	07/02/10	0.3	ט	
Cadmium	6020	0.020	0.004	5.0	06/24/10	06/28/10	0.004	ט	
Chromium	6020	0.20	0.02	5.0	06/24/10	06/28/10	0.08	J	
Cobalt	6020	0.020	0.001	5.0	06/24/10	06/28/10	0.002	J	
Copper	6020	0.10	0.08	5.0	06/24/10	06/28/10	0.08	ט	
Lead	6020	0.050	0.006	5.0	06/24/10	06/28/10	0.006	ט	
Manganese	6010B	2.00	0.04	2.0	06/24/10	07/02/10	0.19	J	
Mercury	7471A	0.020	0.002	1.0	06/30/10	07/02/10	0.002	U	
Nickel	6020	0.20	0.02	5.0	06/24/10	06/28/10	0.03	J	
Selenium	7742	0.10	0.03	2.0	06/24/10	06/28/10	0.03	U	
Silver	6020	0.020	0.008	5.0	06/24/10	06/25/10	0.008	U	
Vanadium	6010B	2.0	0.4	2.0	06/24/10	07/02/10	0.4	U	
Zinc	6010B	2.0	0.3	2.0	06/24/10	07/02/10	0.3	บ	

% Solids:

100.0

## -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.:

16087

Date Collected:

Project Name: USACE San Rafael Channel

Date Received:

Matrix:

SEDIMENT

Units: mg/Kg

Basis: DRY

Sample Name:

Method Blank2

Lab Code:

K1006356-MB2

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.50	0.05	5.0	06/25/10	06/28/10	0.05	บ	
Barium	6010B	2.0	0.3	2.0	06/25/10	07/02/10	0.3	บ	
Beryllium	6020	0.020	0.003	5.0	06/25/10	06/28/10	0.003	บ	
Boron	6010B	10	0.3	2.0	06/25/10	07/02/10	0.3	บ	
Cadmium	6020	0.020	0.004	5.0	06/25/10	06/28/10	0.004	ט	*
Chromium	6020	0.20	0.02	5.0	06/25/10	06/28/10	0.07	J	
Cobalt	6020	0.020	0.001	5.0	06/25/10	06/28/10	0.001	J	
Copper	6020	0.10	0.08	5.0	06/25/10	06/28/10	0.08	บ	
Lead	6020	0.050	0.006	5.0	06/25/10	06/28/10	0.006	Ü	
Manganese	6010B	2.00	0.04	2.0	06/25/10	07/02/10	0.04	ָט	
Mercury	7471A	0.020	0.002	1.0	06/30/10	07/02/10	0.002	ט	
Nickel	6020	0.20	0.02	5.0	06/25/10	06/28/10	0.03	J	
Selenium	7742	0.10	0.03	2.0	06/25/10	06/28/10	0.03	ט	
Silver	6020	0.020	0.008	5.0	06/25/10	06/25/10	0.008	ט	
Vanadium	6010B	2.0	0.4	2.0	06/25/10	07/02/10	0.4	ŭ	
Zinc	6010B	2.0	0.3	2.0	06/25/10	07/02/10	0.3	Ū	

% Solids:

100.0

## **METALS** - 5A -

#### SPIKE SAMPLE RECOVERY

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.: 16087

Units: MG/KG

Project Name: USACE San Rafael Channel

Basis: DRY

Matrix:

SEDIMENT

% Solids:

44.6

Sample Name: SRC-2010-1-CompS

Lab Code: K1006356-001S

Analyte	Control Limit %R	Spike Result	C Sample Result	С	Spike Added	%R	Q	Method
Arsenic	57 - 133	140	10.4	1	123.20	105.2		6020
Barium	60 - 139	562	52.2		495.50	102.9		6010B
Beryllium	64 - 133	13.5	0.566		12.32	105.0		6020
Boron	53 - 135	138	24		123.88	92.0	-	6010B
Cadmium	68 - 137	13.3	0.221		12.32	106.2		6020
Chromium	34 - 175	130	76.6		49.28	108.4		6020
Cobalt	74 - 118	146	17.9		123.20	104.0		6020
Copper	22 - 181	119.0	53.0		61.60	107.1		6020
Lead	27 - 178	150	23.1		123.20	103.0		6020
Manganese		885	733		123.88	122.7		6010B
Nickel	59 - 132	220	87.3		123.20	107.7		6020
Selenium	57 - 134	2.69	0.27	1	2.46	98.4		7742
Silver	62 - 131	13.2	0.243		12.39	104.6		6020
Vanadium	64 - 132	195	69.9		123.88	101.0		6010B
Zinc	13 - 172	255	123		123.88	106.6		6010B

## **METALS** - 5A -

## SPIKE SAMPLE RECOVERY

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.: 16087

Units: MG/KG

Project Name: USACE San Rafael Channel

Basis: DRY

Matrix:

SEDIMENT

% Solids:

46.7

Sample Name: SRC-2010-1-CompS

Lab Code: K1006356-002S

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	%R	Q	Method
Mercury	60 - 135	0.760	0.287	0.47	100.6		7471A

#### **METALS** - 5A -

#### SPIKE SAMPLE RECOVERY

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.: 16087

Units:

MG/KG

Project Name: USACE San Rafael Channel

Basis:

DRY

Matrix:

SEDIMENT

% Solids:

44.0

Sample Name:

SRC-2010-8-Z-CompS

Lab Code: K1006356-021S

Analyte	Control Limit %R	Spike Result	Sample Result C	Spike Added	%R	Q	Method
Arsenic	57 - 133	150	12.1	125.57	109:8		6020
Barium	60 - 139	594	98.9	505.05	98.0		6010B
Beryllium	64 - 133	15.5	0.721	12.56	117.7		6020
Boron	53 - 135	151	40	126.26	87.9		6010B
Cadmium	68 - 137	14.5	0.845	12.56	108.7		6020
Chromium	34 - 175	154	106	50.23	95.6		6020
Cobalt	74 - 118	150	17.6	125.57	105.4		6020
Copper	22 - 181	174.0	107.0	62.78	106.7		6020
Lead	27 - 178	330	200	125.57	103.5		6020
Manganese	28 - 181	497	372	126.26	99.0		6010B
Nickel	59 - 132	259	127	125.57	105.1		6020
Selenium	57 - 134	2.24	0.29	2.51	77.7		7742
Silver	62 - 131	13.8	0.425	12.63	105.9		6020
Vanadium	64 - 132	186	63.6	126.26	96.9		6010B
Zinc	13 - 172	408	323	126.26	67.3		6010B

- 5A -

#### SPIKE SAMPLE RECOVERY

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.:

16087

Units:

MG/KG

Project Name: USACE San Rafael Channel

Basis:

DRY

Matrix:

SEDIMENT

% Solids:

56.6

Sample Name:

Batch QCS

Lab Code: K1006518-001S

Analyte	Control Limit %R	Spike Result	С	Sample Result	3	Spike Added	%R	Q	Method
Mercury	60 - 135	0.474		0.046		0.49			7471A

- 6 -

#### **DUPLICATES**

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.:

16087

Units:

MG/KG

?roject Name: USACE San Rafael Channel

Basis:

DRY

/atrix:

SEDIMENT

% Solids:

44.6

Sample Name:

SRC-2010-1-CompD

Lab Code:

K1006356-001D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic	20	10.4		9.44		9.7		6020
Barium	30	52.2		53.7		2.8		6010B
Beryllium	20	0.566		0.506		11.2		6020
Boron	·	24		26		8.0		6010B
Cadmium	20	0.221		0.197		11.5		6020
Chromium	20	76.6		68.4		11.3		6020
Cobalt	20	17.9		16.1		10.6		6020
Copper	20	53.0		48.0		9.9		6020
Lead	20	23.1		21.2		8.6		6020
Manganese	30	733		755		3.0		6010B
Nickel	20	87.3		79.0		10.0		6020
Selenium		0.27		0.28		3.6		7742
Silver	20	0.243		0.253		4		6020
Vanadium	30	69.9		70.8		1.3		6010B
Zinc	30	123		127		3.2		6010B

- 6 -

#### **DUPLICATES**

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.:

16087

Units: MG/KG

Project Name: USACE San Rafael Channel

Basis: DRY

Matrix:

SEDIMENT

% Solids:

46.7

Sample Name:

SRC-2010-1-CompD

Lab Code:

K1006356-002D

Analyte	Control Limit	Sample	(S)	С	Duplicate (D)	С	RPD	Q	Method
Mercury	30		0.287		0.303		5.4		7471A

- 6 -

## **DUPLICATES**

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.: 16087

Units:

MG/KG

Project Name: USACE San Rafael Channel

Basis:

DRY

Matrix:

SEDIMENT

% Solids:

44.0

Sample Name: SRC-2010-8-Z-CompD

Lab Code:

K1006356-021D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic	20	12,1	 	10.5		14.2		6020
Barium	30	98.9		84.1		16.2		6010B
Beryllium	20	0.721		0.646		11.0		6020
Boron	ĺ	40		42		4.9		6010B
Cadmium	20	0.845		0.647		26.5	*	6020
Chromium	20	106		88.9		17.5		6020
Cobalt	20	17.6	pre-warmenenenene	15.0		16.0		6020
Copper	20	107.0		91.5		15.6		6020
Lead	20	200		168		17.4		6020
Manganese	30	372		370		0.5		6010B
Nickel	20	127		107		17.1		6020
Selenium		0.29		0.18		46.8		7742
Silver	20	0.425		0.430		1		6020
Vanadium	30	63.6		62.1		2.4		6010B
Zinc	30	323		259		22.0		6010B

-6-

#### **DUPLICATES**

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.:

16087

Units:

MG/KG

Project Name: USACE San Rafael Channel

Basis:

DRY

Matrix:

SEDIMENT

% Solids:

56.6

Sample Name:

Batch QCD

Lab Code:

K1006518-001D

				***************************************						
Analyte	Control Limit	Sample (	S)	С	Duplicate	(D)	С	RPD	Õ	Method
Mercury	 	(	0.046		C	0.046		0.0		7471A

- 7 -

## LABORATORY CONTROL SAMPLE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.:

16087

Project Name: USACE San Rafael Channel

Aqueous LCS Source:

Solid LCS Source: ERA D065540

	Aqueous:	Service and servic		•				
Analyte	True	Found	%R	True	Found	C Li	mits	%R
Arsenic				88.3	90.1	78	122	102.0
Barium				432	481	81	119	111.3
Beryllium				58.2	57.5	83	117	98.8
Boron				101	112	67	133	110.9
Cadmium		TIME TO THE		91	90.8	81	119	99.8
Chromium				144	151	80	119	104.9
Cobalt				190	204	82	118	107.4
Copper				237	240.0	83	116	101.3
Lead	l l			104	105	79	121	101.0
Manganese				497	560	81	119	112.7
Mercury				6.8	7.580	71	128	111.5
Nickel				200	214	81	118	107.0
Selenium				192	197	80	120	102.6
Silver				76.4	82.7	66	134	108.2
Vanadium				180	191	79	121	106.1
Zinc				292	330	73	121	113.0

-7-

#### LABORATORY CONTROL SAMPLE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006356

Project No.:

16087

Project Name: USACE San Rafael Channel

Aqueous LCS Source:

Solid LCS Source: ERA D065540

	Aquec	ous: ug/L			Solid:	mg/kg	
Analyte	True	Found	%R	True	Found C	Limits	%R
Arsenic				88.3	90.6	78	122 102.6
Barium				432	449	81	119 103.9
Beryllium				58.2	60.6	83	117 104.1
Boron				101	115	67	133 113.9
Cadmium		The state of the s		91	93.5	81	119 102.7
Chromium				144	146	80	119 101.4
Cobalt				190	206	82	118 108.4
Copper				237	237.0	83	116 100.0
Lead				104	105	79	121 101.0
Manganese				497	547	81	119   110.1
Mercury				6.8	6.580	71	128 96.8
Nickel				200	216	81	118   108.0
Selenium				192	189	80	120 98.4
Silver				76.4	76.8	66	134 100.5
Vanadium				180	191	79	121 106.1
Zinc				292	319	73	121 109.2

# Butyltins

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

06/09/2010

**Date Collected:** 06/08/2010 **Date Received:** 06/18/2010

## **Butyltins** (as cation)

Sample Name:

SRC-2010-1-Comp

Lab Code:

K1006356-001

Units: ug/Kg
Basis: Dry

**Extraction Method:** 

SOC-OSWT

Level: Low

Analysis Method:

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	2.3	0.98	1	06/22/10	07/07/10	KWG1006633	
Tri-n-butyltin Cation	ND U	2.3	0.96	1	06/22/10	07/07/10	KWG1006633	
Di-n-butyltin Cation	<b>2.1</b> J	2.3	0.43	1	06/22/10	07/07/10	KWG1006633	
n-Butyltin Cation	2.5	2.3	0.58	1	06/22/10	07/07/10	KWG1006633	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	57	18-95	07/07/10	Acceptable	

Comments:

SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010 **Date Received:** 06/18/2010

**Butyltins** (as cation)

Sample Name:

SRC-2010-2-Comp

Lab Code:

K1006356-002

Units: ug/Kg Basis: Dry

**Extraction Method:** 

SOC-OSWT

Level: Low

Analysis Method:

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	2.2	0.94	1	06/22/10	07/07/10	KWG1006633	
Tri-n-butyltin Cation	ND U	2.2	0.92	1	06/22/10	07/07/10	KWG1006633	
Di-n-butyltin Cation	1.5 J	2.2	0.41	1	06/22/10	07/07/10	KWG1006633	
n-Butyltin Cation	<b>2.0</b> J	2.2	0.56	1	06/22/10	07/07/10	KWG1006633	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	50	18-95	07/07/10	Acceptable	

Comments:

SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

**Butyltins** (as cation)

Sample Name:

SRC-2010-3-Comp

Lab Code:

K1006356-003

Units: ug/Kg Basis: Dry

**Extraction Method:** 

**SOC-OSWT** 

Level: Low

**Analysis Method:** 

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	2.1	0.89	1	06/22/10	07/07/10	KWG1006633	
Tri-n-butyltin Cation	<b>1.3</b> J	2.1	0.87	1	06/22/10	07/07/10	KWG1006633	
Di-n-butyltin Cation	2.3	2.1	0.39	1	06/22/10	07/07/10	KWG1006633	
n-Butyltin Cation	2.5	2,1	0.53	1	06/22/10	07/07/10	KWG1006633	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	66	18-95	07/07/10	Acceptable	

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/11/2010

**Date Received:** 06/18/2010

## Butyltins (as cation)

Sample Name:

SRC-2010-4-Comp

Lab Code:

K1006356-004

Units: ug/Kg Basis: Dry

**Extraction Method:** 

SOC-OSWT

Level: Low

**Analysis Method:** 

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	2.1	0.92	1	06/22/10	07/07/10	KWG1006633	
Tri-n-butyltin Cation	ND U	2.1	0.90	1	06/22/10	07/07/10	KWG1006633	
Di-n-butyltin Cation	1.6 J	2.1	0.40	1	06/22/10	07/07/10	KWG1006633	
n-Butyltin Cation	 2.5	2.1	0.55	1	06/22/10	07/07/10	KWG1006633	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	64	18-95	07/07/10	Acceptable	

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

**Butyltins** (as cation)

Sample Name:

SRC-2010-5-Comp

Lab Code:

K1006356-005

Units: ug/Kg

Basis: Dry

**Extraction Method:** 

SOC-OSWT

Level: Low

Analysis Method:

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	2.3	1.0	1	06/22/10	07/07/10	KWG1006633	
Tri-n-butyltin Cation	1.7 J	2.3	0.98	1	06/22/10	07/07/10	KWG1006633	
Di-n-butyltin Cation	5.0	2.3	0.43	1	06/22/10	07/07/10	KWG1006633	
n-Butyltin Cation	5.6	2.3	0.59	1	06/22/10	07/07/10	KWG1006633	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	71	18-95	07/07/10	Acceptable	

Comments:

Printed: 07/16/2010 12:31:22  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

12

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: 06/09/2010

**Date Received:** 06/18/2010

**Butyltins (as cation)** 

Sample Name:

SRC-2010-6-Comp

Lab Code:

K1006356-006

Units: ug/Kg Basis: Dry

**Extraction Method:** 

SOC-OSWT

Level: Low

KWG1006633

07/07/10

06/22/10

Analysis Method:

n-Butyltin Cation

Krone

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Tetra-n-butyltin	ND U	2.4	1.1	1	06/22/10	07/07/10	KWG1006633	
Tri-n-butyltin Cation	3.8	2.4	1.1	1	06/22/10	07/07/10	KWG1006633	
Di-n-butyltin Cation	14	2.4	0.46	1	06/22/10	07/07/10	KWG1006633	

0.63

2.4

gate Name	%Rec	Control Limits	Date Analyzed	Note
-propyltin	77	18-95	07/07/10	Acceptable

Comments:

SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

**Butyltins** (as cation)

Sample Name:

SRC-2010-7-Comp

Lab Code:

K1006356-007

Units: ug/Kg Basis: Dry

**Extraction Method:** 

SOC-OSWT

Level: Low

Krone

**Analysis Method:** 

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	2,4	1.1	1	06/22/10	07/07/10	KWG1006633	
Tri-n-butyltin Cation	9.6	2.4	1.1	1	06/22/10	07/07/10	KWG1006633	
Di-n-butyltin Cation	33	2.4	0.45	1	06/22/10	07/07/10	KWG1006633	
n-Butyltin Cation	20	2.4	0.62	1	06/22/10	07/07/10	KWG1006633	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	69	18-95	07/07/10	Acceptable	

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

**Butyltins** (as cation)

Sample Name:

SRC-2010-7-Z-Comp

Lab Code:

K1006356-008

**Extraction Method:** 

SOC-OSWT

**Analysis Method:** 

Krone

Units: ug/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	2.1	0.90	1	06/22/10	07/07/10	KWG1006633	
Tri-n-butyltin Cation	21	2.1	0.88	1	06/22/10	07/07/10	KWG1006633	
Di-n-butyltin Cation	50	2.1	0.39	1	06/22/10	07/07/10	KWG1006633	
n-Butyltin Cation	21	2.1	0.53	. 1	06/22/10	07/07/10	KWG1006633	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	63	18-95	07/07/10	Acceptable

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

**Butyltins** (as cation)

Sample Name:

SRC-2010-1-B-Comp

Lab Code:

K1006356-009

Units: ug/Kg

Basis: Dry

**Extraction Method:** 

SOC-OSWT

Level: Low

**Analysis Method:** 

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	2.0	0,86	1	06/22/10	07/07/10	KWG1006633	
Tri-n-butyltin Cation	ND U	2.0	0.84	1	06/22/10	07/07/10	KWG1006633	
Di-n-butyltin Cation	1.9 J	2.0	0.38	1	06/22/10	07/07/10	KWG1006633	
n-Butyltin Cation	2,5	2.0	0.51	1	06/22/10	07/07/10	KWG1006633	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	73	18-95	07/07/10	Acceptable	

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

## **Butyltins** (as cation)

Sample Name:

SRC-2010-2-B-Comp

Lab Code:

K1006356-010

Units: ug/Kg Basis: Dry

**Extraction Method:** 

SOC-OSWT

Level: Low

Analysis Method:

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	2.0	0.85	1	06/22/10	07/07/10	KWG1006633	
Tri-n-butyltin Cation	<b>1.3</b> J	2.0	0.83	. 1	06/22/10	07/07/10	KWG1006633	
Di-n-butyltin Cation	1.8 J	2.0	0.37	1	06/22/10	07/07/10	KWG1006633	
n-Butyltin Cation	2.2	2.0	0.51	1	06/22/10	07/07/10	KWG1006633	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	66	18-95	07/07/10	Acceptable	

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

## **Butyltins** (as cation)

Sample Name:

SRC-2010-3-B-Comp

Lab Code:

K1006356-011

Units: ug/Kg Basis: Dry

**Extraction Method:** 

**SOC-OSWT** 

Level: Low

Analysis Method:

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	2.1	0.89	1	06/22/10	07/08/10	KWG1006633	
Tri-n-butyltin Cation	<b>1.3</b> J	2.1	0.87	1	06/22/10	07/08/10	KWG1006633	
Di-n-butyltin Cation	2.9	2.1	0.39	1	06/22/10	07/08/10	KWG1006633	
n-Butyltin Cation	2.4	2.1	0.53	1	06/22/10	07/08/10	KWG1006633	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	69	18-95	07/08/10	Acceptable	

Comments:

Printed: 07/16/2010 12:31:41 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/11/2010

**Date Received:** 06/18/2010

**Butyltins** (as cation)

Sample Name:

SRC-2010-4-B-Comp

Lab Code:

K1006356-012

Units: ug/Kg Basis: Dry

**Extraction Method:** 

SOC-OSWT

Level: Low

Analysis Method:

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	2.0	0.85	1	06/22/10	07/08/10	KWG1006633	
Tri-n-butyltin Cation	1.6 J	2.0	0.83	1	06/22/10	07/08/10	KWG1006633	
Di-n-butyltin Cation	3.7	2.0	0.37	<u>.</u> I	06/22/10	07/08/10	KWG1006633	
n-Butyltin Cation	3.5	2.0	0.51	1	06/22/10	07/08/10	KWG1006633	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	63	18-95	07/08/10	Acceptable	

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

## **Butyltins** (as cation)

Sample Name:

SRC-2010-5-B-Comp

Lab Code:

K1006356-013

Units: ug/Kg Basis: Dry

**Extraction Method:** 

SOC-OSWT

Level: Low

Analysis Method:

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	2.0	0.88	1	06/22/10	07/08/10	KWG1006633	
Tri-n-butyltin Cation	8.4	2.0	0.86	1 .	06/22/10	07/08/10	KWG1006633	
Di-n-butyltin Cation	24	2.0	0.38	1	06/22/10	07/08/10	KWG1006633	
n-Butyltin Cation	13	2.0	0.52	1	06/22/10	07/08/10	KWG1006633	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	-	
Tri-n-propyltin	72	18-95	07/08/10	Acceptable		

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

## **Butyltins** (as cation)

Sample Name:

SRC-2010-6-B-Comp

Lab Code:

K1006356-014

Units: ug/Kg Basis: Dry

**Extraction Method:** 

**SOC-OSWT** 

Level: Low

Analysis Method:

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	2.2	0.95	1	06/22/10	07/08/10	KWG1006633	
Tri-n-butyltin Cation	3.9	2.2	0.93	1 .	06/22/10	07/08/10	KWG1006633	
Di-n-butyltin Cation	21	2.2	0.41	1	06/22/10	07/08/10	KWG1006633	
n-Butyltin Cation	13	2.2	0.56	1	06/22/10	07/08/10	KWG1006633	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	70	18-95	07/08/10	Acceptable	

Comments:

SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

## **Butyltins** (as cation)

Sample Name:

SRC-2010-7-B-Comp

Lab Code:

K1006356-015

Units: ug/Kg

Basis: Dry

**Extraction Method:** 

SOC-OSWT

Level: Low

**Analysis Method:** 

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	1.9	0.82	1	06/22/10	07/08/10	KWG1006633	
Tri-n-butyltin Cation	4.0	1.9	0.81	1	06/22/10	07/08/10	KWG1006633	
Di-n-butyltin Cation	18	1.9	0.36	1	06/22/10	07/08/10	KWG1006633	
n-Butyltin Cation	8.1	1.9	0.49	1	06/22/10	07/08/10	KWG1006633	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	79	18-95	07/08/10	Acceptable	

Comments:

RR116815

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

**Butyltins** (as cation)

Sample Name:

SRC-2010-7-1

Lab Code:

K1006356-016

Units: ug/Kg Basis: Dry

**Extraction Method:** 

**SOC-OSWT** 

Level: Low

**Analysis Method:** 

Krone

Analyte Name				Dilution	Date	Date Analyzed	Extraction Lot		
	Result Q	MRL	MDL	Factor	Extracted			Note	
Tetra-n-butyltin	ND U	2.6	1.2	1	06/22/10	07/08/10	KWG1006633		
Tri-n-butyltin Cation	3.9	2.6	1.1	1	06/22/10	07/08/10	KWG1006633		
Di-n-butyltin Cation	15	2.6	0.49	1	06/22/10	07/08/10	KWG1006633		
n-Butyltin Cation	10	2.6	0.66	1	06/22/10	07/08/10	KWG1006633		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	76	18-95	07/08/10	Acceptable

Comments:

SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

## **Butyltins** (as cation)

Sample Name:

SRC-2010-7-2

Lab Code:

K1006356-017

Units: ug/Kg Basis: Dry

**Extraction Method:** 

SOC-OSWT

Level: Low

**Analysis Method:** 

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	2.4	1.1	1	06/22/10	07/08/10	KWG1006633	
Tri-n-butyltin Cation	12	2.4	1.1	1	06/22/10	07/08/10	KWG1006633	
Di-n-butyltin Cation	68	2.4	0.46	1	06/22/10	07/08/10	KWG1006633	
n-Butyltin Cation	29	2.4	0.63	1	06/22/10	07/08/10	KWG1006633	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	84	18-95	07/08/10	Acceptable	

Comments:

SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

## **Butyltins** (as cation)

Sample Name:

SRC-2010-7-3

Lab Code:

K1006356-018

Units: ug/Kg Basis: Dry

**Extraction Method:** 

SOC-OSWT

Level: Low

**Analysis Method:** 

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	2.4	1.1	1	06/22/10	07/08/10	KWG1006633	
Tri-n-butyltin Cation	6.7	2.4	1.1	1	06/22/10	07/08/10	KWG1006633	
Di-n-butyltin Cation	30	2.4	0.46	. • 1	06/22/10	07/08/10	KWG1006633	
n-Butyltin Cation	20	2.4	0.62	1	06/22/10	07/08/10	KWG1006633	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	74	18-95	07/08/10	Acceptable	

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

## **Butyltins** (as cation)

Sample Name:

SRC-2010-7-4

Lab Code:

K1006356-019

**Extraction Method:** 

SOC-OSWT

**Analysis Method:** 

Krone

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	2,5	1.1	1	06/22/10	07/08/10	KWG1006633	
Tri-n-butyltin Cation	14	2.5	1.1	1	06/22/10	07/08/10	KWG1006633	
Di-n-butyltin Cation	51	2.5	0.48	1	06/22/10	07/08/10	KWG1006633	
n-Butyltin Cation	29	2.5	0.65	1	06/22/10	07/08/10	KWG1006633	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	80	18-95	07/08/10	Acceptable

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

## **Butyltins** (as cation)

Sample Name:

SRC-2010-7-5

Lab Code:

K1006356-020

Units: ug/Kg Basis: Dry

**Extraction Method:** 

SOC-OSWT

Level: Low

**Analysis Method:** 

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	2.3	1.1	1	06/22/10	07/08/10	KWG1006633	
Tri-n-butyltin Cation	17	2.3	0.98	1	06/22/10	07/08/10	KWG1006633	
Di-n-butyltin Cation	63	2.3	0.44	1	06/22/10	07/08/10	KWG1006633	
n-Butyltin Cation	27	2.3	0.60	1	06/22/10	07/08/10	KWG1006633	-

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	86	18-95	07/08/10	Acceptable

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/23/2010

# **Butyltins** (as cation)

Sample Name:

SRC-2010-8-Z-Comp

Lab Code:

K1006356-021

Units: ug/Kg Basis: Dry

**Extraction Method:** 

**SOC-OSWT** 

Level: Low

Analysis Method:

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	<b>1.3</b> J	2.3	0.99	1	06/24/10	07/14/10	KWG1006888	
Tri-n-butyltin Cation	11	2.3	0.97	1	06/24/10	07/14/10	KWG1006888	
Di-n-butyltin Cation	25	2.3	0.43	1	06/24/10	07/14/10	KWG1006888	
n-Butyltin Cation	27	2.3	0.59	1	06/24/10	07/14/10	KWG1006888	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	83	18-95	07/14/10	Acceptable	

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: NA

Date Received: NA

**Butyltins** (as cation)

Sample Name:

Method Blank

Lab Code:

KWG1006633-4

Units: ug/Kg
Basis: Dry

**Extraction Method:** 

SOC-OSWT

Level: Low

Analysis Method:

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	0.97	0.44	1	06/22/10	07/07/10	KWG1006633	
Tri-n-butyltin Cation	ND U	0.97	0.43	1	06/22/10	07/07/10	KWG1006633	
Di-n-butyltin Cation	ND U	0.97	0.19	1	06/22/10	07/07/10	KWG1006633	
n-Butyltin Cation	ND U	0.97	0.26	1	06/22/10	07/07/10	KWG1006633	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	67	18-95	07/07/10	Acceptable

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: NA

Date Received: NA

**Butyltins** (as cation)

Sample Name:

Method Blank

Lab Code:

KWG1006888-4

Units: ug/Kg Basis: Dry

**Extraction Method:** 

SOC-OSWT

Level: Low

**Analysis Method:** 

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	0.97	0.44	1	06/24/10	07/14/10	KWG1006888	
Tri-n-butyltin Cation	ND U	0.97	0.43	1	06/24/10	07/14/10	KWG1006888	
Di-n-butyltin Cation	ND U	0.97	0.19	1	06/24/10	07/14/10	KWG1006888	
n-Butyltin Cation	ND U	0.97	0,26	1	06/24/10	07/14/10	KWG1006888	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	221.LUNE SING A SOCIETI
Tri-n-propyltin	89	18-95	07/14/10	Acceptable	

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

**Surrogate Recovery Summary** Butyltins (as cation)

**Extraction Method:** 

**SOC-OSWT** 

**Analysis Method:** 

Krone

Units: PERCENT

Level: Low

Service Request: K1006356

Sample Name	Lab Code	<u>Sur1</u>
SRC-2010-8-Z-Comp	K1006356-021	83
Method Blank	KWG1006633-4	67
Method Blank	KWG1006888-4	89
Batch QC	K1006486-001	60
SRC-2010-2-B-CompMS	KWG1006633-1	71
SRC-2010-2-B-CompDMS	KWG1006633-2	73
Batch QCMS	KWG1006888-1	95
Batch QCDMS	KWG1006888-2	70
Lab Control Sample	KWG1006633-3	62
Lab Control Sample	KWG1006888-3	76
SRC-2010-1-Comp	K1006356-001	57
SRC-2010-2-Comp	K1006356-002	50
SRC-2010-3-Comp	K1006356-003	66
SRC-2010-4-Comp	K1006356-004	64
SRC-2010-5-Comp	K1006356-005	71
SRC-2010-6-Comp	K1006356-006	77
SRC-2010-7-Comp	K1006356-007	69
SRC-2010-7-Z-Comp	K1006356-008	63
SRC-2010-1-B-Comp	K1006356-009	73
SRC-2010-2-B-Comp	K1006356-010	66
SRC-2010-3-B-Comp	K1006356-011	69
SRC-2010-4-B-Comp	K1006356-012	63
SRC-2010-5-B-Comp	K1006356-013	72
SRC-2010-6-B-Comp	K1006356-014	70
SRC-2010-7-B-Comp	K1006356-015	79
SRC-2010-7-1	K1006356-016	76
SRC-2010-7-2	K1006356-017	84
SRC-2010-7-3	K1006356-018	74
SRC-2010-7-4	K1006356-019	80
SRC-2010-7-5	K1006356-020	86

Surrogate Recovery Control Limits (%)

Sur1 = Tri-n-propyltin

18-95

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/16/2010 12:32:23

Form 2A - Organic 113

RR116815

Page

1 of 1

SuperSet Reference:

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/22/2010 **Date Analyzed:** 07/07/2010 -

07/08/2010

## Matrix Spike/Duplicate Matrix Spike Summary **Butyltins** (as cation)

Sample Name:

SRC-2010-2-B-Comp

Lab Code:

K1006356-010

**Extraction Method:** 

**SOC-OSWT** 

**Analysis Method:** 

Krone

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006633

SRC-2010-2-B-CompMS

KWG1006633-1

SRC-2010-2-B-CompDMS

KWG1006633-2

	Sample Result	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name		Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetra-n-butyltin	ND	36.9	48.0	77	33.9	48.0	71	10-120	8	40
Tri-n-butyltin Cation	1.3	26.4	42.6	59	25.6	42.6	57	10-118	3	40
Di-n-butyltin Cation	1.8	33.9	36.9	87	34.7	36.9	89	10-145	2	40
n-Butyltin Cation	2.2	26.9	30.0	83	22.3	29.9	67	10-126	19	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/16/2010 12:32:26  $u:\Stealth\Crystal.rpt\Form3DMS.rpt$ 

Form 3A - Organic 114

SuperSet Reference:

RR116815

Page

1 of

QA/QC Report

**Client:** 

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/24/2010 **Date Analyzed:** 07/14/2010

Matrix Spike/Duplicate Matrix Spike Summary **Butyltins** (as cation)

Sample Name:

Batch QC

Lab Code:

K1006486-001

Units: ug/Kg Basis: Dry

**Extraction Method:** 

SOC-OSWT

Level: Low

**Analysis Method:** 

Krone

Extraction Lot: KWG1006888

Batch QCMS

KWG1006888-1

Batch QCDMS

KWG1006888-2

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetra-n-butyltin	ND	57.0	56.7	101	44.6	56.4	79	10-120	24	40
Tri-n-butyltin Cation	3.3	44.9	50.3	83	34.3	50.1	62	10-118	27	40
Di-n-butyltin Cation	3.6	40.6	43.5	85	29.4	43.3	60	10-145	32	40
n-Butyltin Cation	9.4	52.8	35.4	123	47.6	35.2	109	10-126	10	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/16/2010 12:32:29 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic 115

SuperSet Reference:

RR116815

1 of 1

Page

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/22/2010

**Date Analyzed:** 07/07/2010

Lab Control Spike Summary **Butyltins** (as cation)

**Extraction Method:** 

SOC-OSWT

Analysis Method:

Krone

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006633

Lab Control Sample KWG1006633-3 Lab Control Spike

	Lau	Lab Control Spike					
Analyte Name	Result	Expected	%Rec	Limits	·		
Tetra-n-butyltin	17.7	25.0	71	30-110		·	
Tri-n-butyltin Cation	15.9	22.2	72	25-101			
Di-n-butyltin Cation	18.1	19.2	95	35-108			
n-Butyltin Cation	12.0	15.6	77	20-123			

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Page

1 of 1

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Extracted: 06/24/2010

**Date Analyzed:** 07/14/2010

Lab Control Spike Summary Butyltins (as cation)

**Extraction Method:** 

**SOC-OSWT** 

Analysis Method:

Krone

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1006888

Lab Control Sample KWG1006888-3

· ·	Lab	Lab Control Spike			
Analyte Name	Result	Expected	%Rec	%Rec Limits	
Tetra-n-butyltin	19.1	25.0	76	30-110	
Tri-n-butyltin Cation	20.1	22.2	91	25-101	
Di-n-butyltin Cation	12.6	19.2	66	35-108	
n-Butyltin Cation	18.5	15,6	119	20-123	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

1 of 1

**Gasoline Range Organics** 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

## Gasoline Range Organics

Sample Name:

SRC-2010-1-Comp

Lab Code:

K1006356-001

Extraction Method:

EPA 5035A/5030B

Analysis Method:

8015B

Units: mg/Kg

Basis: Dry

Level: Med

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	15	3.8	1	06/21/10	06/21/10	KWG1006065	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	106	83-119	06/21/10	Acceptable

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

Gasoline Range Organics

Sample Name:

SRC-2010-2-Comp

Lab Code:

K1006356-002

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 5035A/5030B

Level: Med

Analysis Method:

8015B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	14	3.6	1	06/21/10	06/21/10	KWG1006065	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	114	83-119	06/21/10	Acceptable	

Comments:

Printed: 07/16/2010 12:01:12  $u: \label{lem:limin} u: \label{lem:limin} u: \label{lem:limin} Im \label{lem:limin} Im \label{lem:limin} u: \label{lem:limin} \label{lem:limin} u: \label{lem:limin} \label{lem:limin} u: \label{lem:limin} \label{lem:limin} \label{lem:limin} u: \label{lem:limin} \label{lem:limin} u: \label{lem:limin} \label{lem:limin} \label{lem:limin} u: \label{lem:limin} \label{lem:limin} u: \label{lem:limin} \label{lem:limin} u: \label{lem:limin} \label{lem:limin} u: \label{lem:limin} \label{lem:limin} \label{lem:limin} u: \label{lem:limin} \label{lem:limin} u: \label{lem:limin} \label{lem:limin} u: \label{lem:limin} \label{lem:limin} \label{lem:limin} u: \label{lem:limin} \label{lem:limin} u: \label{lem:limin} \label{lem:limin} u: \label{lem:limin} \label{lem:limin} u: \label{lem:limin} u: \label{lem:limin} \label{lem:limin} u: \$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

# Gasoline Range Organics

Sample Name:

SRC-2010-3-Comp

Lab Code:

K1006356-003

Units: mg/Kg

Basis: Dry

**Extraction Method:** 

EPA 5035A/5030B

Level: Med

Analysis Method:

8015B

•				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	13	3.4	1	06/21/10	06/21/10	KWG1006065	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	112	83-119	06/21/10	Acceptable	

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/11/2010

**Date Received:** 06/18/2010

Gasoline Range Organics

Sample Name:

SRC-2010-4-Comp

Lab Code:

K1006356-004

Units: mg/Kg

Basis: Dry

**Extraction Method:** 

EPA 5035A/5030B

Level: Med

Analysis Method:

8015B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	14	3.5	1	06/21/10	06/21/10	KWG1006065	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	118	83-119	06/21/10	Acceptable	

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

Gasoline Range Organics

Sample Name:

SRC-2010-5-Comp

Lab Code:

K1006356-005

Units: mg/Kg Basis: Dry

Extraction Method:

EPA 5035A/5030B

Analysis Method:

Level: Med

8015B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	15	3.7	. 1	06/21/10	06/21/10	KWG1006065	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	109	83-119	06/21/10	Acceptable	

Comments:

Merged

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

Gasoline Range Organics

Sample Name:

SRC-2010-6-Comp

Lab Code:

K1006356-006

Units: mg/Kg

Basis: Dry

**Extraction Method:** 

EPA 5035A/5030B

Level: Med

Analysis Method:

8015B

Analyte Name

Result Q

Dilution **Factor** 

Date Extracted

Date Analyzed Extraction

Note

Gasoline Range Organics (GRO)

ND U

16

MRL

MDL 4.1

06/21/10 06/21/10

KWG1006065

Lot

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	107	83-119	06/21/10	Acceptable	

Analytical Results

484 F. C. C. A. ...

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

## Gasoline Range Organics

Sample Name:

SRC-2010-7-Comp

Lab Code:

K1006356-007

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 5035A/5030B

Analysis Method:

8015B

Level: Med

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	<b>5.0</b> J	16	4.0	1	06/21/10	06/21/10	KWG1006065	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	108	83-119	06/21/10	Ačceptable

Comments:

Merged

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

## Gasoline Range Organics

Sample Name:

SRC-2010-7-Z-Comp

Lab Code:

K1006356-008

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 5035A/5030B

Analysis Method:

8015B

Level: Med

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	<b>7.1</b> J	13	3.4	1	06/21/10	06/21/10	KWG1006065	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	111	83-119	06/21/10	Acceptable	

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# Gasoline Range Organics

Sample Name:

SRC-2010-7-1

Lab Code:

K1006356-016

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 5035A/5030B

Analysis Method:

8015B

Level: Med

Analyte	Name	

Result Q

MDL

MRL

17

Dilution Date Factor Extracted

Date Analyzed Extraction Lot Note

Gasoline Range Organics (GRO)

ND U

4.3

06/22/10 06/21/10

KWG1006065

Surrogate	Name

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	101	83-119	06/22/10	Acceptable

Comments:

Printed: 07/16/2010 12:01:35

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A 1 2 ganic

Page

1 of

SuperSet Reference: RR116801

Θ.

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

Gasoline Range Organics

Sample Name:

SRC-2010-7-2

Lab Code:

K1006356-017

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 5035A/5030B

Analysis Method:

8015B

Level: Med

Analyte Name

Result Q

MDL

Dilution Date Factor Extracted

Date Analyzed Extraction

Lot Note

Gasoline Range Organics (GRO)

ND U

MRL 15

3.9

06/21/10 06/22/10 KWG1006065

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	114	83-119	06/22/10	Acceptable	

Comments:		
Comments.		

RR116801

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

## Gasoline Range Organics

Sample Name:

SRC-2010-7-3

Lab Code:

K1006356-018

Units: mg/Kg

Basis: Dry

**Extraction Method:** 

Analysis Method:

EPA 5035A/5030B

Level: Med

8015B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	16	4.1	1	06/21/10	06/22/10	KWG1006065	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	110	83-119	06/22/10	Acceptable	

Comments:

Printed: 07/16/2010 12:01:43 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

Gasoline Range Organics

Sample Name:

SRC-2010-7-4

Lab Code:

K1006356-019

Extraction Method:

EPA 5035A/5030B

Analysis Method:

Units: mg/Kg

Basis: Dry

Level: Med

8015B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	17	4.3	1	06/21/10	06/22/10	KWG1006065	# 1345-1341-14-00-14-001-14-00-14-00-14-00-14-00-14-00-14-00-14-00-14-00-14-00-14-00-14-00-14-00-14-00-14-00-1

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	99	83-119	06/22/10	Acceptable	

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# Gasoline Range Organics

Sample Name:

SRC-2010-7-5

Lab Code:

K1006356-020

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 5035A/5030B

Analysis Method:

8015B

Level: Med

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	<b>6.4</b> J	15	3.8	l	06/21/10	06/22/10	KWG1006065	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	109	83-119	06/22/10	Acceptable

· Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/23/2010

# Gasoline Range Organics

Sample Name:

SRC-2010-8-Z-Comp

Lab Code:

K1006356-021

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 5035A/5030B

Level: Med

KWG1006137

Analysis Method:

8015B

Dilution Extraction Date Date MRL MDL

**Factor** 

100

Analyte Name Gasoline Range Organics (GRO) Result Q **4.9** J

15

3.8

06/23/10

Extracted

Analyzed 06/23/10

Lot Note

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	103	83-119	06/23/10	Acceptable

Comments:

Printed: 07/16/2010 12:01:55  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: NA

Date Received: NA

Gasoline Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1006065-4

Units: mg/Kg

Basis: Dry

**Extraction Method:** 

EPA 5035A/5030B

Analysis Method:

8015B

Level: Med

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	<b>1.5</b> J	5.0	1.3	1	06/21/10	06/21/10	KWG1006065	

Surrogate Name %Rec
Bromofluorobenzene 99

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: NA Date Received: NA

# Gasoline Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1006137-4

Units: mg/Kg

Basis: Dry

Extraction Method:

EPA 5035A/5030B

Analysis Method:

8015B

Level: Med

Analyte	THE PROPERTY AND PARTY OF THE P	
	 Organics	

Result Q **1.5** J

MRL 5.0

MDL 1.3

Dilution Date **Factor** Extracted 06/23/10

Date Analyzed

06/23/10

Extraction Lot

Note

KWG1006137

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	92	83-119	06/23/10	Acceptable	- Andrews

Comments:

Printed: 07/16/2010 12:02:03 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

SuperSet Reference:

RR116801

Page 1 of 1

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Surrogate Recovery Summary** Gasoline Range Organics

Extraction Method: EPA 5035A/5030B

Analysis Method:

8015B

Units: PERCENT

Level: Med

Sample Name	Lab Code	Sur1
Batch QCDMS	KWG1006137-2	96
Lab Control Sample	KWG1006065-3	99
Lab Control Sample	KWG1006137-3	94
SRC-2010-1-Comp	K1006356-001	106
SRC-2010-2-Comp	K1006356-002	114
SRC-2010-3-Comp	K1006356-003	112
SRC-2010-4-Comp	K1006356-004	118
SRC-2010-5-Comp	K1006356-005	109
SRC-2010-6-Comp	K1006356-006	107
SRC-2010-7-Comp	K1006356-007	108
SRC-2010-7-Z-Comp	K1006356-008	111
SRC-2010-7-1	K1006356-016	101
SRC-2010-7-2	K1006356-017	114
SRC-2010-7-3	K1006356-018	110
SRC-2010-7-4	K1006356-019	99
SRC-2010-7-5	K1006356-020	109
SRC-2010-8-Z-Comp	K1006356-021	103
Method Blank	KWG1006065-4	99
Method Blank	KWG1006137-4	92
Batch QC	K1006482-001	95
SRC-2010-7-5MS	KWG1006065-1	107
SRC-2010-7-5DMS	KWG1006065-2	107
Batch QCMS	KWG1006137-1	94

#### Surrogate Recovery Control Limits (%)

Sur1 = 4-Bromofluorobenzene

83-119

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/16/2010 12:02:08 u:\Stealth\Crystal.rpt\Form2.rpt

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/21/2010

**Date Analyzed:** 06/22/2010

# Matrix Spike/Duplicate Matrix Spike Summary Gasoline Range Organics

Sample Name:

SRC-2010-7-5

Lab Code:

K1006356-020

Extraction Method: Analysis Method:

EPA 5035A/5030B

8015B

Units: mg/Kg

Basis: Dry

Level: Med

Extraction Lot: KWG1006065

SRC-2010-7-5MS

KWG1006065-1

SRC-2010-7-5DMS

KWG1006065-2

	Sample	Matrix Spike		Duplicate Matrix Spike			%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits RPD	Limit	
Gasoline Range Organics (GRO)	6.4	135	145	89	136	144	90	68-112	1	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/16/2010 12:02:11 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A 1 Organic

Page 1 of 1

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/23/2010

**Date Analyzed:** 06/23/2010

## Matrix Spike/Duplicate Matrix Spike Summary Gasoline Range Organics

Sample Name:

Batch QC

Lab Code:

K1006482-001

Units: mg/Kg

Basis: Dry

Level: Med

**Extraction Method:** Analysis Method:

EPA 5035A/5030B 8015B

Extraction Lot: KWG1006137

Batch QCMS

KWG1006137-1

Batch QCDMS

KWG1006137-2

Matrix Spike Duplicate Matrix Spike Sample %Rec RPD Result %Rec Limits **RPD** Limit %Rec Analyte Name Result Expected Result Expected Gasoline Range Organics (GRO) ND 111 146 76 114 144 79 68-112 3 40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/16/2010 12:02:14 u:\Stealth\Crystal.rpt\Form3DMS.rpt

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356 **Date Extracted:** 06/21/2010

**Date Analyzed:** 06/21/2010

Lab Control Spike Summary Gasoline Range Organics

**Extraction Method:** EPA 5035A/5030B

Analysis Method:

8015B

Units: mg/Kg

Basis: Dry

Level: Med

Extraction Lot: KWG1006065

Lab Control Sample KWG1006065-3

Lab Control Spike

50.0

%Rec

Analyte Name

Result Expected

Limits

Gasoline Range Organics (GRO)

46.0

92

%Rec

76-123

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/16/2010 12:02:17 u:\Stealth\Crystal.rpt\Form3LCS.rpt

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/23/2010

**Date Analyzed:** 06/23/2010

Lab Control Spike Summary Gasoline Range Organics

Extraction Method: EPA 5035A/5030B

Analysis Method:

8015B

Units: mg/Kg Basis: Dry

Level: Med

Extraction Lot: KWG1006137

Lab Control Sample KWG1006137-3

50.0

Lab Control Spike

%Rec

Analyte Name

Gasoline Range Organics (GRO)

Result Expected

48.1

%Rec

96

Limits 76-123

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

Printed: 07/16/2010 12:02:20 

**Diesel & Residual Range Organics** 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

# Diesel and Residual Range Organics

Sample Name:

SRC-2010-1-Comp

Lab Code:

**Extraction Method:** 

K1006356-001

EPA 3550B

Units: mg/Kg

Basis: Dry

Level: Low

**Analysis Method:** 

8015B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	<b>35</b> J	56	3.6	1	06/22/10	06/26/10	KWG1006155	
Residual Range Organics (RRO)	110 O	56	6.5	1	06/22/10	06/26/10	KWG1006155	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl n-Triacontane	82 81	51-126 50-150	06/26/10 06/26/10	Acceptable Acceptable	

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

## Diesel and Residual Range Organics

Sample Name:

SRC-2010-2-Comp

Lab Code:

K1006356-002

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 3550B

**Analysis Method:** 

Level: Low

Analyte	Name
Diesel R	ange Organics (DRO)

80	12R	

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	36 J	54	3.5	1	06/22/10	06/26/10	KWG1006155	
Residual Range Organics (RRO)	120 O	54	6.2	1	06/22/10	06/26/10	KWG1006155	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	96	51-126	06/26/10	Acceptable	
n-Triacontane	99	50-150	06/26/10	Acceptable	

Comments:

SuperSet Reference:

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

# Diesel and Residual Range Organics

Sample Name:

SRC-2010-3-Comp

Lab Code:

K1006356-003

**Extraction Method:** 

EPA 3550B

Analysis Method:

8015B

Units: mg/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	<b>41</b> J	52	3.3	1	06/22/10	06/26/10	KWG1006155	
Residual Range Organics (RRO)	120 O	52	6.0	1	06/22/10	06/26/10	KWG1006155	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	81	51-126	06/26/10	Acceptable Acceptable
n-Triacontane	85	50-150	06/26/10	

Comments:

Printed: 07/09/2010 11:07:39  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/11/2010 **Date Received:** 06/18/2010

# Diesel and Residual Range Organics

Sample Name:

SRC-2010-4-Comp

Lab Code:

K1006356-004

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 3550B

Level: Low

Analysis Method:

8015B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	53 H	53	3.4	1	06/22/10	06/26/10	KWG1006155	
Residual Range Organics (RRO)	170 O	53	6.2	1	06/22/10	06/26/10	KWG1006155	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl n-Triacontane	98 106	51-126 50-150	06/26/10 06/26/10	Acceptable Acceptable	

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010 **Date Received:** 06/18/2010

Diesel and Residual Range Organics

Dilution

Factor

1

1

Sample Name:

**Extraction Method:** 

Analysis Method:

SRC-2010-5-Comp

Lab Code:

K1006356-005

8015B

EPA 3550B

Units: mg/Kg

Basis: Dry

Level: Low

**Extraction** 

Analyte Name
Diesel Range Organics (DRO)
Residual Range Organics (RRO)

Result	Q_
38	J
150	O

57 3.7 57 6.6

MRL

MDL

Extracted 06/22/10 06/22/10

Date

Analyzed 06/26/10 06/26/10

Date

Note Lot KWG1006155 KWG1006155

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Terphenyl	75	51-126	06/26/10	Acceptable
Triacontane	78	50-150	06/26/10	Acceptable

Comments:

Printed: 07/09/2010 11:07:45  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

145

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

## Diesel and Residual Range Organics

Sample Name:

SRC-2010-6-Comp

Lab Code:

K1006356-006

Units: mg/Kg
Basis: Dry

**Extraction Method:** 

EPA 3550B

Level: Low

Analysis Method:

8015B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	75 H	61	4.0	1	06/22/10	06/28/10	KWG1006155	
Residual Range Organics (RRO)	280 O	61	7.1	1	06/22/10	06/28/10	KWG1006155	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	96	51-126	06/28/10	Acceptable
n-Triacontane	94	50-150	06/28/10	Acceptable

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

## Diesel and Residual Range Organics

Sample Name:

SRC-2010-7-Comp

Lab Code:

K1006356-007

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 3550B

Level: Low

**Analysis Method:** 

8015B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO) Residual Range Organics (RRO)	240 H 1000 O	60 60	3.9 6.9	1	06/22/10 06/22/10	06/28/10 06/28/10	KWG1006155 KWG1006155	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	104	51-126	06/28/10	Acceptable	
n-Triacontane	104	50-150	06/28/10	Acceptable	

Comments:

Printed: 07/09/2010 11:07:52  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Form 1A - Organic

SuperSet Reference:

RR116453

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# Diesel and Residual Range Organics

Sample Name:

SRC-2010-7-Z-Comp

Lab Code:

K1006356-008

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 3550B

Level: Low

**Analysis Method:** 

8015B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	180 H	53	3.4	1	06/22/10	06/28/10	KWG1006155	
Residual Range Organics (RRO)	700 O	53	6.1	1	06/22/10	06/28/10	KWG1006155	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
erphenyl riacontane	88 92	51-126 50-150	06/28/10 06/28/10	Acceptable Acceptable	

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# Diesel and Residual Range Organics

Sample Name:

SRC-2010-7-1

Lab Code:

K1006356-016

Units: mg/Kg

Basis: Dry

**Extraction Method:** 

EPA 3550B

Level: Low

**Analysis Method:** 

8015B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	76 H	64	4.1	1	06/22/10	06/28/10	KWG1006155	
Residual Range Organics (RRO)	<b>300</b> O	64	7.5	1	06/22/10	06/28/10	KWG1006155	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	105	51-126	06/28/10	Acceptable
n-Triacontane	103	50-150	06/28/10	Acceptable

**Comments:** 

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

## Diesel and Residual Range Organics

Sample Name:

SRC-2010-7-2

Lab Code:

K1006356-017

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 3550B

**Analysis Method:** 

8015B

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	130 H	60	3.9	1	06/22/10	06/28/10	KWG1006155	
Residual Range Organics (RRO)	400 O	60	7.0	. 1	06/22/10	06/28/10	KWG1006155	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl n-Triacontane	102 101	51-126 50-150	06/28/10 06/28/10	Acceptable Acceptable	

Comments:

Printed: 07/09/2010 11:08:01  $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w: pt \end{substitute}$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

## Diesel and Residual Range Organics

Sample Name:

SRC-2010-7-3

Lab Code:

K1006356-018

**Extraction Method:** 

EPA 3550B

**Analysis Method:** 

8015B

Units: mg/Kg
Basis: Dry

Level: Low

Level. Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	110 H	60	3.9	1	06/22/10	06/28/10	KWG1006155	
Residual Range Organics (RRO)	510 O	60	7.0	1	06/22/10	06/28/10	KWG1006155	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	87	51-126	06/28/10	Acceptable Acceptable
n-Triacontane	84	50-150	06/28/10	

Comments:

Printed: 07/09/2010 11:08:04 u:\Stealth\Crystal.rpt\Form1mNew.rpt

151

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

## Diesel and Residual Range Organics

Sample Name:

SRC-2010-7-4

Lab Code:

K1006356-019

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 3550B

Level: Low

**Analysis Method:** 

8015B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	<b>29</b> 0 H	63	4.0	1	06/22/10	06/28/10	KWG1006155	
Residual Range Organics (RRO)	<b>13</b> 00 O	63	7.3	1	06/22/10	06/28/10	KWG1006155	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	105	51-126	06/28/10	Acceptable
n-Triacontane	111	50-150	06/28/10	Acceptable

Comments:

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# Diesel and Residual Range Organics

Sample Name:

SRC-2010-7-5

Lab Code:

K1006356-020

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 3550B

Level: Low

Analysis Method:

8015B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO) Residual Range Organics (RRO)	550 H 2400 O	58 58	3.7 6.7	1 1	06/22/10 06/22/10	06/28/10 06/28/10	KWG1006155 KWG1006155	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	95	51-126	06/28/10	Acceptable Acceptable
n-Triacontane	108	50-150	06/28/10	

Comments:

Printed: 07/09/2010 11:08:11 

153

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010 **Date Received:** 06/23/2010

## Diesel and Residual Range Organics

Sample Name:

SRC-2010-8-Z-Comp

Lab Code:

K1006356-021

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 3550B

Level: Low

Analysis Method:

8015B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	520 H	57	3.7	1	06/24/10	06/28/10	KWG1006188	
Residual Range Organics (RRO)	2100 O	57	6.6	1	06/24/10	06/28/10	KWG1006188	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl n-Triacontane	102 114	51-126 50-150	06/28/10 06/28/10	Acceptable Acceptable	

Comments:

Printed: 07/09/2010 11:08:14 u:\Stealth\Crystal.rpt\Form1mNew.rpt

RR116453

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: NA Date Received: NA

# Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1006155-2

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 3550B

Level: Low

**Analysis Method:** 

8015B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	ND U	25	1.6	1	06/22/10	06/26/10	KWG1006155	
Residual Range Organics (RRO)	<b>3.0</b> J	25	2.9	1	06/22/10	06/26/10	KWG1006155	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	100	51-126	06/26/10	Acceptable
n-Triacontane	110	50-150	06/26/10	Acceptable

Comments:

Printed: 07/09/2010 11:08:18

Form 1A - Organic

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: NA

Date Received: NA

## Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1006188-4

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 3550B

Level: Low

**Analysis Method:** 

8015B

	Dilution	Date	Date	Extraction

				45 1144 610 11				
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	ND U	25	1.6	1	06/24/10	06/28/10	KWG1006188	
Residual Range Organics (RRO)	ND U	25	2.9	1	06/24/10	06/28/10	KWG1006188	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	93	51-126	06/28/10	Acceptable	
n-Triacontane	86	50-150	06/28/10	Acceptable	

Comments:

Printed: 07/09/2010 11:08:22  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

QA/QC Report

**Client:** 

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Surrogate Recovery Summary** Diesel and Residual Range Organics

**Extraction Method:** 

EPA 3550B

**Analysis Method:** 

8015B

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2
SRC-2010-2-CompDMS	KWG1006155-4	99	92
Batch QCMS	KWG1006188-1	99	101
Batch QCDMS	KWG1006188-2	97	95
Lab Control Sample	KWG1006155-1	106	104
Lab Control Sample	KWG1006188-3	102	94
SRC-2010-1-Comp	K1006356-001	82	81
SRC-2010-2-Comp	K1006356-002	96	99
SRC-2010-3-Comp	K1006356-003	81	85
SRC-2010-4-Comp	K1006356-004	98	106
SRC-2010-5-Comp	K1006356-005	75	78
SRC-2010-6-Comp	K1006356-006	96	94
SRC-2010-7-Comp	K1006356-007	104	104
SRC-2010-7-Z-Comp	K1006356-008	88	92
SRC-2010-7-1	K1006356-016	105	103
SRC-2010-7-2	K1006356-017	102	101
SRC-2010-7-3	K1006356-018	87	84
SRC-2010-7-4	K1006356-019	105	111
SRC-2010-7-5	K1006356-020	95	108
SRC-2010-8-Z-Comp	K1006356-021	102	114
Method Blank	KWG1006155-2	100	110
Method Blank	KWG1006188-4	93	86
Batch QC	K1006482-001	104	107
SRC-2010-2-CompMS	KWG1006155-3	81	78

Surrogate Recovery Control Limits (%)

51-126 Surl = o-Terphenyl50-150 Sur2 = n-Triacontane

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/09/2010 11:08:30  $u:\Stealth\Crystal.rpt\Form2.rpt$ 

SuperSet Reference:

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/22/2010 **Date Analyzed:** 06/26/2010

Matrix Spike/Duplicate Matrix Spike Summary Diesel and Residual Range Organics

Sample Name:

SRC-2010-2-Comp

Lab Code:

K1006356-002

**Extraction Method:** 

EPA 3550B

Analysis Method:

8015B

Units: mg/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006155

SRC-2010-2-CompMS

KWG1006155-3

SRC-2010-2-CompDMS

KWG1006155-4

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Diesel Range Organics (DRO)	36	522	566	86	640	567	107	43-146	20	40
Residual Range Organics (RRO)	120	312	283	69	375	284	91	29-167	18	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/09/2010 11:08:33  $u:\Stealth\Crystal.rpt\Form3DMS.rpt$ 

Form 3A - Organic

SuperSet Reference:

Page RR116453

1 of 1

158

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Extracted: 06/24/2010 **Date Analyzed:** 06/28/2010

Matrix Spike/Duplicate Matrix Spike Summary Diesel and Residual Range Organics

Sample Name:

Batch QC

Lab Code:

K1006482-001

**Extraction Method:** 

EPA 3550B

Analysis Method:

8015B

Units: mg/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006188

Batch QCMS

KWG1006188-1

Batch QCDMS

KWG1006188-2

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Diesel Range Organics (DRO)	360	1000	621	103	995	623	102	43-146	1	40
Residual Range Organics (RRO)	1700	2040	311	117 #	2080	312	128 #	29-167	2	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/09/2010 11:08:36 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic 159

SuperSet Reference:

RR116453

QA/QC Report

**Client:** 

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/22/2010

**Date Analyzed:** 06/26/2010

Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method: EPA 3550B

**Analysis Method:** 

8015B

Units: mg/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006155

Lab Control Sample KWG1006155-1

Lab Control Snike

	Lau	Control Spike	C	%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
Diesel Range Organics (DRO) Residual Range Organics (RRO)	279 129	267 133	105 97	63-121 57-136	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/09/2010 11:08:39

Form 3C - Organic 160

SuperSet Reference:

RR116453

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/24/2010

**Date Analyzed:** 06/28/2010

Lab Control Spike Summary Diesel and Residual Range Organics

**Extraction Method:** 

EPA 3550B

**Analysis Method:** 

8015B

Units: mg/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006188

Lab Control Sample KWG1006188-3

Lab Control Spike %Rec Limits %Rec Result Expected **Analyte Name** 63-121 Diesel Range Organics (DRO) 284 267 107 57-136 Residual Range Organics (RRO) 133 91 121

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/09/2010 11:08:42  $u:\Stealth\Crystal.rpt\Form3LCS.rpt$ 

Form 3C - Organic 161

SuperSet Reference:

Page RR116453

**Organochlorine Pesticides** 

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356 **Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

## **Organochlorine Pesticides**

Sample Name:

SRC-2010-1-Comp

Lab Code:

K1006356-001

**Extraction Method:** 

**Analysis Method:** 

EPA 3541 8081A

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
alpha-BHC	ND U	1.2	0.13	1	06/22/10	06/29/10	KWG1006235	
alpha-Chlordane	ND U	1.2	0.12	1	06/22/10	06/29/10	KWG1006235	
beta-BHC	ND U	1.2	0.21	1	06/22/10	06/29/10	KWG1006235	
gamma-BHC (Lindane)	ND U	1.2	0.090	1	06/22/10	06/29/10	KWG1006235	
delta-BHC	0.10 J	1.2	0.083	1	06/22/10	06/29/10	KWG1006235	
Heptachlor	ND U	1.2	0.14	1	06/22/10	06/29/10	KWG1006235	
Aldrin	ND U	1.2	0.18	1	06/22/10	06/29/10	KWG1006235	
gamma-Chlordane†	<b>0.29</b> J	1.2	0.11	1	06/22/10	06/29/10	KWG1006235	
Heptachlor Epoxide	ND U	1.2	0.095	1	06/22/10	06/29/10	KWG1006235	
Endosulfan I	ND U	1.2	0.071	1	06/22/10	06/29/10	KWG1006235	
Dieldrin	ND U	1.2	0.16	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDE	2.0	1.2	0.13	1	06/22/10	06/29/10	KWG1006235	
Endrin	ND U	1.2	0.11	1	06/22/10	06/29/10	KWG1006235	
Endosulfan II	ND U	1.2	0.16	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDD	<b>1.1</b> J	1.2	0.13	1	06/22/10	06/29/10	KWG1006235	
Endrin Aldehyde	ND U	1.2	0.14	1	06/22/10	06/29/10	KWG1006235	
Endosulfan Sulfate	ND U	1.2	0.13	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDT	ND Ui	1.2	0.65	1	06/22/10	06/29/10	KWG1006235	
Toxaphene	ND Ui	56	13	1	06/22/10	06/29/10	KWG1006235	
Chlordane	ND Ui	12	3.4	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDE	ND U	1.2	0.18	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDD	0.51 JP	1.2	0.15	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDT	0.44 ЈР	1.2	0.065	1	06/22/10	06/29/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	66	21-112	06/29/10	Acceptable	
Decachlorobiphenyl	83	15-130	06/29/10	Acceptable	

Comments:

Printed: 07/20/2010 09:51:15

163

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-1-Comp

Lab Code:

K1006356-001

Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:51:15

Merged

Form 1A - Organic

2 of 2 Page

RR116900

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010 **Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-2-Comp

Lab Code:

K1006356-002

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	1.1	0.12	1	06/22/10	06/29/10	KWG1006235	
alpha-Chlordane	ND U	1.1	0.11	1	06/22/10	06/29/10	KWG1006235	
beta-BHC	ND U	1.1	0.20	1	06/22/10	06/29/10	KWG1006235	
gamma-BHC (Lindane)	ND U	1.1	0.086	1	06/22/10	06/29/10	KWG1006235	
delta-BHC	ND U	1.1	0.080	1	06/22/10	06/29/10	KWG1006235	
Heptachlor	ND U	1.1	0.13	1	06/22/10	06/29/10	KWG1006235	
Aldrin	ND U	1.1	0.18	1	06/22/10	06/29/10	KWG1006235	
gamma-Chlordane†	<b>0.12</b> JP	1.1	0.097	1	06/22/10	06/29/10	KWG1006235	
Heptachlor Epoxide	ND Ui	1.1	0.097	1	06/22/10	06/29/10	KWG1006235	
Endosulfan I	ND U	1.1	0.068	1	06/22/10	06/29/10	KWG1006235	
Dieldrin	ND U	1.1	0.15	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDE	1.4	1.1	0.12	1 .	06/22/10	06/29/10	KWG1006235	
Endrin	ND U	1.1	0.11	1	06/22/10	06/29/10	KWG1006235	
Endosulfan II	ND U	1.1	0.15	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDD	<b>0.90</b> J	1.1	0.12	1	06/22/10	06/29/10	KWG1006235	
Endrin Aldehyde	ND U	1.1	0.13	1	06/22/10	06/29/10	KWG1006235	
Endosulfan Sulfate	ND U	1.1	0.12	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDT	ND Ui	1.1	0.46	1	06/22/10	06/29/10	KWG1006235	
Toxaphene	ND Ui	54	7.3	1	06/22/10	06/29/10	KWG1006235	
Chlordane	ND Ui	11	2.7	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDE	ND U	1.1	0.18	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDD	0.55 J	1.1	0.14	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDT	<b>0.24</b> JP	1.1	0.063	1	06/22/10	06/29/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	,
Tetrachloro-m-xylene Decachlorobiphenyl	64 73	21-112 15-130	06/29/10 06/29/10	Acceptable Acceptable	

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name: Lab Code:

SRC-2010-2-Comp

K1006356-002

Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:51:19

 $u:\Stealth\Crystal.rpt\Form\Im\New.rpt$ 

Merged

Form 1A - Organic

Page

SuperSet Reference:

RR116900

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

## **Organochlorine Pesticides**

Sample Name:

SRC-2010-3-Comp

Lab Code:

K1006356-003

**Extraction Method:** 

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

**Analysis Method:** 8081A

Dilution Date Date **Extraction Analyte Name** Result Q **MRL** MDL **Factor** Analyzed **Extracted** Lot Note alpha-BHC ND U 1.1 KWG1006235 0.12 1 06/22/10 06/29/10 alpha-Chlordane KWG1006235 ND U 0.11 1.1 1 06/22/10 06/29/10 beta-BHC KWG1006235 ND U 1.1 0.19 1 06/22/10 06/29/10 gamma-BHC (Lindane) ND U 1.1 0.083 1 06/22/10 06/29/10 KWG1006235 delta-BHC KWG1006235 ND U 1.1 0.077 1 06/22/10 06/29/10 Heptachlor ND Ui 1.1 0.15 1 06/22/10 06/29/10 KWG1006235 1.1 1 Aldrin ND U 0.17 06/22/10 06/29/10 KWG1006235 gamma-Chlordane† ND U KWG1006235 1.1 0.094 1 06/22/10 06/29/10 Heptachlor Epoxide 0.087 KWG1006235 ND U 1.1 1 06/22/10 06/29/10 Endosulfan I ND U 1.1 0.066 1 KWG1006235 06/22/10 06/29/10 Dieldrin ND U 1.1 0.15 1 06/22/10 06/29/10 KWG1006235 4,4'-DDE KWG1006235 1.0 J 1.1 0.12 1 06/22/10 06/29/10 Endrin ND U 1.1 0.098 1 06/22/10 06/29/10 KWG1006235 Endosulfan II ND U 1.1 0.151 06/22/10 06/29/10 KWG1006235 4.4'-DDD 0.51 J 1.1 0.12 1 06/22/10 06/29/10 KWG1006235 Endrin Aldehyde ND U 1.1 0.13 1 06/22/10 06/29/10 KWG1006235 Endosulfan Sulfate ND U KWG1006235 1.1 0.1206/22/10 06/29/10 1 4,4'-DDT ND Ui 1.1 0.25 1 06/22/10 06/29/10 KWG1006235 Toxaphene ND Ui 52 9.9 1 06/22/10 06/29/10 KWG1006235 Chlordane ND Ui 11 2.5 KWG1006235 1 06/22/10 06/29/10 2,4'-DDE ND U 1.1 0.17 1 06/22/10 06/29/10 KWG1006235 2,4'-DDD KWG1006235 0.35 J 1.1 0.14 1 06/22/10 06/29/10 2,4'-DDT 0.21 JP 1.1 0.060 1 06/22/10 06/29/10 KWG1006235

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	56	21-112	06/29/10	Acceptable
Decachlorobiphenyl	67	15-130	06/29/10	Acceptable

Comments:

167

2

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name: Lab Code:

SRC-2010-3-Comp

K1006356-003

Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:51:23

Merged

 $u:\Stealth\Crystal.rpt\Form1mNew.rpt$ 

Form 1A - Organic

Page 2 of 2

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/11/2010 **Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-4-Comp

Lab Code:

K1006356-004

**Extraction Method:** 

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

**Analysis Method:** 

8081A

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
alpha-BHC	ND U	1.1	0.12	1	06/22/10	06/29/10	KWG1006235	ADDRESS OF THE PARTY OF THE PAR
alpha-Chlordane	ND U	1.1	0.11	1	06/22/10	06/29/10	KWG1006235	
beta-BHC	ND U	1.1	0.20	1	06/22/10	06/29/10	KWG1006235	
gamma-BHC (Lindane)	ND U	1.1	0.085	1	06/22/10	06/29/10	KWG1006235	
delta-BHC	ND U	1.1	0.079	1	06/22/10	06/29/10	KWG1006235	
Heptachlor	ND U	1.1	0.13	1	06/22/10	06/29/10	KWG1006235	
Aldrin	ND U	1.1	0.17	1	06/22/10	06/29/10	KWG1006235	
gamma-Chlordane†	<b>0.24</b> JP	1.1	0.096	1	06/22/10	06/29/10	KWG1006235	
Heptachlor Epoxide	ND U	1.1	0.089	1	06/22/10	06/29/10	KWG1006235	
Endosulfan I	ND Ui	1.1	0.070	1	06/22/10	06/29/10	KWG1006235	•
Dieldrin	ND Ui	1.1	0.18	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDE	0.96 J	1.1	0.12	1	06/22/10	06/29/10	KWG1006235	
Endrin	ND U	1.1	0.10	1	06/22/10	06/29/10	KWG1006235	
Endosulfan II	ND U	1.1	0.15	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDD	<b>0.60</b> J	1.1	0.12	1	06/22/10	06/29/10	KWG1006235	
Endrin Aldehyde	ND U	1.1	0.13	1	06/22/10	06/29/10	KWG1006235	
Endosulfan Sulfate	ND U	1.1	0.12	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDT	ND Ui	1.1	0.20	· 1	06/22/10	06/29/10	KWG1006235	
Toxaphene	ND Ui	53	9.4	1	06/22/10	06/29/10	KWG1006235	
Chlordane	ND U	11	2.1	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDE	ND U	1.1	0.17	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDD	<b>0.1</b> 7 JP	1.1	0.14	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDT	<b>0.22</b> JP	1.1	0.062	1.	06/22/10	06/29/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	63	21-112	06/29/10	Acceptable
Decachlorobiphenyl	77	15-130	06/29/10	Acceptable

Comments:

169

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/11/2010 **Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-4-Comp

Lab Code:

K1006356-004

Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments	
Confinents.	

Printed: 07/20/2010 09:51:27 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

Page 2 of 2

SuperSet Reference:

RR116900

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

## **Organochlorine Pesticides**

Sample Name:

SRC-2010-5-Comp

Lab Code:

K1006356-005

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	1.2	0.13	1	06/22/10	06/29/10	KWG1006235	
alpha-Chlordane	<b>0.26</b> JP	1.2	0.12	1	06/22/10	06/29/10	KWG1006235	
beta-BHC	ND U	1.2	0.21	1	06/22/10	06/29/10	KWG1006235	
gamma-BHC (Lindane)	ND Ui	1.2	1.2	1	06/22/10	06/29/10	KWG1006235	
delta-BHC	ND U	1.2	0.084	1	06/22/10	06/29/10	KWG1006235	
Heptachlor	ND U	1.2	0.14	1	06/22/10	06/29/10	KWG1006235	
Aldrin	ND U	1.2	0.19	1	06/22/10	06/29/10	KWG1006235	
gamma-Chlordane†	<b>0.43</b> J	1.2	0.11	1	06/22/10	06/29/10	KWG1006235	
Heptachlor Epoxide	ND U	1.2	0.095	1	06/22/10	06/29/10	KWG1006235	
Endosulfan I	ND U	1.2	0.072	1	06/22/10	06/29/10	KWG1006235	
Dieldrin	ND U	1.2	0.16	- 1	06/22/10	06/29/10	KWG1006235	
4,4'-DDE	1.3	1.2	0.13	1	06/22/10	06/29/10	KWG1006235	
Endrin	ND U	1.2	0.11	1	06/22/10	06/29/10	KWG1006235	
Endosulfan II	ND U	1.2	0.16	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDD	<b>0.86</b> J	1.2	0.13	1	06/22/10	06/29/10	KWG1006235	
Endrin Aldehyde	ND U	1.2	0.14	1	06/22/10	06/29/10	KWG1006235	
Endosulfan Sulfate	ND U	1.2	0.13	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDT	ND Ui	1.2	1.2	1	06/22/10	06/29/10	KWG1006235	
Toxaphene	ND Ui	57	18	1	06/22/10	06/29/10	KWG1006235	
Chlordane	3.5 JP	12	2.2	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDE	ND U	1.2	0.19	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDD	0.25 JP	1.2	0.15	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDT	<b>0.40</b> JP	1.2	0.066	1	06/22/10	06/29/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
Tetrachloro-m-xylene Decachlorobiphenyl	60 77	21-112 15-130	06/29/10 06/29/10	Acceptable Acceptable		

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name: Lab Code:

SRC-2010-5-Comp

K1006356-005

Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:51:31

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

SuperSet Reference:

Page RR116900

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

## **Organochlorine Pesticides**

Sample Name:

SRC-2010-6-Comp

Lab Code:

K1006356-006

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

Units: ug/Kg Basis: Dry

Level: Low

8081A

·					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND	U	1.3	0.14	1	06/22/10	06/29/10	KWG1006235	
alpha-Chlordane	0.53	JP	1.3	0.13	1	06/22/10	06/29/10	KWG1006235	
beta-BHC	ND	U	1.3	0.22	1	06/22/10	06/29/10	KWG1006235	
gamma-BHC (Lindane)	ND	U	1.3	0.098	1	06/22/10	06/29/10	KWG1006235	
delta-BHC	ND	U	1.3	0.091	1	06/22/10	06/29/10	KWG1006235	
Heptachlor	ND	U	1.3	0.15	1	06/22/10	06/29/10	KWG1006235	
Aldrin	ND	U	1.3	0.20	1	06/22/10	06/29/10	KWG1006235	
gamma-Chlordane†	1.1	J	1.3	0.11	1	06/22/10	06/29/10	KWG1006235	
Heptachlor Epoxide	ND	Ui	1.3	0.24	1	06/22/10	06/29/10	KWG1006235	
Endosulfan I	ND	Ui	1.3	0.080	1	06/22/10	06/29/10	KWG1006235	***************************************
Dieldrin	ND	U	1.3	0.18	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDE	2.0		1.3	0.14	1	06/22/10	06/29/10	KWG1006235	
Endrin	ND	U	1.3	0.12	1	06/22/10	06/29/10	KWG1006235	
Endosulfan II	ND	U	1.3	0.18	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDD	1.2	J	1.3	0.14	1	06/22/10	06/29/10	KWG1006235	
Endrin Aldehyde	ND	U	1.3	0.15	1	06/22/10	06/29/10	KWG1006235	
Endosulfan Sulfate	ND	U	1.3	0.14	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDT	ND	Ui	1.3	1.3	1	06/22/10	06/29/10	KWG1006235	
Toxaphene	ND	Ui	62	15	1	06/22/10	06/29/10	KWG1006235	
Chlordane	9.1	J	13	2.4	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDE	ND	Ui	1.3	1.3	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDD	0.51	JР	1.3	0.16	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDT	0.70	JР	1.3	0.071	1	06/22/10	06/29/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene Decachlorobiphenyl	61 72	21-112 15-130	06/29/10 06/29/10	Acceptable Acceptable	

Comments:

Printed: 07/20/2010 09:51:35

Merged

Form 1A - Organic

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name: Lab Code:

SRC-2010-6-Comp

K1006356-006

Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:51:35

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

Page 2 of 2

SuperSet Reference: RR116900

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

**Service Request:** K1006356 **Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-7-Comp

Lab Code:

K1006356-007

**Extraction Method:** 

EPA 3541

Units: ug/Kg Basis: Dry

**Analysis Method:** 

8081A

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND Ui	1.2	0.45	1	06/22/10	06/29/10	KWG1006235	
alpha-Chlordane	5,2	1.2	0.12	1	06/22/10	06/29/10	KWG1006235	
beta-BHC	ND Ui	1.2	0.50	1	06/22/10	06/29/10	KWG1006235	
gamma-BHC (Lindane)	ND U	1.2	0.096	1	06/22/10	06/29/10	KWG1006235	
delta-BHC	ND U	1.2	0.089	1	06/22/10	06/29/10	KWG1006235	
Heptachlor	ND U	1.2	0.15	1	06/22/10	06/29/10	KWG1006235	
Aldrin	ND Ui	1.2	0.24	1	06/22/10	06/29/10	KWG1006235	
gamma-Chlordane†	ND Ui	7.3	7.3	1	06/22/10	06/29/10	KWG1006235	
Heptachlor Epoxide	ND Ui	1.2	0.74	1	06/22/10	06/29/10	KWG1006235	
Endosulfan I	ND Ui	1.2	1.2	1	06/22/10	06/29/10	KWG1006235	
Dieldrin	<b>0.46</b> J	1.2	0.17	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDE	6.8	1.2	0.14	1	06/22/10	06/29/10	KWG1006235	
Endrin	ND U	1.2	0.12	I	06/22/10	06/29/10	KWG1006235	
Endosulfan II	ND Ui	1.2	0.70	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDD	<b>7.5</b>	1.2	0.14	1	06/22/10	06/29/10	KWG1006235	
Endrin Aldehyde	0.31 JP	1.2	0.15	1	06/22/10	06/29/10	KWG1006235	
Endosulfan Sulfate	ND Ui	1.2	0.69	1 .	06/22/10	06/29/10	KWG1006235	
4,4'-DDT	ND Ui	1.2	1.2	1	06/22/10	06/29/10	KWG1006235	
Toxaphene	ND Ui	60	44	1	06/22/10	06/29/10	KWG1006235	MarkWill
Chlordane	<b>64</b> P	12	2.3	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDE	ND Ui	1.2	1.2	I	06/22/10	06/29/10	KWG1006235	
2,4'-DDD	<b>2.7</b> P	1.2	0.16	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDT	1.9	1.2	0.070	1	06/22/10	06/29/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	45	21-112	06/29/10	Acceptable	
Decachlorobiphenyl	51	15-130	06/29/10	Acceptable	

Comments:

Printed: 07/20/2010 09:51:39

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

Page 1 of 2

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-7-Comp

Lab Code:

K1006356-007

Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:51:39

 $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} I m \label{lem:limit} I m \label{lem:limit} v: \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{l$ 

Merged

Form 1A - Organic

Page

2 of .2

SuperSet Reference:

RR116900

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

## **Organochlorine Pesticides**

Sample Name:

SRC-2010-7-Z-Comp

Lab Code:

K1006356-008

**Extraction Method:** 

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

8081A **Analysis Method:** 

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND	U	1.1	0.12	1	06/22/10	06/29/10	KWG1006235	
alpha-Chlordane	3.6		1.1	0.11	1	06/22/10	06/29/10	KWG1006235	
beta-BHC	ND	U	1.1	0.19	1	06/22/10	06/29/10	KWG1006235	
gamma-BHC (Lindane)	ND	Ui	1.1	1.1	1	06/22/10	06/29/10	KWG1006235	
delta-BHC	ND	Ui	1.1	0.083	1	06/22/10	06/29/10	KWG1006235	
Heptachlor	ND	U	1.1	0.13	1	06/22/10	06/29/10	KWG1006235	
Aldrin	ND	U	1.1	0.17	1	06/22/10	06/29/10	KWG1006235	
gamma-Chlordane†	6.7		1.1	0.095	1	06/22/10	06/29/10	KWG1006235	
Heptachlor Epoxide	ND	Ui	1.1	1.1	1	06/22/10	06/29/10	KWG1006235	
Endosulfan I	1.1	JP	1.1	0.067	1	06/22/10	06/29/10	KWG1006235	
Dieldrin	ND	Ui	1.1	1.1	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDE	11		1.1	0.12	1	06/22/10	06/29/10	KWG1006235	
Endrin	ND	U	1.1	0.099	1	06/22/10	06/29/10	KWG1006235	
Endosulfan II	ND	U	1.1	0.15	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDD	13		1.1	0.12	1	06/22/10	06/29/10	KWG1006235	
Endrin Aldehyde	ND	Ui	1.1	1.1	1	06/22/10	06/29/10	KWG1006235	
Endosulfan Sulfate	ND	U	1.1	0.12	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDT	4.5		1.1	0.18	1	06/22/10	06/29/10	KWG1006235	
Toxaphene	ND	Ui	53	39	1	06/22/10	06/29/10	KWG1006235	
Chlordane	48		11	2.0	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDE	ND	Ui	2.1	2.1	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDD	4.2	P	1.1	0.14	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDT	3.5		1.1	0.061	1	06/22/10	06/29/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	63	21-112	06/29/10	Acceptable	
Decachlorobiphenyl	71	15-130	06/29/10	Acceptable	

Comments:

Printed: 07/20/2010 09:51:43

 $u: \label{lem:limin} w: \label{lem:limin} u: \label{lem:limin} We w: \label{lem:limin} w: \label{lem:limin} w: \label{lem:limin} We w: \label{lem:li$ 

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-7-Z-Comp

Lab Code:

K1006356-008

Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:51:43

 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Merged

Form 1A - Organic

SuperSet Reference:

Page RR116900

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010 **Date Received:** 06/18/2010

## **Organochlorine Pesticides**

**Sample Name:** 

SRC-2010-1-B-Comp

Lab Code:

K1006356-009

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	1.0	0.11	1	06/22/10	06/29/10	KWG1006235	
alpha-Chlordane	ND U	1.0	0.10	1	06/22/10	06/29/10	KWG1006235	
beta-BHC	ND U	1.0	0.18	1	06/22/10	06/29/10	KWG1006235	
gamma-BHC (Lindane)	ND U	1.0	0.080	1	06/22/10	06/29/10	KWG1006235	
delta-BHC	ND U	1.0	0.074	1	06/22/10	06/29/10	KWG1006235	
Heptachlor	ND U	1.0	0.12	1	06/22/10	06/29/10	KWG1006235	•
Aldrin	ND U	1.0	0.16	1	06/22/10	06/29/10	KWG1006235	
gamma-Chlordane†	0.17 JP	1.0	0.090	1	06/22/10	06/29/10	KWG1006235	
Heptachlor Epoxide	ND U	1.0	0.084	1	06/22/10	06/29/10	KWG1006235	
Endosulfan I	ND U	1.0	0.063	1	06/22/10	06/29/10	KWG1006235	
Dieldrin	ND U	1.0	0.14	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDE	1.3	1.0	0.11	1	06/22/10	06/29/10	KWG1006235	
Endrin	ND U	1.0	0.094	1	06/22/10	06/29/10	KWG1006235	
Endosulfan II	ND U	1.0	0.14	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDD	<b>0.87</b> J	1.0	0.11	1	06/22/10	06/29/10	KWG1006235	
Endrin Aldehyde	ND U	1.0	0.12	1	06/22/10	06/29/10	KWG1006235	
Endosulfan Sulfate	ND U	1.0	0.11	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDT	0.51 J	1.0	0.17	1,	06/22/10	06/29/10	KWG1006235	
Toxaphene	ND Ui	50	11 .	1	06/22/10	06/29/10	KWG1006235	
Chlordane	ND Ui	10	3.6	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDE	ND Ui	1.0	0.51	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDD	ND Ui	1.0	0.33	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDT	<b>0.66</b> J	1.0	0.058	1	06/22/10	06/29/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	53	21-112	06/29/10	Acceptable
Decachlorobiphenyl	64	15-130	06/29/10	Acceptable

Comments:

Printed: 07/20/2010 09:51:47

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-1-B-Comp

Lab Code:

K1006356-009

Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:51:47

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

SuperSet Reference:

Page RR116900

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010 **Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-2-B-Comp

Lab Code:

K1006356-010

**Extraction Method:** 

**Analysis Method:** 

EPA 3541 8081A

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	0.99	0.11	1	06/22/10	06/29/10	KWG1006235	
alpha-Chlordane	ND Ui	0.99	0.99	1	06/22/10	06/29/10	KWG1006235	
beta-BHC	ND U	0.99	0.18	1	06/22/10	06/29/10	KWG1006235	
gamma-BHC (Lindane)	ND U	0.99	0.080	1	06/22/10	06/29/10	KWG1006235	
delta-BHC	ND U	0.99	0.074	1	06/22/10	06/29/10	KWG1006235	
Heptachlor	ND U	0.99	0.12	1	06/22/10	06/29/10	KWG1006235	
Aldrin	ND U	0.99	0.16	1	06/22/10	06/29/10	KWG1006235	
gamma-Chlordane†	<b>0.37</b> J	0.99	0.090	1	06/22/10	06/29/10	KWG1006235	
Heptachlor Epoxide	ND U	0.99	0.084	1	06/22/10	06/29/10	KWG1006235	
Endosulfan I	ND U	0.99	0.063	1	06/22/10	06/29/10	KWG1006235	
Dieldrin	ND U	0.99	0.14	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDE	2.0	0.99	0.11	1	06/22/10	06/29/10	KWG1006235	
Endrin	ND U	0.99	0.094	- 1	06/22/10	06/29/10	KWG1006235	
Endosulfan II	ND U	0.99	0.14	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDD	<b>1.3</b> P	0.99	0.11	1	06/22/10	06/29/10	KWG1006235	
Endrin Aldehyde	ND U	0.99	0.12	1	06/22/10	06/29/10	KWG1006235	
Endosulfan Sulfate	ND U	0.99	0.11	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDT	ND Ui	0.99	0.59	1	06/22/10	06/29/10	KWG1006235	
Toxaphene	ND Ui	50	11	1	06/22/10	06/29/10	KWG1006235	
Chlordane	ND Ui	9.9	2.0	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDE	ND Ui	0.99	0.99	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDD	ND Ui	0.99	0.37	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDT	<b>0.52</b> JP	0.99	0.058	1	06/22/10	06/29/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene Decachlorobiphenyl	53 66	21-112 15-130	06/29/10 06/29/10	Acceptable Acceptable	

Comments:

Printed: 07/20/2010 09:51:51

 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Page

**Analytical Results** 

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-2-B-Comp

Lab Code:

K1006356-010

Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:51:51

Form 1A - Organic

Page

2 of

SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010 **Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-3-B-Comp

Lab Code:

K1006356-011

**Extraction Method:** 

EPA 3541

Analysis Method:

8081A

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	1.1	0.12	1	06/22/10	06/29/10	KWG1006235	
alpha-Chlordane	ND Ui	1.1	1.1	1	06/22/10	06/29/10	KWG1006235	
beta-BHC	ND U	1.1	0.19	1	06/22/10	06/29/10	KWG1006235	
gamma-BHC (Lindane)	ND U	1.1	0.082	1	06/22/10	06/29/10	KWG1006235	
delta-BHC	ND U	1.1	0.076	1	06/22/10	06/29/10	KWG1006235	
Heptachlor	ND U	1.1	0.13	1	06/22/10	06/29/10	KWG1006235	
Aldrin	ND U	1.1	0.17	1	06/22/10	06/29/10	KWG1006235	
gamma-Chlordane†	<b>0.13</b> JP	1.1	0.092	1	06/22/10	06/29/10	KWG1006235	
Heptachlor Epoxide	ND U	1.1	0.086	1	06/22/10	06/29/10	KWG1006235	
Endosulfan I	ND U	1.1	0.064	1	06/22/10	06/29/10	KWG1006235	
Dieldrin	ND U	1.1	0.15	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDE	2.1	1.1	0.12	1	06/22/10	06/29/10	KWG1006235	
Endrin	ND U	1.1	0.096	1	06/22/10	06/29/10	KWG1006235	
Endosulfan II	ND U	1.1	0.15	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDD	<b>1.4</b> P	1.1	0.12	1	06/22/10	06/29/10	KWG1006235	
Endrin Aldehyde	ND U	1.1	0.13	1	06/22/10	06/29/10	KWG1006235	
Endosulfan Sulfate	ND U	1.1	0.12	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDT	ND Ui	1.1	0.53	1	06/22/10	06/29/10	KWG1006235	
Toxaphene	ND Ui	51	13	1	06/22/10	06/29/10	KWG1006235	
Chlordane	ND Ui	11	3.1	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDE	ND Ui	1.2	1.2	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDD	ND Ui	1.1	0.26	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDT	<b>0.42</b> JP	1.1	0,059	1	06/22/10	06/29/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	58	21-112	06/29/10	Acceptable	
Decachlorobiphenyl	67	15-130	06/29/10	Acceptable	

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-3-B-Comp

Lab Code:

K1006356-011

Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:51:55

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

184

SuperSet Reference:

RR116900

Page

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/11/2010 **Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-4-B-Comp

Lab Code:

K1006356-012

**Extraction Method:** 

EPA 3541

Analysis Method:

8081A

Units: ug/Kg
Basis: Dry

Level: Low

Analyte Name	Result	O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
alpha-BHC	ND		0.98	0.11	1	06/22/10	06/29/10	KWG1006235	APRILITATION AND APPIRATION AND AP
alpha-Chlordane	ND	U	0.98	0.10	1	06/22/10	06/29/10	KWG1006235	
beta-BHC	ND	U	0.98	0.18	1	06/22/10	06/29/10	KWG1006235	
gamma-BHC (Lindane)	ND	U	0.98	0.080	1	06/22/10	06/29/10	KWG1006235	
delta-BHC	ND	Ui	0.98	0.079	1	06/22/10	06/29/10	KWG1006235	
Heptachlor	ND	U	0.98	0.12	1	06/22/10	06/29/10	KWG1006235	
Aldrin	ND	U	0.98	0.16	1	06/22/10	06/29/10	KWG1006235	
gamma-Chlordane†	0.33	J	0.98	0.090	1	06/22/10	06/29/10	KWG1006235	
Heptachlor Epoxide	ND	U	0.98	0.084	1	06/22/10	06/29/10	KWG1006235	
Endosulfan I	ND	U	0.98	0.063	1	06/22/10	06/29/10	KWG1006235	
Dieldrin	ND	U	0.98	0.14	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDE	1.6		0.98	0.11	1	06/22/10	06/29/10	KWG1006235	
Endrin	ND	U	0.98	0.094	1	06/22/10	06/29/10	KWG1006235	
Endosulfan II	ND	$\Omega$	0.98	0.14	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDD	0.92	J	0.98	0.11	1	06/22/10	06/29/10	KWG1006235	
Endrin Aldehyde	ND	U	0.98	0.12	1	06/22/10	06/29/10	KWG1006235	
Endosulfan Sulfate	ND	U	0.98	0.11	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDT	ND	Ui	0.98	0.55	1	06/22/10	06/29/10	KWG1006235	
Toxaphene	ND	Ui	49	15	1	06/22/10	06/29/10	KWG1006235	
Chlordane	ND	Ui	9.8	3.7	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDE	ND	Ui	0.98	0.61	1	06/22/10	06/29/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	53	21-112	06/29/10	Acceptable	
Decachlorobiphenyl	66	15-130	06/29/10	Acceptable	

0.13

0.058

1

1

06/22/10

06/22/10

06/29/10

06/29/10

KWG1006235

KWG1006235

0.98

0.98

Comments:

2,4'-DDD

2,4'-DDT

Printed: 07/20/2010 09:51:59

 $u:\Stealth\Crystal.rpt\Form1mNew.rpt$ 

Merged

0.72 JP

0.43 JP

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/11/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-4-B-Comp

Lab Code:

K1006356-012

Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:51:59

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

SuperSet Reference:

RR116900

Page

2 of 2

186

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-5-B-Comp

Lab Code:

K1006356-013

**Extraction Method:** 

EPA 3541

Analysis Method:

8081A

Units: ug/Kg Basis: Dry

Level: Low

Extraction

Analysis Method.	001A				
Analysta Nama	Domit	O MDI	MDL	Dilution	Date
Analyte Name	Result	Q MRL	MIDL	Factor	Extracte
alaha BUC	ND	TT 1.1	0.12	1	06/22/10

					Dilution	Date	Date	EXII action	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND	U	1.1	0.12	1	06/22/10	06/29/10	KWG1006235	
alpha-Chlordane	ND	Ui	1.1	1.1	1	06/22/10	06/29/10	KWG1006235	
beta-BHC	ND	U	1.1	0.19	1	06/22/10	06/29/10	KWG1006235	
gamma-BHC (Lindane)	ND	U	1.1	0.082	1	06/22/10	06/29/10	KWG1006235	
delta-BHC	ND	U	1.1	0.076	1	06/22/10	06/29/10	KWG1006235	
Heptachlor	ND	U	1.1	0.13	1	06/22/10	06/29/10	KWG1006235	
Aldrin	ND	U	1.1	0.17	1	06/22/10	06/29/10	KWG1006235	
gamma-Chlordane†	0.32	JP	1.1	0.092	1	06/22/10	06/29/10	KWG1006235	
Heptachlor Epoxide	0.31	J	1.1	0.086	1	06/22/10	06/29/10	KWG1006235	
Endosulfan I	ND	Ui	1.1	0.071	1	06/22/10	06/29/10	KWG1006235	
Dieldrin	ND	U	1.1	0.15	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDE	2.0		1.1	0.12	1	06/22/10	06/29/10	KWG1006235	
Endrin	ND	U	1.1	0.096	1	06/22/10	06/29/10	KWG1006235	
Endosulfan II	ND	U	1.1	0.15	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDD	1.3		1.1	0.12	1	06/22/10	06/29/10	KWG1006235	
Endrin Aldehyde	ND	U	1.1	0.13	1	06/22/10	06/29/10	KWG1006235	
Endosulfan Sulfate	ND	U	1.1	0.12	1	06/22/10	06/29/10	KWG1006235	
4,4'-DDT	ND	Ui	1.1	1.1	1	06/22/10	06/29/10	KWG1006235	
Toxaphene	ND	Ui	51	26	1	06/22/10	06/29/10	KWG1006235	
Chlordane	ND	Ui	11	5.8	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDE	ND	Ui	1.1	1.1	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDD	ND	Ui	1.1	0.46	1	06/22/10	06/29/10	KWG1006235	
2,4'-DDT	0.75	JР	1.1	0.059	1 .	06/22/10	06/29/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	64	21-112	06/29/10	Acceptable	
Decachlorobiphenyl	71	15-130	06/29/10	Acceptable	

Comments:	

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-5-B-Comp

Lab Code:

K1006356-013

Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:52:03

 $u: \label{lem:limin} u: \label{lem:limin} u: \label{lem:limin} We w. rpt$ 

Merged

Form 1A - Organic

Page 2 of 2

RR116900

SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-6-B-Comp

Lab Code:

K1006356-014

**Extraction Method:** 

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

**Analysis Method:** 

8081A

A 7 4 NT	P 14 O	BATH	MDI	Dilution	Date Extracted	Date	Extraction Lot	Note
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	KWG1006235	14016
alpha-BHC	ND U	1.1	0.13	1	06/22/10	06/30/10	KWG1006235	
alpha-Chlordane	ND U	1.1	0.11	1	06/22/10	06/30/10		
beta-BHC	ND U	1.1	0.20	1	06/22/10	06/30/10	KWG1006235	
gamma-BHC (Lindane)	<b>0.12</b> J	1.1	0.088	1	06/22/10	06/30/10	KWG1006235	
delta-BHC	ND U	1.1	0.082	1	06/22/10	06/30/10	KWG1006235	
Heptachlor	ND U	1.1	0.14	1	06/22/10	06/30/10	KWG1006235	
Aldrin	ND U	1.1	0.18	1	06/22/10	06/30/10	KWG1006235	
gamma-Chlordane†	0.82 JP	1.1	0.099	1	06/22/10	06/30/10	KWG1006235	
Heptachlor Epoxide	ND Ui	1.1	0.55	1	06/22/10	06/30/10	KWG1006235	
Endosulfan I	0.15 J	1.1	0.070	1	06/22/10	06/30/10	KWG1006235	
Dieldrin	ND Ui	1.4	1.4	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDE	3.4	1.1	0.13	1	06/22/10	06/30/10	KWG1006235	
Endrin	ND U	1.1	0.11	1	06/22/10	06/30/10	KWG1006235	
Endosulfan II	ND U	1.1	0.16	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDD	2.4	1.1	0.13	1	06/22/10	06/30/10	KWG1006235	
Endrin Aldehyde	ND U	1.1	0.14	1	06/22/10	06/29/10	KWG1006235	
Endosulfan Sulfate	ND U	1.1	0.13	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDT	ND Ui	1.7	1.7	1	06/22/10	06/30/10	KWG1006235	
Toxaphene	ND Ui	55	28	1	06/22/10	06/30/10	KWG1006235	
Chlordane	7.6 JP	11	2.1	1	06/22/10	06/30/10	KWG1006235	
2,4'-DDE	ND Ui	1.1	1.1	1	06/22/10	06/30/10	KWG1006235	
2,4'-DDD	2.4 P	1.1	0.15	1	06/22/10	06/30/10	KWG1006235	
2,4'-DDT	2.6	1,1	0.064	1	06/22/10	06/30/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	80	21-112	06/30/10	Acceptable Acceptable
Decachlorobiphenyl	94	15-130	06/30/10	

Comments:

Printed: 07/20/2010 09:52:07 

Form 1A - Organic

1 of 2 Page

SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-6-B-Comp

Lab Code:

K1006356-014

Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:52:07

 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt \\$ 

Merged

Form 1A - Organic

Page

2 of 2

SuperSet Reference: RR116900

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010 **Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-7-B-Comp

Lab Code:

K1006356-015

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	0.95	0.11	1	06/22/10	06/30/10	KWG1006235	
alpha-Chlordane	1.3	0.95	0.10	1	06/22/10	06/30/10	KWG1006235	
beta-BHC	ND U	0.95	0.18	1	06/22/10	06/30/10	KWG1006235	
gamma-BHC (Lindane)	0.13 J	0.95	0.080	1	06/22/10	06/30/10	KWG1006235	
delta-BHC	ND U	0.95	0.074	1	06/22/10	06/30/10	KWG1006235	
Heptachlor	ND U	0.95	0.12	1	06/22/10	06/30/10	KWG1006235	
Aldrin	ND U	0.95	0.16	1	06/22/10	06/30/10	KWG1006235	2022220000
gamma-Chlordane†	3.4	0.95	0.090	1	06/22/10	06/30/10	KWG1006235	
Heptachlor Epoxide	ND Ui	0.95	0.67	1	06/22/10	06/30/10	KWG1006235	
Endosulfan I	ND Ui	0.95	0.95	1	06/22/10	06/30/10	KWG1006235	
Dieldrin	ND Ui	0.95	0.95	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDE	7.1	0.95	0.11	1	06/22/10	06/30/10	KWG1006235	
Endrin	ND Ui	0.95	0.29	1	06/22/10	06/30/10	KWG1006235	
Endosulfan 11	ND Ui	0.95	0.17	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDD	16	0.95	0.11	1	06/22/10	06/30/10	KWG1006235	
Endrin Aldehyde	ND U	0.95	0.12	1	06/22/10	06/29/10	KWG1006235	
Endosulfan Sulfate	ND U	0.95	0.11	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDT	<b>1.8</b> P	0.95	0.17	1	06/22/10	06/30/10	KWG1006235	
Toxaphene	ND Ui	48	32	1	06/22/10	06/30/10	KWG1006235	
Chlordane	24	9.5	1.9	1	06/22/10	06/30/10	KWG1006235	
2,4'-DDE	ND Ui	0.95	0.95	1 .	06/22/10	06/30/10	KWG1006235	
2,4'-DDD	<b>2.0</b> P	0.95	0.13	1	06/22/10	06/30/10	KWG1006235	
2,4'-DDT	ND Ui	2.1	2.1	1	06/22/10	06/30/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	66	21-112	06/30/10	Acceptable	
Decachlorobiphenyl	77	15-130	06/30/10	Acceptable	

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-7-B-Comp

Lab Code:

K1006356-015

Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:52:11

 $u:\Stealth\Crystal.rpt\Form\limNew.rpt$ 

Merged

Form 1A - Organic

SuperSet Reference: RR116900

Page 2 of 2

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-7-1

Lab Code:

K1006356-016

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	1.3	0.15	1	06/22/10	06/30/10	KWG1006235	
alpha-Chlordane	1.1 J	1.3	0.13	1	06/22/10	06/30/10	KWG1006235	
beta-BHC	ND U	1.3	0.24	1	06/22/10	06/30/10	KWG1006235	
gamma-BHC (Lindane)	ND Ui	1.3	0.12	1	06/22/10	06/30/10	KWG1006235	
delta-BHC	ND U	1.3	0.095	1	06/22/10	06/30/10	KWG1006235	
Heptachlor	ND U	1.3	0.16	1	06/22/10	06/30/10	KWG1006235	
Aldrin	ND U	1.3	0.21	1	06/22/10	06/30/10	KWG1006235	
gamma-Chlordane†	1.3	1.3	0.12	1	06/22/10	06/30/10	KWG1006235	
Heptachlor Epoxide	ND Ui	1.3	0.18	1	06/22/10	06/30/10	KWG1006235	
Endosulfan I	ND Ui	1.3	0.14	1	06/22/10	06/30/10	KWG1006235	
Dieldrin	ND U	1.3	0.18	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDE	<b>2.4</b> P	1.3	0.15	1	06/22/10	06/30/10	KWG1006235	
Endrin	ND U	1.3	0.13	1	06/22/10	06/30/10	KWG1006235	
Endosulfan II	ND U	1.3	0.18	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDD	1.5	1.3	0.15	1	06/22/10	06/30/10	KWG1006235	
Endrin Aldehyde	ND U	1.3	0.16	1	06/22/10	06/29/10	KWG1006235	
Endosulfan Sulfate	ND U	1.3	0.15	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDT	<b>1.6</b> P	1.3	0.22	1	06/22/10	06/30/10	KWG1006235	
Toxaphene	ND Ui	64	21	1	06/22/10	06/30/10	KWG1006235	
Chlordane	<b>12</b> J	13	2.5	1	06/22/10	06/30/10	KWG1006235	
2,4'-DDE	ND Ui	1.3	1.3	1	06/22/10	06/30/10	KWG1006235	
2,4'-DDD	0.69 ЈР	1.3	0.17	1	06/22/10	06/30/10	KWG1006235	
2,4'-DDT	ND Ui	1.3	1.3	1	06/22/10	06/30/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene Decachlorobiphenyl	75 88	21-112 15-130	06/30/10 06/30/10	Acceptable Acceptable	

Comments:

Printed: 07/20/2010 09:52:15

 $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} We w. rpt$ 

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name: Lab Code:

SRC-2010-7-1 K1006356-016 Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:52:15

 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w: \label{lem:limit} u: \label{lem:limit$ 

Form 1A - Organic

Merged

SuperSet Reference:

Page

2 of 2

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010 **Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-7-2

Lab Code:

K1006356-017

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	1.2	0.14	1	06/22/10	06/30/10	KWG1006235	
alpha-Chlordane	0.95 J	1.2	0.12	1	06/22/10	06/30/10	KWG1006235	
beta-BHC	ND U	1.2	0.22	1	06/22/10	06/30/10	KWG1006235	
gamma-BHC (Lindane)	ND U	1.2	0.096	1	06/22/10	06/30/10	KWG1006235	
delta-BHC	ND U	1.2	0.089	1	06/22/10	06/30/10	KWG1006235	
Heptachlor	ND U	1.2	0.15	. 1	06/22/10	06/30/10	KWG1006235	
Aldrin	ND U	1.2	0.20	1	06/22/10	06/30/10	KWG1006235	
gamma-Chlordane†	2.3	1.2	0.11	1	06/22/10	06/30/10	KWG1006235	
Heptachlor Epoxide	ND Ui	1.2	0.53	1	06/22/10	06/30/10	KWG1006235	
Endosulfan I	0.34 JP	1.2	0.076	1	06/22/10	06/30/10	KWG1006235	
Dieldrin	ND Ui	1.2	1.2	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDE	3.6	1.2	0.14	1	06/22/10	06/30/10	KWG1006235	
Endrin	ND Ui	1.2	0.20	1	06/22/10	06/30/10	KWG1006235	
Endosulfan II	ND U	1.2	0.17	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDD	2.4	1.2	0.14	1	06/22/10	06/30/10	KWG1006235	
Endrin Aldehyde	ND U	1.2	0.15	1	06/22/10	06/29/10	KWG1006235	
Endosulfan Sulfate	ND U	1.2	0.14	1 .	06/22/10	06/30/10	KWG1006235	
4,4'-DDT	ND Ui	2.0	2.0	1	06/22/10	06/30/10	KWG1006235	
Toxaphene	ND Ui	60	49	1	06/22/10	06/30/10	KWG1006235	
Chlordane	18	12	2.3	1	06/22/10	06/30/10	KWG1006235	
2,4'-DDE	ND Ui	1.2	1.2	1	06/22/10	06/30/10	KWG1006235	
2,4'-DDD	1.0 JP	1.2	0.16	1	06/22/10	06/30/10	KWG1006235	
2,4'-DDT	<b>1.7</b> P	1.2	0.070	1 -	06/22/10	06/30/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	67	21-112	06/30/10	Acceptable
Decachlorobiphenyl	78	15-130	06/30/10	Acceptable

Comments:

Printed: 07/20/2010 09:52:19

 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Form 1A - Organic

Page 1 of 2

SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010 **Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name: Lab Code:

SRC-2010-7-2 K1006356-017 Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:52:19

 $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} I m \label{lem:limit} I m \label{lem:limit} lem \label{lem:limit} u: \label{lem:limit} \label{$ 

Merged

Form 1A - Organic

Page 2 of 2

SuperSet Reference:

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010 **Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-7-3

Lab Code:

K1006356-018

**Extraction Method:** 

**Analysis Method:** 

EPA 3541 8081A

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
alpha-BHC	ND U	1.3	0.14	1	06/22/10	06/30/10	KWG1006235	
alpha-Chlordane	2.4	1.3	0.13	1	06/22/10	06/30/10	KWG1006235	
beta-BHC	ND U	1.3	0.22	1	06/22/10	06/30/10	KWG1006235	
gamma-BHC (Lindane)	ND U	1.3	0.097	1	06/22/10	06/30/10	KWG1006235	
delta-BHC	ND U	1.3	0.090	1	06/22/10	06/30/10	KWG1006235	
Heptachlor	ND U	1.3	0.15	1	06/22/10	06/30/10	KWG1006235	
Aldrin	ND U	1.3	0.20	1	06/22/10	06/30/10	KWG1006235	
gamma-Chlordane†	<b>3.</b> 7	1.3	0.11	1	06/22/10	06/30/10	KWG1006235	
Heptachlor Epoxide	ND Ui	1.3	0.54	1	06/22/10	06/30/10	KWG1006235	
Endosulfan I	ND Ui	1.3	1.3	1	06/22/10	06/30/10	KWG1006235	
Dieldrin	ND Ui	1.3	0.33	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDE	4.4	1.3	0.14	. 1	06/22/10	06/30/10	KWG1006235	
Endrin	ND Ui	1.3	0.17	1	06/22/10	06/30/10	KWG1006235	
Endosulfan II	ND Ui	1.3	0.21	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDD	2.8	1.3	0.14	1	06/22/10	06/30/10	KWG1006235	
Endrin Aldehyde	0.19 ЈР	1.3	0.15	1	06/22/10	06/29/10	KWG1006235	
Endosulfan Sulfate	ND U	1.3	0.14	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDT	ND Ui	2.2	2.2	1 .	06/22/10	06/30/10	KWG1006235	
Toxaphene	ND Ui	61	42	1	06/22/10	06/30/10	KWG1006235	
Chlordane	32	13	2.3	1	06/22/10	06/30/10	KWG1006235	
2,4'-DDE	ND Ui	1.3	1.3	1	06/22/10	06/30/10	KWG1006235	
2,4'-DDD	ND Ui	1.3	1.1	1	06/22/10	06/30/10	KWG1006235	
2,4'-DDT	<b>1.8</b> P	1.3	0.071	1	06/22/10	06/30/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene Decachlorobiphenyl	63 73	21-112 15-130	06/30/10 06/30/10	Acceptable Acceptable	THE PARTY CONTROL OF

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-7-3

Lab Code:

K1006356-018

Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:52:23

Merged

Form 1A - Organic

198

SuperSet Reference:

RR116900

Page

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-7-4

Lab Code:

K1006356-019

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	1.3	0.14	1	06/22/10	06/30/10	KWG1006235	
alpha-Chlordane	<b>8.</b> 7	1.3	0.13	1	06/22/10	06/30/10	KWG1006235	
beta-BHC	ND U	1.3	0.23	1	06/22/10	06/30/10	KWG1006235	
gamma-BHC (Lindane)	ND Ui	1.3	0.26	1	06/22/10	06/30/10	KWG1006235	
delta-BHC	ND Ui	1.3	0.13	1	06/22/10	06/30/10	KWG1006235	
Heptachlor	ND U	1.3	0.16	1	06/22/10	06/30/10	KWG1006235	
Aldrin	ND Ui	1.3	0.67	1	06/22/10	06/30/10	KWG1006235	
gamma-Chlordane†	11	1.3	0.12	1	06/22/10	06/30/10	KWG1006235	
Heptachlor Epoxide	ND U	1.3	0.11	1	06/22/10	06/30/10	KWG1006235	
Endosulfan I	ND Ui	1.3	1.3	1	06/22/10	06/30/10	KWG1006235	
Dieldrin	<b>1.2</b> J	1.3	0.18	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDE	13	1.3	0.14	1	06/22/10	06/30/10	KWG1006235	
Endrin	ND Ui	1.3	0.53	1	06/22/10	06/30/10	KWG1006235	
Endosulfan II	ND Ui	1.3	1.1	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDD	16	1.3	0.14	l	06/22/10	06/30/10	KWG1006235	
Endrin Aldehyde	ND Ui	1.3	0.27	1	06/22/10	06/29/10	KWG1006235	
Endosulfan Sulfate	ND Ui	1.3	1.3	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDT	ND Ui	1.9	1.9	1	06/22/10	06/30/10	KWG1006235	
Toxaphene	ND Ui	89	89	1	06/22/10	06/30/10	KWG1006235	
Chlordane	96	13	2.4	1	06/22/10	06/30/10	KWG1006235	
2,4'-DDE	ND Ui	1.3	1.3	1	06/22/10	06/30/10	KWG1006235	
2,4'-DDD	<b>4.5</b> P	1.3	0.17	1	06/22/10	06/30/10	KWG1006235	
2,4'-DDT	3.6	1.3	0.073	1	06/22/10	06/30/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	67	21-112	06/30/10	Acceptable	
Decachlorobiphenyl	77	15-130	06/30/10	Acceptable	

Comments:

Printed: 07/20/2010 09:52:27

 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} W: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} W: \label{lem:limit} u: \label{lem:limit} W: \lab$ 

Merged

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

**Sample Matrix:** 

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010 **Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name: Lab Code:

SRC-2010-7-4 K1006356-019 Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:52:27

Merged

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

Page 2 of 2

SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010 **Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name: Lab Code:

SRC-2010-7-5

K1006356-020

**Extraction Method:** 

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Analysis Method:

8081A

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	1.2	0.13	1	06/22/10	06/30/10	KWG1006235	
alpha-Chlordane	30	1.2	0.12	1	06/22/10	06/30/10	KWG1006235	
beta-BHC	ND U	1.2	0.21	1	06/22/10	06/30/10	KWG1006235	
gamma-BHC (Lindane)	0.82 JP	1.2	0.092	1	06/22/10	06/30/10	KWG1006235	
delta-BHC	ND Ui	1.2	0.55	1	06/22/10	06/30/10	KWG1006235	
Heptachlor	ND Ui	1.2	1.2	1	06/22/10	06/30/10	KWG1006235	
Aldrin	ND Ui	1.7	1.7	1	06/22/10	06/30/10	KWG1006235	
gamma-Chlordane†	43	1.2	0.11	1	06/22/10	06/30/10	KWG1006235	
Heptachlor Epoxide	ND U	1.2	0.096	1	06/22/10	06/30/10	KWG1006235	
Endosulfan I	ND Ui	3.8	3.8	1	06/22/10	06/30/10	KWG1006235	
Dieldrin	2.8	1.2	0.16	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDE	33	1.2	0.13	1	06/22/10	06/30/10	KWG1006235	
Endrin	ND Ui	1.2	1.2	1	06/22/10	06/30/10	KWG1006235	
Endosulfan II	ND Ui	1.2	1.2	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDD	<b>66</b> D	5.8	0.63	5	06/22/10	07/01/10	KWG1006235	
Endrin Aldehyde	ND Ui	1.2	1.2	1	06/22/10	06/29/10	KWG1006235	
Endosulfan Sulfate	ND Ui	1.2	1.2	1	06/22/10	06/30/10	KWG1006235	
4,4'-DDT	ND Ui	9.7	9.7	1	06/22/10	06/30/10	KWG1006235	
Toxaphene	ND Ui	210	210	1	06/22/10	06/30/10	KWG1006235	
Chlordane	380 D	58	11	5	06/22/10	07/01/10	KWG1006235	
2,4'-DDE	ND Ui	5.2	5.2	1	06/22/10	06/30/10	KWG1006235	
2,4'-DDD	18	1.2	0.15	1	06/22/10	06/30/10	KWG1006235	
2,4'-DDT	7. <b>3</b> P	1.2	0.067	1	06/22/10	06/30/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	72	21-112	06/30/10	Acceptable Acceptable
Decachlorobiphenyl	83	15-130	06/30/10	

Comments:

Printed: 07/20/2010 09:52:31

 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Merged

Form 1A - Organic

Page 1 of 2

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name: Lab Code:

SRC-2010-7-5 K1006356-020 Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:52:31

Form 1A - Organic

2 of 2 Page

SuperSet Reference:

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010 **Date Received:** 06/23/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-8-Z-Comp

Lab Code:

K1006356-021

**Extraction Method:** 

**Analysis Method:** 

EPA 3541 8081A

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND Ui	1.2	0.64	1	06/24/10	07/16/10	KWG1006549	
alpha-Chlordane	15	1.2	0.12	1	06/24/10	07/16/10	KWG1006549	
beta-BHC	ND U	1.2	0.21	1	06/24/10	07/16/10	KWG1006549	
gamma-BHC (Lindane)	ND Ui	1.3	1.3	1	06/24/10	07/16/10	KWG1006549	
delta-BHC	ND Ui	1.2	0.38	1	06/24/10	07/16/10	KWG1006549	
Heptachlor	ND U	1.2	0.14	1	06/24/10	07/16/10	KWG1006549	
Aldrin	0.83 JP	1.2	0.19	1	06/24/10	07/16/10	KWG1006549	
gamma-Chlordane†	23	1.2	0.11	1	06/24/10	07/16/10	KWG1006549	
Heptachlor Epoxide	ND Ui	1.2	1.2	1	06/24/10	07/16/10	KWG1006549	
Endosulfan I	<b>5.3</b> P	1.2	0.072	1	06/24/10	07/16/10	KWG1006549	
Dieldrin	4.0	1.2	0.16	1	06/24/10	07/16/10	KWG1006549	
4,4'-DDE	<b>18</b> P	1.2	0.13	. 1	06/24/10	07/16/10	KWG1006549	
Endrin	0.18 JP	1.2	0.11	1	06/24/10	07/16/10	KWG1006549	
Endosulfan II	ND U	1.2	0.16	1	06/24/10	07/16/10	KWG1006549	
4,4'-DDD	43	1.2	0.13	1	06/24/10	07/16/10	KWG1006549	
Endrin Aldehyde	ND U	1.2	0.14	1	06/24/10	07/16/10	KWG1006549	
Endosulfan Sulfate	ND Ui	1.2	1.2	1	06/24/10	07/16/10	KWG1006549	
4,4'-DDT	ND Ui	2.7	2.7	1	06/24/10	07/16/10	KWG1006549	
Toxaphene	ND Ui	130	130	1	06/24/10	07/16/10	KWG1006549	
Chlordane	170	12	2.2	1	06/24/10	07/16/10	KWG1006549	
2,4'-DDE	ND Ui	2.0	2.0	1	06/24/10	07/16/10	KWG1006549	
2,4'-DDD	7.1 P	1.2	0.15	1	06/24/10	07/16/10	KWG1006549	
2,4'-DDT	<b>4.2</b> P	1.2	0.066	1	06/24/10	07/16/10	KWG1006549	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	61	21-112	07/16/10	Acceptable	
Decachlorobiphenyl	72	15-130	07/16/10	Acceptable	

Comments:

Printed: 07/20/2010 09:52:35

 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Merged

Form 1A - Organic

RR116900

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/23/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-8-Z-Comp

Lab Code:

K1006356-021

Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:52:35

Merged

Form 1A - Organic

SuperSet Reference:

2 of 2

204

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: NA Date Received: NA

# **Organochlorine Pesticides**

Sample Name:

Method Blank

Lab Code:

KWG1006235-13

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg Basis: Dry

Level: Low

				<b>Dilution</b>	Date	Date	Extraction	
Analyte Name	Result Q	MRL	-MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	. 0.50	0.11	1	06/22/10	06/28/10	KWG1006235	
alpha-Chlordane	ND U	0.50	0.10	l	06/22/10:	06/28/10	KWG1006235	
beta-BHC	ND U	0.50	0.18	1	06/22/10	06/28/10	KWG1006235	
gamma-BHC (Lindane)	ND U	0.50	0.080	1	06/22/10	06/28/10	KWG1006235	
delta-BHC	ND U	0.50	0.074	1	06/22/10	06/28/10	KWG1006235	
Heptachlor	ND U	0.50	0.12	1	06/22/10	06/28/10	KWG1006235	
Aldrin	ND U	0.50	0.16	1	06/22/10	06/28/10	KWG1006235	
gamma-Chlordane†	ND U	0.50	0.090	1	06/22/10	06/28/10	KWG1006235	
Heptachlor Epoxide	ND U	0.50	0.084	1	06/22/10	06/28/10	KWG1006235	
Endosulfan I	ND U	0.50	0.063	1	06/22/10	06/28/10	KWG1006235	
Dieldrin	ND U	0.50	0.14	1	06/22/10	06/28/10	KWG1006235	
4,4'-DDE	ND U	0.50	0.11	1	06/22/10	06/28/10	KWG1006235	
Endrin	ND U	0.50	0.094	1	06/22/10	06/28/10	KWG1006235	
Endosulfan II	ND U	0.50	0.14	1	06/22/10	06/28/10	KWG1006235	
4,4'-DDD	ND U	0.50	0.11	1	06/22/10	06/28/10	KWG1006235	
Endrin Aldehyde	ND U	0.50	0.12	1	06/22/10	06/28/10	KWG1006235	
Endosulfan Sulfate	ND U	0.50	0.11	1	06/22/10	06/28/10	KWG1006235	
4,4'-DDT	ND U	0.50	0.17	1	06/22/10	06/28/10	KWG1006235	
Toxaphene	ND U	25	4.8	1	06/22/10	06/28/10	KWG1006235	
Chlordane	ND U	5.0	1.9	1	06/22/10	06/28/10	KWG1006235	
2,4'-DDE	ND U	0.50	0.16	1	06/22/10	06/28/10	KWG1006235	
2,4'-DDD	ND U	0.50	0.13	1	06/22/10	06/28/10	KWG1006235	
2,4'-DDT	ND U	0.50	0.058	1	06/22/10	06/28/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	61	21-112	06/28/10	Acceptable	
Decachlorobiphenyl	79	15-130	06/28/10	Acceptable	

Comments:

Printed: 07/20/2010 09:52:39

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

Page RR116900

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: NA

Date Received: NA

**Organochlorine Pesticides** 

Sample Name: Lab Code:

Method Blank KWG1006235-13 Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:52:39

 $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} We w. rpt$ 

Form 1A - Organic

Page

2 of 2

SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: NA

Date Received: NA

# **Organochlorine Pesticides**

Sample Name:

Method Blank

Lab Code:

KWG1006549-10

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	0.50	0.11	1	06/24/10	07/16/10	KWG1006549	
alpha-Chlordane	ND U	0.50	0.10	1	06/24/10	07/16/10	KWG1006549	
beta-BHC	ND U	0.50	0.18	1	06/24/10	07/16/10	KWG1006549	
gamma-BHC (Lindane)	ND U	0.50	0.080	1	06/24/10	07/16/10	KWG1006549	
delta-BHC	ND U	0.50	0.074	1	06/24/10	07/16/10	KWG1006549	
Heptachlor	ND U	0.50	0.12	1	06/24/10	07/16/10	KWG1006549	
Aldrin	ND U	0.50	0.16	1	06/24/10	07/16/10	KWG1006549	
gamma-Chlordane†	ND U	0.50	0.090	1	06/24/10	07/16/10	KWG1006549	
Heptachlor Epoxide	ND U	0.50	0.084	1	06/24/10	07/16/10	KWG1006549	
Endosulfan I	ND U	0.50	0.063	1	06/24/10	07/16/10	KWG1006549	
Dieldrin	ND U	0.50	0.14	1	06/24/10	07/16/10	KWG1006549	
4,4'-DDE	ND U	0.50	0.11	1	06/24/10	07/16/10	KWG1006549	
Endrin	ND U	0.50	0.094	1	06/24/10	07/16/10	KWG1006549	
Endosulfan II	ND U	0.50	0.14	1	06/24/10	07/16/10	KWG1006549	
4,4'-DDD	ND U	0.50	0.11	1	06/24/10	07/16/10	KWG1006549	
Endrin Aldehyde	ND U	0.50	0.12	1	06/24/10	07/16/10	KWG1006549	
Endosulfan Sulfate	ND U	0.50	0.11	. 1	06/24/10	07/16/10	KWG1006549	
4,4'-DDT	ND U	0.50	0.17	1	06/24/10	07/16/10	KWG1006549	
Toxaphene	ND U	25	4.8	1	06/24/10	07/16/10	KWG1006549	
Chlordane	ND U	5.0	1.9	1	06/24/10	07/16/10	KWG1006549	
2,4'-DDE	ND U	0.50	0.16	1	06/24/10	07/16/10	KWG1006549	
2,4'-DDD	ND U	0.50	0.13	1	06/24/10	07/16/10	KWG1006549	
2,4'-DDT	ND U	0.50	0.058	1	06/24/10	07/16/10	KWG1006549	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	59	21-112	07/16/10	Acceptable	
Decachlorobiphenyl	64	15-130	07/16/10	Acceptable	

Comments:

Printed: 07/20/2010 09:52:43  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Form 1A - Organic

1 of 2 Page

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: NA

Date Received: NA

**Organochlorine Pesticides** 

Sample Name: Lab Code:

Method Blank KWG1006549-10

Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/20/2010 09:52:43

 $u: \label{lem:limin} w: \label{lem:limin} u: \label{lem:limin} We w. rpt$ 

Form 1A - Organic

Page 2 of

SuperSet Reference:

QA/QC Report

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

**Surrogate Recovery Summary** 

**Organochlorine Pesticides** 

**Extraction Method:** 

EPA 3541

**Analysis Method:** 8081A

Units: PERCENT

Level: Low

Service Request: K1006356

Sample Name	Lab Code	<u>Sur1</u>	<u>Sur2</u>
SRC-2010-1-CompMS	KWG1006235-10	73	80
SRC-2010-1-CompDMS	KWG1006235-11	72	83
SRC-2010-1-CompDMS	KWG1006235-2	68	73
SRC-2010-1-CompMS	KWG1006235-7	72	85
SRC-2010-1-CompDMS	KWG1006235-8	74	85
SRC-2010-1-Comp	K1006356-001	66	83
SRC-2010-2-Comp	K1006356-002	64	73
SRC-2010-3-Comp	K1006356-003	<b>5</b> 6	67
SRC-2010-4-Comp	K1006356-004	63	77
SRC-2010-5-Comp	K1006356-005	60	- 77
SRC-2010-6-Comp	K1006356-006	61	72
SRC-2010-7-Comp	K1006356-007	45	51
SRC-2010-7-Z-Comp	K1006356-008	63	71
SRC-2010-1-B-Comp	K1006356-009	53	64
SRC-2010-2-B-Comp	K1006356-010	53	66
SRC-2010-3-B-Comp	K1006356-011	58	67
SRC-2010-4-B-Comp	K1006356-012	53	66
SRC-2010-5-B-Comp	K1006356-013	64	71
SRC-2010-6-B-Comp	K1006356-014	80	94
SRC-2010-7-B-Comp	K1006356-015	66	77
SRC-2010-7-1	K1006356-016	75	88
SRC-2010-7-2	K1006356-017	67	78
SRC-2010-7-3	K1006356-018	63	73
SRC-2010-7-4	K1006356-019	67	77
SRC-2010-7-5	K1006356-020	72	83
SRC-2010-8-Z-Comp	K1006356-021	61	72
Method Blank	KWG1006235-13	61	79
Method Blank	KWG1006549-10	59	64
Batch QC	K1006486-001	49	57
SRC-2010-1-CompMS	KWG1006235-1	65	71
Batch QCMS	KWG1006549-1	51	57
Batch QCDMS	KWG1006549-2	45	54
Batch QCMS	KWG1006549-4	58	59
Batch QCDMS	KWG1006549-5	53	55

Surrogate Recovery Control Limits (%)

Sur1 = Tetrachloro-m-xylene

21-112

Sur2 = Decachlorobiphenyl

15-130

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/20/2010 09:52:52

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Surrogate Recovery Summary Organochlorine Pesticides** 

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2
Batch QCMS	KWG1006549-7	50	57
Batch QCDMS	KWG1006549-8	51	59
Lab Control Sample	KWG1006235-3	65	77
Lab Control Sample	KWG1006549-3	61	71

Surrogate Recovery Control Limits (%)

Sur1 = Tetrachloro-m-xylene 21-112 Sur2 = Decachlorobiphenyl 15-130

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/20/2010 09:52:52

Form 2A - Organic

210

Page

2 of

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/22/2010

**Date Analyzed:** 06/29/2010

### Matrix Spike/Duplicate Matrix Spike Summary **Organochlorine Pesticides**

Sample Name:

SRC-2010-1-Comp

Lab Code:

K1006356-001

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1006235

SRC-2010-1-CompMS

SRC-2010-1-CompDMS

	Sample	KWG1006235-1 Matrix Spike			KWG1006235-2 Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
alpha-BHC	ND	15.9	22.4	71	16.9	22.4	75	23-133	6	40
alpha-Chlordane	ND	15.0	22.4	67	16.2	22.4	72	24-132	7	40
beta-BHC	ND	15.3	22.4	68	16.1	22.4	72	22-142	5	40
gamma-BHC (Lindane)	ND	15.8	22.4	71	16.8	22.4	75	26-135	6	40
delta-BHC	0.10	15.4	22.4	68	17.5	22.4	78	25-148	13	40
Heptachlor	ND	15.4	22.4	69	16.6	22.4	74	21-136	7	40
Aldrin	ND	13.5	22.4	60	14.7	22.4	65	22-135	8	40
gamma-Chlordane	0.29	15.1	22.4	66	16.4	22.4	72	24-133	8	40
Heptachlor Epoxide	ND	15.2	22.4	68	16.1	22.4	72	25-129	6	40
Endosulfan I	ND	15.2	22.4	68	16.1	22.4	72	15-119	6	40
Dieldrin	ND	15.0	22.4	67	17.0	22.4	76	26-133	12	40
4,4'-DDE	2.0	17.1	22.4	68	16.5	22.4	65	22-142	4	40
Endrin	ND	14.7	22.4	66	16.6	22.4	74	22-145	12	40
Endosulfan II	ND	13.8	22.4	62	15.8	22.4	<b>7</b> 0	13-129	13	40
4,4'-DDD	1.1	14.9	22.4	61	16.9	22.4	70	19-143	13	40
Endrin Aldehyde	ND	14.4	22.4	64	14.8	22.4	66	10-129	2	40
Endosulfan Sulfate	ND	12.0	22.4	53	15.3	22.4	68	20-134	25	40
4,4'-DDT	ND	14.9	22.4	67	16.4	22.4	73	19~154	9	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/20/2010 09:52:55 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

Page SuperSet Reference: RR116900

QA/QC Report

**Client:** 

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/22/2010

**Date Analyzed:** 06/29/2010

### Matrix Spike/Duplicate Matrix Spike Summary **Organochlorine Pesticides**

Sample Name:

SRC-2010-1-Comp

Lab Code:

K1006356-001

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1006235

SRC-2010-1-CompMS

KWG1006235-10

SRC-2010-1-CompDMS

KWG1006235-11

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Toxaphene	ND	173	224	77	174	224	78	20-155	1	40
Chlordane	ND	225	224	101	226	224	101	46-139	0	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/20/2010 09:52:58

Form 3A - Organic

Page

1 of 1

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/22/2010

**Date Analyzed:** 06/29/2010

### Matrix Spike/Duplicate Matrix Spike Summary **Organochlorine Pesticides**

Sample Name:

SRC-2010-1-Comp

Lab Code:

**Analysis Method:** 

K1006356-001

**Extraction Method:** 

EPA 3541

8081A

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006235

SRC-2010-1-CompMS

SRC-2010-1-CompDMS

	Sample	KWG1006235-7  Matrix Spike				VG1006235-8 cate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
2,4'-DDE	ND	21.2	22.4	94	22.0	22.4	98	24-141	4	40
2,4'-DDD	0.51	20.1	22.4	88	21.1	22.4	92	12-147	5	40
2,4'-DDT	0.44	20.1	22.4	88	21.1	22.4	92	15-141	5	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/20/2010 09:53:01

Form 3A - Organic

Page

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/24/2010

**Date Analyzéd:** 07/17/2010

### Matrix Spike/Duplicate Matrix Spike Summary **Organochlorine Pesticides**

Sample Name:

Batch QC

Lab Code:

K1006486-001

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1006549

	Sample	Batch QCMS KWG1006549-1 Matrix Spike			Batch QCDMS KWG1006549-2 Duplicate Matrix Spike			%Rec		RPD Limit
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
alpha-BHC	ND	14.3	22.7	63	12.6	22.7	55	23-133	13	40
alpha-Chlordane	ND	13.0	22.7	57	12.3	22.7	54	24-132	6	40
beta-BHC	ND	12.9	22.7	57	11.6	22.7	51	22-142	11	40
gamma-BHC (Lindane)	ND	14.3	22.7	63	12.8	22.7	56	26-135	11	40
delta-BHC	ND	16.1	22.7	71	14.4	22.7	64	25-148	11	40
Heptachlor	ND	16.0	22.7	70	14.3	22.7	63	21-136	11	40
Aldrin	ND	14.2	22.7	63	12.6	22.7	55	22-135	12	40
gamma-Chlordane	ND	14.6	22.7	64	13.2	22.7	58	24-133	10	40
Heptachlor Epoxide	ND	14.5	22.7	64	13.1	22.7	58	25-129	10	40
Endosulfan I	ND	12.8	22.7	56	11.5	22.7	51	15-119	10	40
Dieldrin	ND	14.5	22.7	64	13.2	22.7	58	26-133	10	40
4,4'-DDE	ND	24.5	22.7	108	24.8	22.7	109	22-142	1	40
Endrin	ND	14.5	22.7	64	13.2	22.7	58	22-145	10	40
Endosulfan II	ND	13.0	22.7	57	11.9	22.7	52	13-129	9	40
4,4'-DDD	ND	24.4	22.7	107	23.4	22.7	103	19-143	4	40
Endrin Aldehyde	ND	13.6	22.7	60	12.4	22.7	55	10-129	9	40
Endosulfan Sulfate	ND	14.4	22.7	63	13.2	22.7	58	20-134	9	40
4,4'-DDT	0.26	18.8	22.7	82	18.2	22.7	79	19-154	4	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/20/2010 09:53:04

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356 **Date Extracted:** 06/24/2010

**Date Analyzed:** 07/17/2010

Matrix Spike/Duplicate Matrix Spike Summary **Organochlorine Pesticides** 

Sample Name:

Batch QC

Lab Code:

K1006486-001

Units: ug/Kg

Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

**Analysis Method:** 

8081A

Extraction Lot: KWG1006549

Batch QCMS

**Batch QCDMS** 

KWG1006549-4

KWG1006549-5

		Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name		Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Toxaphene		ND	218	227	96	216	227	95	20-155	1	40
Chlordane		ND	182	227	80	167	227	74	46-139	8	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/20/2010 09:53:07  $u:\Stealth\Crystal.rpt\Form3DMS.rpt$ 

Form 3A - Organic

Page

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/24/2010

**Date Analyzed:** 07/17/2010

Matrix Spike/Duplicate Matrix Spike Summary **Organochlorine Pesticides** 

Sample Name:

Batch QC

Lab Code:

K1006486-001

Basis: Dry

Units: ug/Kg

**Extraction Method:** 

EPA 3541

Level: Low

**Analysis Method:** 

8081A.

Extraction Lot: KWG1006549

Batch QCMS

Batch QCDMS

KWG1006549-7

KWG1006549-8

Analyte Name	Sample Result	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
		Result	Expected	%Rec	Result	Expected	%Rec		RPD	
2,4'-DDE	ND	14.3	22.7	63	15.3	22.7	68	24-141	7	40
2,4'-DDD	0.19	12.8	22.7	55	14.0	22.7	61	12-147	10	40
2,4'-DDT	0.42	15.4	22.7	66	17.0	22.7	73	15-141	10	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/20/2010 09:53:10

Form 3A - Organic

Page 1 of 1

SuperSet Reference:

QA/QC Report

**Client:** 

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/22/2010 **Date Analyzed:** 06/28/2010 -

06/29/2010

### Lab Control Spike Summary **Organochlorine Pesticides**

**Extraction Method:** EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg

Basis: Dry

Level: Low Extraction Lot: KWG1006235

Lab Control Sample

KWG1006235-3 Lab Control Spike

	Day Control Spine			%Rec		
Analyte Name	Result Expected %Re		%Rec	Limits		
alpha-BHC	15.5	20.0	77	36-139	- Live College	
alpha-Chlordane	14.8	20.0	74	41-134		
beta-BHC	15.2	20.0	76	38-142		
gamma-BHC (Lindane)	15.7	20.0	78	40-142		
delta-BHC	16.3	20.0	81	48-145		
Heptachlor	15.0	20.0	75	39-135		
Aldrin	14.5	20.0	73	37-134		
gamma-Chlordane	14.7	20.0	74	41-135		
Heptachlor Epoxide	14.8	20.0	74	45-118		
Endosulfan I	14.6	20.0	73	35-121		
Dieldrin	15.4	20.0	77	46-136		
4,4'-DDE	15.4	20.0	77	46-141		
Endrin	14.4	20.0	72	40-152		
Endosulfan II	14.6	20.0	73	39-128		
4,4'-DDD	15.0	20.0	75	46-146		
Endrin Aldehyde	13.8	20.0	69	32-132		
Endosulfan Sulfate	15.1	20.0	75	43-138		
4,4'-DDT	15.2	20.0	76	46-151		
Toxaphene	146	200	73	53-133		
Chlordane	189	200	94	52-140		
2,4'-DDE	16.9	20.0	85	49-112		
2,4'-DDD	16.7	20.0	84	53-115		
2,4'-DDT	16.7	20.0	83	44-120		

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/20/2010 09:53:13

Form 3C - Organic

Page 1 of 1

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/24/2010 **Date Analyzed:** 07/16/2010

# Lab Control Spike Summary **Organochlorine Pesticides**

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006549

Lab Control Sample KWG1006549-3

Lab Control Spike %Rec Limits **Analyte Name** Result **Expected** %Rec 36-139 alpha-BHC 13.8 20.0 69 alpha-Chlordane 12.4 20.0 62 41-134 38-142 beta-BHC 20.0 13.2 66 gamma-BHC (Lindane) 13.9 20.0 69 40-142 20.0 75 48-145 delta-BHC 15.0 Heptachlor 20.0 60 39-135 12.0 Aldrin 13.3 20.0 37-134 66 41-135 gamma-Chlordane 13.6 20.0 68 Heptachlor Epoxide 13.9 20.0 69 45-118 Endosulfan I 12.6 20.0 63 35-121 46-136 Dieldrin 14.3 20.0 72 4,4'-DDE 17.6 20.0 88 46-141 Endrin 13.6 20.0 68 40-152 Endosulfan II 13.2 20.0 39-128 66 46-146 4.4'-DDD 18.6 20.0 93 Endrin Aldehyde 20.0 62 32-132 12.3 Endosulfan Sulfate 14.1 20.0 71 43-138 4,4'-DDT 17.0 20.0 85 46-151 53-133 Toxaphene 190 200 95 Chlordane 159 200 80 52-140 2,4'-DDE 15.1 20.0 75 49-112 2,4'-DDD 15.0 20.0 75 53-115 2,4'-DDT 16.0 20.0 80 44-120

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/20/2010 09:53:16

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

**Service Request:** K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-1-Comp

Lab Code:

K1006356-001

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Methoxychlor	ND U	1.2	0.22	1	06/22/10	06/29/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	66	21-112	06/29/10	Acceptable	
Decachlorobiphenyl	83	15-130	06/29/10	Acceptable	

Comments:

Printed: 07/22/2010 15:43:56 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-2-Comp

Lab Code:

K1006356-002

Units: ug/Kg

Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

**Analysis Method:** 

8081A

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Methoxychlor	ND U	1.1	0.21	1	06/22/10	06/29/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	64	21-112	06/29/10	Acceptable
Decachlorobiphenyl	73	15-130	06/29/10	Acceptable

Comments:

Printed: 07/22/2010 15:44:00 u:\Stealth\Crystal.rpt\Form1mNew.rpt

...

Merged

1 of 1

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010 **Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-3-Comp

Lab Code:

K1006356-003

**Extraction Method:** 

EPA 3541

Units: ug/Kg

Basis: Dry

Level: Low

**Analysis Method:** 

8081A

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Methoxychlor	ND U	1.1	0.20	1	06/22/10	06/29/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene Decachlorobiphenyl	56 67	21-112 15-130	06/29/10 06/29/10	Acceptable	renament
Decachioroofphenyr	07	13-130	00/29/10	Acceptable	

Comments:

Printed: 07/22/2010 15:44:04  $u: \label{lem:linear_continuous_continuous} u: \label{lem:linear_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/11/2010

**Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-4-Comp

Lab Code:

K1006356-004

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Methoxychlor	ND U	1.1	0.21	1	06/22/10	06/29/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	63	21-112	06/29/10	Acceptable	
Decachlorobiphenyl	77	15-130	06/29/10	Acceptable	

Comments:

Printed: 07/22/2010 15:44:08  $u: \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} $$ u: \label{lem:li$ 

SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010 **Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-5-Comp

Lab Code:

K1006356-005

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	*
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Methoxychlor	ND U	1.2	0.22	1	06/22/10	06/29/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene Decachlorobiphenyl	60 77	21-112 15-130	06/29/10 06/29/10	Acceptable Acceptable	

Comments:

Printed: 07/22/2010 15:44:12  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Page 1 of 1

SuperSet Reference: RR117047

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-6-Comp

Lab Code:

K1006356-006

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

**Analysis Method:** 

8081A

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Methoxychlor	ND U	1.3	0.24	1	06/22/10	06/29/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	61	21-112	06/29/10	Acceptable	
Decachlorobiphenyl	72	15-130	06/29/10	Acceptable	

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

**Sample Matrix:** 

Sediment

Service Request: K1006356

420

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-7-Comp

Lab Code:

Methoxychlor

K1006356-007

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

**Analysis Method:** 

8081A

**Dilution** Date Date Extraction **Analyte Name** MRL MDL Analyzed Result Q **Factor Extracted** Lot Note ND Ui 06/29/10 KWG1006235

1.2

06/22/10

1.2

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	45	21-112	06/29/10	Acceptable	
Decachlorobiphenyl	51	15-130	06/29/10	Acceptable	

Comments:

Printed: 07/22/2010 15:44:20  $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We will still the limit of the$ 

Page

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-7-Z-Comp

Lab Code:

K1006356-008

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Methoxychlor	ND U	1.1	0.20	1	06/22/10	06/29/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	63	21-112	06/29/10	Acceptable	
Decachlorobiphenyl	71	15-130	06/29/10	Acceptable	

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-7-1

Lab Code:

K1006356-016

**Extraction Method:** 

EPA 3541

Analysis Method:

8081A

Units: ug/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Methoxychlor	ND Ui	1.3	0.29	1	06/22/10	06/30/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	·.
Tetrachloro-m-xylene	75	21-112	06/30/10	Acceptable	
Decachlorobiphenyl	88	15-130	06/30/10	Acceptable	

Comments:

Printed: 07/22/2010 15:44:28  $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} I m \label{lem:limit} We w. rpt$ 

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-7-2

Lab Code:

K1006356-017

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Methoxychlor	ND U	1.2	0.23	1	06/22/10	06/30/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	. 67	21-112	06/30/10	Acceptable	
Decachlorobiphenyl	78	15-130	06/30/10	Acceptable	

Comments:

Printed: 07/22/2010 15:44:32  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# **Organochlorine Pesticides**

Sample Name: Lab Code:

SRC-2010-7-3

K1006356-018

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

Anal	lysis	Meth	od:
Ana	lysis	Metn	oa:

8081A

		**		Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Methoxychlor	ND Ui	1.3	0.64	1	06/22/10	06/30/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	63	21-112	06/30/10	Acceptable
Decachlorobiphenyl	73	15-130	06/30/10	Acceptable

Comments:

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-7-4

Lab Code:

K1006356-019

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Methoxychlor	ND Ui	1.3	1.3	1	06/22/10	06/30/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	67	21-112	06/30/10	Acceptable Acceptable
Decachlorobiphenyl	77	15-130	06/30/10	

Comments:

Printed: 07/22/2010 15:44:40  $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt \\$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

**Organochlorine Pesticides** 

Sample Name:

SRC-2010-7-5

Lab Code:

K1006356-020

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg

Basis: Dry

Level: Low

Analyte Name	Result O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
		1.0	0.22	1				***************************************
Methoxychlor	17 P	1.7	0.22	ı	06/22/10	- 06/30/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	·	
Tetrachloro-m-xylene Decachlorobiphenyl	72 83	21-112 15-130	06/30/10 06/30/10	Acceptable Acceptable		

Comments:

Printed: 07/22/2010 15:44:44  $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} Im \label{lem:limit} Im \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} \label{lem:limit} \label{lem:limit} \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} \label{lem:limit} \label{lem:limit} \label{lem:limit} \label{lem:limit} \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/23/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-8-Z-Comp

Lab Code:

K1006356-021

**Extraction Method:** 

**Analysis Method:** 

EPA 3541

Units: ug/Kg Basis: Dry

8081A

Level: Low

	w of the second			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Methoxychlor	ND Ui	2.8	2.8	1	06/24/10	07/16/10	KWG1006549	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	61	21-112	07/16/10	Acceptable
Decachlorobiphenyl	72	15-130	07/16/10	Acceptable

Comments:

SuperSet Reference:

1 of 1

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: NA

Date Received: NA

# **Organochlorine Pesticides**

Sample Name:

Method Blank

Lab Code:

KWG1006235-13

**Extraction Method: Analysis Method:** 

EPA 3541

8081A

Units: ug/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Methoxychlor	ND U	0.50	0.19	1	06/22/10	06/28/10	KWG1006235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	61	21-112	06/28/10	Acceptable Acceptable
Decachlorobiphenyl	79	15-130	06/28/10	

Comments:

Printed: 07/22/2010 15:44:52  $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w: \label{lem:limit} u: \lab$ 

Merged

Form 1A - Organic 233

Page 1 of 1

RR117047 SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: NA

Date Received: NA

**Organochlorine Pesticides** 

Sample Name:

Method Blank

Lab Code:

KWG1006549-10

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

Analysis Method:

8081A

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Methoxychlor	ND U	0.50	0.19	1	06/24/10	07/16/10	KWG1006549	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
etrachloro-m-xylene	59	21-112	07/16/10	Acceptable
Decachlorobiphenyl	64	15-130	07/16/10	Acceptable

Comments:

Printed: 07/22/2010 15:44:56 u:\Stealth\Crystal.rpt\Form1mNew.rpt

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Surrogate Recovery Summary Organochlorine Pesticides** 

**Extraction Method:** EPA 3541

Analysis Method:

8081A

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2
SRC-2010-1-Comp	K1006356-001	66	83
SRC-2010-2-Comp	K1006356-002	64	73
SRC-2010-3-Comp	K1006356-003	56	67
SRC-2010-4-Comp	K1006356-004	63	77
SRC-2010-5-Comp	K1006356-005	60	77
SRC-2010-6-Comp	K1006356-006	61	72
SRC-2010-7-Comp	K1006356-007	45	51
SRC-2010-7-Z-Comp	K1006356-008	63	71
SRC-2010-7-1	K1006356-016	75	88
SRC-2010-7-2	K1006356-017	67	78
SRC-2010-7-3	K1006356-018	63	73
SRC-2010-7-4	K1006356-019	67	. 77
SRC-2010-7-5	K1006356-020	72	83
SRC-2010-8-Z-Comp	K1006356-021	61	72
Method Blank	KWG1006235-13	61	79
Method Blank	KWG1006549-10	59	64
Batch QC	K1006486-001	49	57
SRC-2010-1-CompMS	KWG1006235-1	65	71
SRC-2010-1-CompDMS	KWG1006235-2	68	73
Batch QCMS	KWG1006549-1	51	57
Batch QCDMS	KWG1006549-2	45	54
Lab Control Sample	KWG1006235-3	65	77
Lab Control Sample	KWG1006549-3	61	71

#### Surrogate Recovery Control Limits (%)

Sur1 =	Tetrachloro-m-xylene	21-112
Sur2 =	Decachlorobiphenyl	15-130

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/22/2010 15:45:03

Form 2A - Organic 235

Page RR117047

1 of 1

SuperSet Reference:

 $u:\Stealth\Crystal.rpt\Form2.rpt$ 

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/22/2010 **Date Analyzed:** 06/29/2010

Matrix Spike/Duplicate Matrix Spike Summary **Organochlorine Pesticides** 

Sample Name:

SRC-2010-1-Comp

Lab Code:

K1006356-001

**Extraction Method:** 

**Analysis Method:** 

EPA 3541

8081A

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006235

SRC-2010-1-CompMS

KWG1006235-1

SRC-2010-1-CompDMS

KWG1006235-2

Matrix Spike

**Duplicate Matrix Spike** 

%Rec RPD Sample Result %Rec %Rec Limits **RPD** Limit **Analyte Name** Result **Expected** Result Expected 22.4 22.4 9 Methoxychlor ND 14.0 62 15.2 68 24-151 40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/22/2010 15:45:06 

Form 3A - Organic 236

SuperSet Reference: RR117047

Page

1 of

QA/QC Report

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/24/2010

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006549

**Date Analyzed:** 07/17/2010

# Matrix Spike/Duplicate Matrix Spike Summary **Organochlorine Pesticides**

Sample Name:

Batch QC

Lab Code:

K1006486-001

**Extraction Method:** 

EPA 3541

8081A

**Analysis Method:** 

Batch QCMS

Batch QCDMS

KWG1006549-1

KWG1006549-2

Matrix Spike

Sample

**Duplicate Matrix Spike** 

%Rec

RPD Limit

**RPD** Result %Rec %Rec Limits **Analyte Name** Result **Expected** Result **Expected** 7 ND 17.7 22.7 78 16.5 22.7 73 Methoxychlor 24-151 40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/22/2010 15:45:09 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic 237

SuperSet Reference: RR117047

Page

1 of 1

QA/QC Report

Client:

Pacific EcoRisk Laboratories

**Project:** 

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/22/2010

**Date Analyzed:** 06/28/2010

Lab Control Spike Summary **Organochlorine Pesticides** 

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg

Basis: Dry Level: Low

Extraction Lot: KWG1006235

Lab Control Sample KWG1006235-3

%Rec

Lab Control Spike

Limits

**Analyte Name** Methoxychlor

Result 14.9

Expected 20.0 75

%Rec

42-147

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/22/2010 15:45:12 u:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

RR117047 SuperSet Reference:

Page

1 of 1

238

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/24/2010

**Date Analyzed:** 07/16/2010

**Lab Control Spike Summary Organochlorine Pesticides** 

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006549

Lab Control Sample KWG1006549-3

**Expected** 

Lab Control Spike

%Rec Limits

**Analyte Name** Methoxychlor

Result 15.6

20.0 78

%Rec

42-147

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/22/2010 15:45:15  $u:\Stealth\Crystal.rpt\Form3LCS.rpt$ 

Form 3C - Organic 239

SuperSet Reference:

RR117047

Page

1 of 1

# **Polychlorinated Biphenyls**

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

# Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-1-Comp

Lab Code:

K1006356-001

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3541

Level: Low

Analysis Method:

8082

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	. 12	2.4	1	- 06/22/10	07/03/10	KWG1006234	
Aroclor 1221	ND U	23	2.4	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1232	ND U	12	2.4	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1242	ND U	12	2.4	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1248	ND U	12	2.4	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1254	<b>10</b> J	12	2.4	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1260	<b>9.6</b> J	12	2.4	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1262	ND U	12	2.4	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1268	ND U	12	2.4	1	06/22/10	07/03/10	KWG1006234	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	,
Decachlorobiphenyl	96	35-133	07/03/10	Acceptable	

Comments:

Printed: 07/15/2010 09:08:50 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010 **Date Received:** 06/18/2010

# Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-2-Comp

Lab Code:

K1006356-002

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3541

Level: Low

Analysis Method: 8082

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	11	2.3	1	06/22/10	07/03/10	KWG1006234	10001110011011011011011011011
Aroclor 1221	ND U	22	2.3	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1232	ND U	11	2.3	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1242	ND U	11	2.3	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1248	ND U	11	2.3	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1254	ND Ui	11	4.2	. 1	06/22/10	07/03/10	KWG1006234	
Aroclor 1260	ND Ui	11	5,5	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1262	ND U	11	2.3	. 1	06/22/10	07/03/10	KWG1006234	
Aroclor 1268	ND U	11	2.3	1	06/22/10	07/03/10	KWG1006234	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	96	35-133	07/03/10	Acceptable

Comments:

Printed: 07/15/2010 09:08:55 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

# Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-3-Comp

Lab Code:

K1006356-003

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3541

Level: Low

Analysis Method:

8082

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	11	2.2	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1221	ND U	21	2.2	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1232	ND U	11	2.2	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1242	ND U	11	2.2	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1248	ND U	11	2.2	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1254	<b>3.8</b> JP	11	2.2	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1260	<b>5.5</b> J	11	2.2	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1262	ND U	11	2.2	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1268	ND U	. 11	2.2	1	06/22/10	07/03/10	KWG1006234	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	97	35-133	07/03/10	Acceptable	Language Control of the Control of t

Comments:

Printed: 07/15/2010 09:09:00 u:\Stealth\Crystal.rpt\Form1mNew.rpt

RR116716

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/11/2010

**Date Received:** 06/18/2010

# Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-4-Comp

Lab Code:

K1006356-004

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3541

Level: Low

Analysis Method: 8082

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	11	2.3	1	06/22/10	07/03/10	KWG1006234	CONTRACTOR OF CO
Aroclor 1221	ND U	22	2.3	Í	06/22/10	07/03/10	KWG1006234	
Aroclor 1232	ND U	11	2.3	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1242	ND U	11	2.3	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1248	ND U	11	2.3	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1254	ND Ui	11	4.4	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1260	ND U	11	2.3	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1262	ND U	11	2.3	-1	06/22/10	07/03/10	KWG1006234	
Aroclor 1268	ND U	11	2.3	1	06/22/10	07/03/10	KWG1006234	

Surrogate Name %Rec	Dutc	Note	Control ec Limits	rrogate Name
Decachlorobiphenyl 108	35-133 07/03/10	Acceptable	35-133	ecachlorobiphenyl

Comments:

Merged

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

# Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-5-Comp

Lab Code:

K1006356-005

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3541

Analysis Method:

8082

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	12	2.4	l	06/22/10	07/03/10	KWG1006234	THE PARTY OF THE P
Aroclor 1221	ND U	23	2.4	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1232	ND U	12	2.4	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1242	ND U	12	2.4	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1248	ND U	12	2.4	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1254	<b>8.8</b> J	12	2.4	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1260	<b>8.7</b> J	12	2.4	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1262	ND U	12	2.4	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1268	ND U	12	2.4	1	06/22/10	07/03/10	KWG1006234	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	98	35-133	07/03/10	Acceptable	

Comments:

Printed: 07/15/2010 09:09:10

 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Merged

Form 1A Organic

Page 1 of 1

SuperSet Reference: RR116716

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

# Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-6-Comp

Lab Code:

K1006356-006

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3541

Level: Low

8082 Analysis Method:

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	13	2.6	l	06/22/10	07/12/10	KWG1006234	200 CARLO SANDANIA
Aroclor 1221	ND U	25	2.6	1	06/22/10	07/12/10	KWG1006234	
Aroclor 1232	ND U	13	2.6	1	06/22/10	07/12/10	KWG1006234	
Aroclor 1242	ND Ui	13	8.9	1	06/22/10	07/12/10	KWG1006234	
Aroclor 1248	ND U	13	2.6	1	06/22/10	07/12/10	KWG1006234	
Aroclor 1254	<b>13</b> J	13	2.6	. 1	06/22/10	07/12/10	KWG1006234	
Aroclor 1260	<b>5.0</b> J	13	2.6	1	06/22/10	07/12/10	KWG1006234	
Aroclor 1262	ND U	13	2.6	1	06/22/10	07/12/10	KWG1006234	
Aroclor 1268	ND U	13	2.6	1	06/22/10	07/12/10	KWG1006234	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	72	35-133	07/12/10	Acceptable	

Comments:

Printed: 07/15/2010 09:09:15  $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} W: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} W: \label{lem:limit} u: \label{lem:limit} W: \lab$ 

Merged

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-7-Comp

Lab Code:

K1006356-007

Units: ug/Kg Basis: Dry

Extraction Method:

Analysis Method:

EPA 3541 8082

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	12	2.5	1	06/22/10	07/03/10	KWG1006234	ost (accomment out)
Aroclor 1221	ND U	24	2.5	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1232	ND U	12	2.5	1 .	06/22/10	07/03/10	KWG1006234	
Aroclor 1242	34	12	2.5	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1248	ND U	12	2.5	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1254	47	12	2.5	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1260	45	12	2.5	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1262	ND U	. 12	2.5	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1268	ND U	12	2.5	1	06/22/10	07/03/10	KWG1006234	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	76	35-133	07/03/10	Acceptable	

Comments:

Printed: 07/15/2010 09:09:20

 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Merged

Page 1 of 1

RR116716 SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010 **Date Received:** 06/18/2010

# Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-7-Z-Comp

Lab Code:

K1006356-008

Extraction Method:

EPA 3541

Analysis Method:

8082

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Aroclor 1016	ND U	11	2.3	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1221	ND U	22	2.3	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1232	ND U	11	2.3	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1242	91	11	2.3	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1248	ND U	11	2.3	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1254	100	11	2.3	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1260	64	11	2.3	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1262	ND U	11	2.3	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1268	ND U	11	2.3	1	06/22/10	07/03/10	KWG1006234	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	108	35-133	07/03/10	Acceptable	

Comments:

RR116716

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: 06/08/2010

**Date Received:** 06/18/2010

# $Polychlorinated\ Biphenyls\ (PCBs)$

Sample Name:

SRC-2010-1-B-Comp

Lab Code:

K1006356-009

Extraction Method:

EPA 3541

Analysis Method:

8082

Units: ug/Kg

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	10	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1221	ND U	20	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1232	ND U	10	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1242	ND U	10	2.1	1	06/22/10	07/03/10	KWG1006234	ALL CONTRACTOR CONTRACTOR
Aroclor 1248	ND U	10	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1254	ND Ui	10	5.2	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1260	ND Ui	10	6.7	1 .	06/22/10	07/03/10	KWG1006234	
Aroclor 1262	ND U	10	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1268	ND U	10	2.1	1	06/22/10	07/03/10	KWG1006234	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	88	35-133	07/03/10	Acceptable	

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010 **Date Received:** 06/18/2010

# Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-2-B-Comp

Lab Code:

K1006356-010

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

Analysis Method:

8082

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	9.9	2.1	]	06/22/10	07/03/10	-KWG1006234	teronomento en la companya de la co
Aroclor 1221	ND U	20	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1232	ND U	9.9	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1242	ND U	9,9	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1248	ND U	9.9	2.1	- 1	06/22/10	07/03/10	KWG1006234	
Aroclor 1254	ND Ui	9.9	8.9	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1260	ND Ui	11	11	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1262	ND U	9.9	2.1	- 1	06/22/10	07/03/10	KWG1006234	
Aroclor 1268	ND U	9.9	2.1	1 .	06/22/10	07/03/10	KWG1006234	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	91	35-133	07/03/10	Acceptable	

Comments:

Page

RR116716

Merged

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

# Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-3-B-Comp

Lab Code:

K1006356-011

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

Analysis Method:

8082

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	11	2.2	1	06/22/10	07/07/10	KWG1006234	Management of the Paris
Aroclor 1221	ND U	21	2.2	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1232	ND U	11	2.2	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1242	ND Ui	11	7.6	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1248	ND U	11	2.2	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1254	ND Ui	14	14	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1260	18	11	2.2	1	06/22/10	07/07/10	KWG1006234	the between the state of the st
Aroclor 1262	ND U	11	2.2	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1268	ND U	11	2.2	1	06/22/10	07/07/10	KWG1006234	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	124	35-133	07/07/10	Acceptable	

Comments:

Printed: 07/15/2010 09:09:40 

RR116716

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/11/2010

**Date Received:** 06/18/2010

# Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-4-B-Comp

Lab Code:

K1006356-012

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

Analysis Method:

8082

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	9.8	2.1	1	06/22/10	07/08/10	KWG1006234	anur-enter-ana-anter-anach
Aroclor 1221	ND U	20	2.1	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1232	ND U	9.8	2.1	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1242	ND U	9.8	2.1	1	06/22/10	07/08/10	KWG1006234	A Shirt Vanishing and Company
Aroclor 1248	ND U	9.8	2.1	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1254	ND Ui	12	12	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1260	15	9.8	2.1	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1262	ND U	9.8	2.1	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1268	ND U	9.8	2.1	1	06/22/10	07/08/10	KWG1006234	

Surrogate Name %Rec	Control Date Limits Analyzed	d Note
Decachlorobiphenyl 130	35-133 07/08/10	) Acceptable

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

# Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-5-B-Comp

Lab Code:

K1006356-013

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3541

Level: Low

Analysis Method: 8

8082

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	11	2.2	. 1	06/22/10	07/08/10	KWG1006234	
Aroclor 1221	ND U	21	2.2	1	06/22/10	07/08/10	KWG1006234	
Aroelor 1232	ND U	11	2.2	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1242	ND U	11	2.2	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1248	ND U	11	2.2	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1254	ND Ui	19	19	1 -	06/22/10	07/08/10	KWG1006234	
Aroclor 1260	20	11	2.2	1	-06/22/10	07/08/10	KWG1006234	
Aroclor 1262	ND 0	11	2.2	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1268	ND U	11	2.2	1	06/22/10	07/08/10	KWG1006234	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	127	35-133	07/08/10	Acceptable	

Comments:

Printed: 07/15/2010 09:09:50 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Page 1 of 1

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** .06/18/2010

# Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-6-B-Comp

Lab Code:

K1006356-014

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

Analysis Method:

8082

Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note	
ND U	11	2.4	1	06/22/10	07/03/10	KWG1006234	- Company of the Comp	
ND U	22	2.4	1	06/22/10	07/03/10	KWG1006234		
ND U	11	2.4	1	06/22/10	07/03/10	KWG1006234		
<b>24</b> P	11	2.4	]	06/22/10	07/03/10	KWG1006234		
ND U	11	2.4	1	06/22/10	07/03/10	KWG1006234		
37	11	2.4	1	06/22/10	07/03/10	KWG1006234		
29	11	2.4	1	06/22/10	07/03/10	KWG1006234		
ND U	11	2.4	1	06/22/10	07/03/10	KWG1006234		
ND U	11	2.4	1	06/22/10	07/03/10	KWG1006234		
	ND U ND U ND U 24 P ND U 37 29 ND U	ND U 11 ND U 22 ND U 11  24 P 11 ND U 11  37 11  29 11 ND U 11	ND U 11 2.4 ND U 22 2.4 ND U 11 2.4 ND U 11 2.4 ND U 11 2.4 ND U 11 2.4 37 11 2.4 29 11 2.4 ND U 11 2.4	Result Q         MRL         MDL         Factor           ND U         11         2.4         1           ND U         22         2.4         1           ND U         11         2.4         1           24 P         11         2.4         1           ND U         11         2.4         1           37         11         2.4         1           29         11         2.4         1           ND U         11         2.4         1	Result Q         MRL         MDL         Factor         Extracted           ND U         11         2.4         1         06/22/10           ND U         22         2.4         1         06/22/10           ND U         11         2.4         1         06/22/10           ND U         11         2.4         1         06/22/10           ND U         11         2.4         1         06/22/10           37         11         2.4         1         06/22/10           29         11         2.4         1         06/22/10           ND U         11         2.4         1         06/22/10	Result Q         MRL         MDL         Factor         Extracted         Analyzed           ND U         11         2.4         1         06/22/10         07/03/10           ND U         22         2.4         1         06/22/10         07/03/10           ND U         11         2.4         1         06/22/10         07/03/10           ND U         11         2.4         1         06/22/10         07/03/10           ND U         11         2.4         1         06/22/10         07/03/10           37         11         2.4         1         06/22/10         07/03/10           29         11         2.4         1         06/22/10         07/03/10           ND U         11         2.4         1         06/22/10         07/03/10	Result Q         MRL         MDL         Factor         Extracted         Analyzed         Lot           ND U         11         2.4         1         06/22/10         07/03/10         KWG1006234           ND U         22         2.4         1         06/22/10         07/03/10         KWG1006234           ND U         11         2.4         1         06/22/10         07/03/10         KWG1006234           ND U         11         2.4         1         06/22/10         07/03/10         KWG1006234           ND U         11         2.4         1         06/22/10         07/03/10         KWG1006234           29         11         2.4         1         06/22/10         07/03/10         KWG1006234           ND U         11         2.4         1         06/22/10         07/03/10         KWG1006234	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	. 107	35-133	07/03/10	Acceptable	

Comments:

Printed: 07/15/2010 09:09:55  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

RR116716

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-7-B-Comp

Lab Code:

K1006356-015

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3541

Level: Low

Analysis Method:

8082

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Aroclor 1016	ND U	9.5	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1221	ND U	19	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1232	ND U	9.5	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1242	49	9.5	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1248	ND U	9.5	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1254	51	9.5	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1260	46	9.5	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1262	ND U	9.5	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1268	ND U	9.5	2.1	1	06/22/10	07/03/10	KWG1006234	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	101	35-133	07/03/10	Acceptable

Comments:

Printed: 07/15/2010 09:10:00 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-7-1

Lab Code:

K1006356-016

Units: ug/Kg
Basis: Dry

Extraction Method:

EPA 3541

Level: Low

Analysis Method:

8082

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	13	2.7	1	06/22/10	07/07/10	KWG1006234	Part Color C
Aroclor 1221	ND U	26	2.7	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1232	ND U	13	2.7	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1242	<b>9.2</b> J	13	2.7	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1248	ND U	13	2.7	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1254	ND U	13	2.7	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1260	14	13	2.7	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1262	ND U	13	2.7	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1268	ND U	13	2.7	1	06/22/10	07/07/10	KWG1006234	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	112	35-133	07/07/10	Acceptable	-

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

## Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-7-2

Lab Code:

K1006356-017

**Extraction Method:** 

EPA 3541

Analysis Method:

8082

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	12	2.6	l	06/22/10	07/08/10	KWG1006234	MARTINI PROPERTY CONTRACTOR OF THE PROPERTY CONT
Aroclor 1221	ND U	24	2.6	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1232	ND U	12	2.6	. 1	06/22/10	07/08/10	KWG1006234	
Aroclor 1242	ND U	12	2.6	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1248	· ND U	12	2.6	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1254	42	12	2.6	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1260	33	12	2.6	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1262	ND U	12	2.6	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1268	ND U	12	2.6	1	06/22/10	07/08/10	KWG1006234	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
ecachlorobiphenyl	112	35-133	07/08/10	Acceptable	

Comments:

Printed: 07/15/2010 09:10:10 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010 **Date Received:** 06/18/2010

# Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-7-3

Lab Code:

K1006356-018

Extraction Method:

EPA 3541

Analysis Method:

8082

Units: ug/Kg

Basis: Dry

Level: Low

Analyte Name	Result O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	13	2.6	1	06/22/10	07/07/10	KWG1006234	CONTRACTOR INCIDENT
Aroclor 1221	ND U	25	2.6	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1232	ND U	13	2.6	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1242	27	13	2.6	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1248	ND U	13	2.6	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1254	42	13	2.6	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1260	37	13	2.6	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1262	ND U	13	2.6	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1268	ND U	13	2.6	I	06/22/10	07/07/10	KWG1006234	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	104	35-133	07/07/10	Acceptable	

Comments:

Printed: 07/15/2010 09:10:15

 $u: \label{lem:limin} \begin{tabular}{ll} $u: \S tealth \complex \end{tabular} \begin{tabular}{ll} $u: \scalebox{\color=limin} \begin{tabular}{ll} $u: \scalebox{\color=limin$ 

Merged

Form 1A Organic 258

Page 1 of 1

RR116716 SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

## Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-7-4

Lab Code:

K1006356-019

Basis: Dry

Extraction Method:

EPA 3541

Level: Low

Units: ug/Kg

	) II 1 1 1 1 0 0 1 1 0 CE 1	1311155
Analysis	Method:	8082

Analyte Name	Result O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
With the Light	THE RESIDENCE OF THE PARTY OF T	MINI	1411/17	ractor	Extracteu	Anaryzeu		TAOFE
Aroclor 1016	ND U	13	2.7	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1221	ND U	26	2.7	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1232	ND U	13	2.7	1	.06/22/10	07/07/10	KWG1006234	
Aroclor 1242	55	13	2.7	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1248	ND U	. 13	2.7	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1254	97	13	2.7	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1260	66	13	2.7	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1262	ND U	13	2.7	1	06/22/10	07/07/10	KWG1006234	
Aroclor 1268	ND U	13	2.7	1	06/22/10	-07/07/10	KWG1006234	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
ecachlorobiphenyl	106	35-133	07/07/10	Acceptable	

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

## Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-7-5

Lab Code:

K1006356-020

**Extraction Method:** 

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Analysis Method:

8082

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	12	2.4	1	06/22/10	07/08/10	KWG1006234	<del></del>
Aroclor 1221	ND U	23	2.4	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1232	ND U	12	2.4	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1242	ND U	12	2.4	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1248	180	12	2.4	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1254	230	12	2.4	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1260	170	12	2.4	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1262	ND U	12	2.4	1	06/22/10	07/08/10	KWG1006234	
Aroclor 1268	ND U	12	2.4	1	06/22/10	07/08/10	KWG1006234	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	106	35-133	07/08/10	Acceptable	

Comments:

Printed: 07/15/2010 09:10:25  $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt \label{lem:limit} \\$ 

RR116716

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/23/2010

## Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-8-Z-Comp

Lab Code:

K1006356-021

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3541

Level: Low

Analysis Method:

8082

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND Ui	50	50	]	06/24/10	07/07/10	KWG1006548	
Aroclor 1221	ND Ui	23	23	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1232	ND Ui	110	110	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1242	ND Ui	29	29	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1248	ND Ui	61	61	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1254	ND Ui	58	58	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1260	76	12	2.4	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1262	ND U	12	2.4	1	06/24/10	07/07/10	-KWG1006548	
Aroclor 1268	ND U	12	2.4	1	06/24/10	07/07/10	KWG1006548	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	97	35-133	07/07/10	Acceptable

Comments:

Printed: 07/15/2010 09:10:30 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: NA Date Received: NA

# Polychlorinated Biphenyls (PCBs)

Sample Name:

Method Blank

Lab Code:

KWG1006234-4

Units: ug/Kg

Basis: Dry

Extraction Method:

EPA 3541

Level: Low

-	Web	244.61	VII	IVICUA	ou.	1./1	<i>2</i> 3
4	na	lysi	ı M	<b>Iethod</b>	l:	80	82

2

Analyte Name	Result O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	5.0	2.1	1	06/22/10	07/03/10	KWG1006234	OLYMPIA SERVICE CONTRACTOR
Aroclor 1221	ND U	10	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1232	ND U	5.0	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1242	ND U	5.0	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1248	ND U	5:0	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1254	ND U	5.0	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1260	ND U	5.0	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1262	ND U	5.0	2.1	1	06/22/10	07/03/10	KWG1006234	
Aroclor 1268	ND U	5.0	2.1	. 1	06/22/10	07/03/10	KWG1006234	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	102	35-133	07/03/10	Acceptable	_

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: NA Date Received: NA

## Polychlorinated Biphenyls (PCBs)

Sample Name:

Method Blank

Lab Code:

KWG1006548-4

Extraction Method:

EPA 3541

Analysis Method:

8082

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	5.0	2.1	l	06/24/10	07/07/10	KWG1006548	
Aroclor 1221	ND U	10	2.1	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1232	ND U	5.0	2.1	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1242	ND U	5.0	2.1	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1248	ND U	5.0	2.1	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1254	ND U	5.0	2.1	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1260	ND U	5.0	2.1	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1262	ND U	5.0	2.1	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1268	ND U	5.0	2.1	I	06/24/10	07/07/10	KWG1006548	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	87	35-133	07/07/10	Acceptable

Comments:

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Surrogate Recovery Summary

Extraction Method: EPA 3541

Analysis Method:

8082

Polychlorinated Biphenyls (PCBs)

Service Request: K1006356

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1
SRC-2010-1-Comp	K1006356-001	96
SRC-2010-2-Comp	K1006356-002	96
SRC-2010-3-Comp	K1006356-003	97
SRC-2010-4-Comp	K1006356-004	108
SRC-2010-5-Comp	K1006356-005	98
SRC-2010-6-Comp	K1006356-006	72
SRC-2010-7-Comp	K1006356-007	76
SRC-2010-7-Z-Comp	K1006356-008	108
SRC-2010-1-B-Comp	K1006356-009	88
SRC-2010-2-B-Comp	K1006356-010	91
SRC-2010-3-B-Comp	K1006356-011	124
SRC-2010-4-B-Comp	K1006356-012	130
SRC-2010-5-B-Comp	K1006356-013	127
SRC-2010-6-B-Comp	K1006356-014	107
SRC-2010-7-B-Comp	K1006356-015	101
SRC-2010-7-1	K1006356-016	112
SRC-2010-7-2	K1006356-017	112
SRC-2010-7-3	K1006356-018	104
SRC-2010-7-4	K1006356-019	106
SRC-2010-7-5	K1006356-020	106
SRC-2010-8-Z-Comp	K1006356-021	97
Method Blank	KWG1006234-4	102
Method Blank	KWG1006548-4	87
Batch QC	K1006486-001	78
SRC-2010-1-CompMS	KWG1006234-1	99
SRC-2010-I-CompDMS	KWG1006234-2	92
Batch QCMS	KWG1006548-1	74
Batch QCDMS	KWG1006548-2	68
Lab Control Sample	KWG1006234-3	99
Lab Control Sample	KWG1006548-3	88

#### Surrogate Recovery Control Limits (%)

Sur1 = Decachlorobiphenyl

35-133

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/15/2010 09:10:47 u:\Stealth\Crystal.rpt\Form2.rpt

RR116716

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/22/2010

**Date Analyzed:** 07/03/2010

## Matrix Spike/Duplicate Matrix Spike Summary Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-1-Comp

Lab Code:

K1006356-001

**Extraction Method:** 

EPA 3541

Analysis Method:

8082

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006234

SRC-2010-1-CompMS

KWG1006234-1

SRC-2010-1-CompDMS

KWG1006234-2

	Sample	N	Aatrix Spike	Spike Dup		Duplicate Matrix Spike				RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	%Rec Limits	RPD	Limit
Aroclor 1016	ND	198	224	88	196	224	88	27-174	1	40
Aroclor 1260	9.6	221	224	94	228	224	98	20-185	3	40-

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/15/2010 09:10:50  $u:\Stealth\Crystal.rpt\Form3DMS.rpt$ 

Form 3A26 Fganic

Page I of 1

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/24/2010

**Date Analyzed:** 07/08/2010

Matrix Spike/Duplicate Matrix Spike Summary Polychlorinated Biphenyls (PCBs)

Sample Name:

Batch QC

Lab Code:

K1006486-001

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3541

Level: Low

Analysis Method:

8082

Extraction Lot: KWG1006548

Batch QCMS

KWG1006548-1

Batch QCDMS

KWG1006548-2

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit	
Aroclor 1016	ND	162	227	71	144	227	63	27-174	12	40	
Aroclor 1260	3.7	179	227	77	157	227	67	20-185	13	40	

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/15/2010 09:10:53 u:\Stealth\Crystal.rpt\Form3DMS.rpt

RR116716

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/22/2010

**Date Analyzed:** 07/03/2010

Lab Control Spike Summary Polychlorinated Biphenyls (PCBs)

Extraction Method: EPA 3541

Analysis Method:

8082

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1006234

Lab Control Sample KWG1006234-3

Lab Control Spike %Rec Limits Analyte Name Result Expected %Rec 169 Aroclor 1016 200 85 48-121 Aroclor 1260 195 200 97 53-129

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

Printed: 07/15/2010 09:10:56 u:\Stealth\Crystal.rpt\Form3LCS.rpt

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/24/2010

**Date Analyzed:** 07/07/2010

Lab Control Spike Summary Polychlorinated Biphenyls (PCBs)

Extraction Method: EPA 3541

Analysis Method:

8082

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1006548

Lab Control Sample KWG1006548-3

Lab Control Spike %Rec Limits Analyte Name %Rec Result Expected 169 Aroclor 1016 200 84 48-121 Aroclor 1260 177 200 88 53-129

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/15/2010 09:10:59 u:\Stealth\Crystal.rpt\Form3LCS.rpt

RR116716

**Chlorinated Herbicides** 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

## **Chlorinated Herbicides**

Sample Name:

SRC-2010-1-Comp

Lab Code:

K1006356-001

Units: ug/Kg Basis: Dry

**Extraction Method:** 

Method

Analysis Method:

8151A

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
MCPP	ND U	12000	2900	l	06/22/10	06/29/10	KWG1006196	
MCPA	ND U	12000	2900	1	06/22/10	06/29/10	KWG1006196	
Dichlorprop	ND U	56	11	1	06/22/10	06/29/10	KWG1006196	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,4-Dichlorophenylacetic Acid	60	27-166	06/29/10	Acceptable	

Comments:

Printed: 07/08/2010 09:45:33  $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} I m \label{lem:limit} I m \label{lem:limit} Very stal. rpt \label{lem:limit} Form \label{lem:limit} I m \label{lem:limit} Very stal. rpt \label{lem:limit} Very stal.$ 

Merged

Page 1 of 1

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010 **Date Received:** 06/18/2010

## **Chlorinated Herbicides**

Sample Name:

SRC-2010-2-Comp

Lab Code:

K1006356-002

Units: ug/Kg

Basis: Dry

Extraction Method:

Method

Level: Low

Analysis Method:

8151A

		la-t. 1	•	Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
MCPP	ND Ui	11000	9700	1	06/22/10	06/29/10	KWG1006196	
MCPA	ND U	11000	2800	1	06/22/10	06/29/10	KWG1006196	
Dichlorprop	ND U	54	9.7	1	06/22/10	06/29/10	KWG1006196	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2,4-Dichlorophenylacetic Acid	63	27-166	06/29/10	Acceptable

Comments:

Printed: 07/08/2010 09:45:37

Merged

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Page 1 of 1

RR116382 SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010 **Date Received:** 06/18/2010

## **Chlorinated Herbicides**

Sample Name:

SRC-2010-3-Comp

Lab Code:

K1006356-003

Units: ug/Kg Basis: Dry

**Extraction Method:** 

Method

Level: Low

Analysis	Method:	8151A

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
MCPP	ND	Ui	11000	9300	1	06/22/10	06/29/10	KWG1006196	
MCPA	ND	U	11000	2700	1	06/22/10	06/29/10	KWG1006196	
Dichlorprop	ND	U	52	9.5	1	06/22/10	06/29/10	KWG1006196	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,4-Dichlorophenylacetic Acid	63	27-166	06/29/10	Acceptable	

Comments:

Printed: 07/08/2010 09:45:41 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/11/2010

**Date Received:** 06/18/2010

## **Chlorinated Herbicides**

Sample Name:

SRC-2010-4-Comp

Lab Code:

K1006356-004

Units: ug/Kg

Basis: Dry

Extraction Method:

Method

Level: Low

Analysis Method:

8151A

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
MCPP	ND Ui	11000	11000	1	06/22/10	06/29/10	KWG1006196	
MCPA	ND U	11000	2800	1	06/22/10	06/29/10	KWG1006196	
Dichlorprop	ND U	53	9,6	1	06/22/10	06/29/10	KWG1006196	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,4-Dichlorophenylacetic Acid	62	27-166	06/29/10	Acceptable	

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

#### **Chlorinated Herbicides**

Sample Name:

SRC-2010-5-Comp

Lab Code:

K1006356-005

Method

Extraction Method: Analysis Method:

8151A

Units: ug/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
MCPP	ND Ui	12000	12000	1	06/22/10	06/30/10	KWG1006196	
MCPA	ND · U	12000	3000	1	06/22/10	06/30/10	KWG1006196	
Dichlorprop	ND U	57	11	1	06/22/10	06/30/10	KWG1006196	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,4-Dichlorophenylacetic Acid	61	27-166	06/30/10	Acceptable	

Comments:

Printed: 07/08/2010 09:45:49  $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We will still the limit of the$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

### **Chlorinated Herbicides**

Sample Name:

SRC-2010-6-Comp

Lab Code:

K1006356-006

Units: ug/Kg

Basis: Dry

Extraction Method: Method

Level: Low

Analysis Method:

8151A

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
MCPP	ND Ui	13000	13000	1	06/22/10	06/30/10	KWG1006196	
MCPA	ND U	13000	3200	1	06/22/10	06/30/10	KWG1006196	
Dichlorprop	ND U	61	12	1	06/22/10	06/30/10	KWG1006196	

Comments:

Printed: 07/08/2010 09:45:53  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

## **Chlorinated Herbicides**

Sample Name:

SRC-2010-7-Comp

Lab Code:

K1006356-007

Units: ug/Kg

Basis: Dry

**Extraction Method:** 

Method

Level: Low

Analysis Method:

8151A

				<b>Dilution</b>	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
MCPP	ND U	60000	16000	5	06/22/10	06/30/10	KWG1006196	
MCPA	ND U	60000	16000	5	06/22/10	06/30/10	KWG1006196	
Dichlorprop	ND U	300	54	5	06/22/10	06/30/10	KWG1006196	

Surrogate Name %	Control %Rec Limits	Date Analyzed	Note
2,4-Dichlorophenylacetic Acid	77 27-166	06/30/10	Acceptable

Comments:

Printed: 07/08/2010 09:45:57  $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

#### Chlorinated Herbicides

Sample Name:

SRC-2010-7-Z-Comp

Lab Code:

K1006356-008

Units: ug/Kg Basis: Dry

Extraction Method:

Method

Level: Low

Analysis Method:

8151A

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
MCPP	ND U	53000	14000	5	06/22/10	06/30/10	KWG1006196	
MCPA	ND U	53000	14000	5	06/22/10	06/30/10	KWG1006196	
Dichlorprop	ND U	270	48	5	06/22/10	06/30/10	KWG1006196	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,4-Dichlorophenylacetic Acid	84	27-166	06/30/10	Acceptable	

Comments:

Printed: 07/08/2010 09:46:01  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

#### **Chlorinated Herbicides**

Sample Name:

SRC-2010-7-1

Lab Code:

K1006356-016

Units: ug/Kg

Basis: Dry

**Extraction Method:** 

Method

Level: Low

Analysis Method:

8151A

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
MCPP	ND U	13000	3400	1	06/22/10	06/30/10	KWG1006196	
MCPA	ND U	13000	3400	1	06/22/10	06/30/10	KWG1006196	
Dichlorprop	ND U	64	12	1	06/22/10	06/30/10	KWG1006196	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2,4-Dichlorophenylacetic Acid	61	27-166	06/30/10	Acceptable

Comments:

Printed: 07/08/2010 09:46:05  $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w: \label{lem:limit} u: \label{lem:limit$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

**Chlorinated Herbicides** 

Sample Name: Lab Code:

SRC-2010-7-2

K1006356-017

Units: ug/Kg

Basis: Dry

**Extraction Method:** 

Method

Level: Low

Analysis Method:

8151A

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
MCPP	ND U	60000	16000	5	06/22/10	06/30/10	KWG1006196	
MCPA	ND U	60000	16000	5	06/22/10	06/30/10	KWG1006196	
Dichlorprop	ND U	300	55	5	06/22/10	06/30/10	KWG1006196	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,4-Dichlorophenylacetic Acid	76	27-166	06/30/10	Acceptable	

Comments:

Printed: 07/08/2010 09:46:09  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356 **Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

### **Chlorinated Herbicides**

Sample Name:

SRC-2010-7-3

Lab Code:

K1006356-018

Units: ug/Kg

Basis: Dry

Extraction Method:

Method

Level: Low

Analysis Method:

8151A

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
MCPP	ND U	60000	16000	5	06/22/10	06/30/10	KWG1006196	***************************************
MCPA	ND U	60000	16000	5	06/22/10	06/30/10	KWG1006196	
Dichlorprop	ND U	300	55	5	06/22/10	06/30/10	KWG1006196	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,4-Dichlorophenylacetic Acid	75	27-166	06/30/10	Acceptable	

Comments:

Printed: 07/08/2010 09:46:13

 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Merged

SuperSet Reference: RR116382

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

#### **Chlorinated Herbicides**

Sample Name:

SRC-2010-7-4

Lab Code:

K1006356-019

Units: ug/Kg Basis: Dry

Extraction Method:

Method

Level: Low

Analysis Method: 8151A

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
MCPP	ND U	63000	17000	5	06/22/10	06/30/10	KWG1006196	
MCPA	ND U	63000	17000	5	06/22/10	06/30/10	KWG1006196	
Dichlorprop	ND U	320	57	5	06/22/10	06/30/10	KWG1006196	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,4-Dichlorophenylacetic Acid	81	27-166	06/30/10	Acceptable	

Comments:

Printed: 07/08/2010 09:46:17 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

## **Chlorinated Herbicides**

Sample Name:

SRC-2010-7-5

Lab Code:

K1006356-020

Units: ug/Kg Basis: Dry

Extraction Method:

Method

Level: Low

Analysis Method:

8151A

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
MCPP	ND U	58000	15000	5	06/22/10	06/30/10	KWG1006196	
MCPA	ND U	58000	15000	5	06/22/10	06/30/10	KWG1006196	
Dichlorprop	ND U	290	52	5	06/22/10	06/30/10	KWG1006196	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,4-Dichlorophenylacetic Acid	80	27-166	06/30/10	Acceptable	

Comments:

Printed: 07/08/2010 09:46:21  $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} I m. \label{limit} I m. \label{lem:limit} I m. \label{limit} I m. \labell{limit} I m. \l$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/23/2010

## **Chlorinated Herbicides**

Sample Name:

SRC-2010-8-Z-Comp

Lab Code:

K1006356-021

Extraction Method:

Method

Analysis Method:

Units: ug/Kg

Basis: Dry

Level: Low

8151A

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
MCPP	ND U	57000	15000	5	06/24/10	06/29/10	KWG1006203	
MCPA	ND U	57000	15000	5	06/24/10	06/29/10	KWG1006203	
Dichlorprop	ND U	290	52	5	06/24/10	06/29/10	KWG1006203	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,4-Dichlorophenylacetic Acid	68	27-166	06/29/10	Acceptable	

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: NA

Date Received: NA

#### **Chlorinated Herbicides**

Sample Name:

Method Blank

Lab Code:

KWG1006196-4

Units: ug/Kg

Basis: Dry

Extraction Method:

Method

Level: Low

Analysis Method:

8151A

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
MCPP	ND U	5000	2600	I	06/22/10	06/29/10	KWG1006196	
MCPA	ND U	5000	2600	1	06/22/10	06/29/10	KWG1006196	
Dichlorprop	ND U	25	9.1	1	06/22/10	06/29/10	KWG1006196	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2,4-Dichlorophenylacetic Acid	65	27-166	06/29/10	Acceptable

Comments:

Printed: 07/08/2010 09:46:29 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: NA

Date Received: NA

#### **Chlorinated Herbicides**

Sample Name:

Method Blank

Lab Code:

KWG1006203-4

Units: ug/Kg

Basis: Dry

Extraction Method: Method

Level: Low

Analysis	Method:	8151A

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
MCPP	ND U	4900	2600	1	06/24/10	06/28/10	KWG1006203.	
MCPA	ND U	4900	2600	1	06/24/10	06/28/10	KWG1006203	
Dichlorprop	ND U	25	9.1	1	06/24/10	06/28/10	KWG1006203	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2,4-Dichlorophenylacetic Acid	76	27-166	06/28/10	Acceptable

Comments:

Printed: 07/08/2010 09:46:33 

RR116382

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

#### Surrogate Recovery Summary **Chlorinated Herbicides**

Extraction Method: Method Analysis Method:

8151A

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1
SRC-2010-1-Comp	K1006356-001	60
SRC-2010-2-Comp	K1006356-002	63
SRC-2010-3-Comp	K1006356-003	63
SRC-2010-4-Comp	K1006356-004	62
SRC-2010-5-Comp	K1006356-005	61
SRC-2010-6-Comp	K1006356-006	67
SRC-2010-7-Comp	K1006356-007	77 D
SRC-2010-7-Z-Comp	K1006356-008	84 D
SRC-2010-7-1	K1006356-016	61
SRC-2010-7-2	K1006356-017	76 D
SRC-2010-7-3	K1006356-018	75 D
SRC-2010-7-4	K1006356-019	81 D
SRC-2010-7-5	K1006356-020	80 D
SRC-2010-8-Z-Comp	K1006356-021	68 D
Method Blank	KWG1006196-4	65
Method Blank	KWG1006203-4	76
Batch QC	K1006482-001	71 D
SRC-2010-4-CompMS	KWG1006196-1	61
SRC-2010-4-CompDMS	KWG1006196-2	64
Batch QCMS	KWG1006203-1	70 D
Batch QCDMS	KWG1006203-2	67 D
Lab Control Sample	KWG1006196-3	64
Lab Control Sample	KWG1006203-3	72

Surrogate Recovery Control Limits (%)

Sur 1 = 2,4-Dichlorophenylacetic Acid

27-166

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/08/2010 09:46:38  $u \ \ Stealth \ \ Crystal.rpt \ \ Form 2.rpt$ 

Page 1 of 1

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/22/2010

**Date Analyzed:** 06/29/2010

#### Matrix Spike/Duplicate Matrix Spike Summary **Chlorinated Herbicides**

Sample Name:

SRC-2010-4-Comp

Lab Code:

K1006356-004

Extraction Method: Analysis Method:

Method 8151A

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1006196

SRC-2010-4-CompMS

KWG1006196-1

SRC-2010-4-CompDMS

KWG1006196-2

	Sample	<u> </u>	Matrix Spike		Duplie	cate Matrix S	pike	%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
MCPP	ND	12800	17600	73	12200	17500	70	10-192	5	40
MCPA	ND	6640	17600	38	6490	17500	37	10-165	2	40
Dichlorprop	ND	159	176	90	1.67	175	95	29-149	5	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/08/2010 09:46:41 u:\Stealth\Crystal.rpt\Form3DMS.rpt

RR116382

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/24/2010 **Date Analyzed:** 06/29/2010

Matrix Spike/Duplicate Matrix Spike Summary
Chlorinated Herbicides

Sample Name:

Batch QC

Lab Code:

K1006482-001

Extraction Method:

Analysis Method:

Method

8151A

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006203

Batch QCMS

KWG1006203-1

Batch QCDMS

KWG1006203-2

	Sample	Matrix Spike			Duplie	ate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
MCPP	ND	31500	19400	162	64000	19400	330 *	10-192	68 *	40
MCPA	ND	9440	19400	49	6020	19400	31	10-165	44 *	40
Dichlorprop	ND	198	194	102	208	194	107	29-149	5	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

Printed: 07/08/2010 09:46:44 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A Organic

Page 1 of 1

SuperSet Reference: RR116382

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/22/2010

**Date Analyzed:** 06/29/2010

Lab Control Spike Summary Chlorinated Herbicides

Extraction Method: Method Analysis Method:

8151A

Units: ug/Kg

Basis: Dry Level: Low

Extraction Lot: KWG1006196

Lab Control Sample KWG1006196-3

Analyte Name	Lab	Lab Control Spike							
	Result	Expected	%Rec	Limits					
MCPP	7820	8330	94	49-116	***************************************	 		**************************************	
MCPA	6090	8330	73	52-111					
Dichlorprop	59.0	83.3	71	58-112					

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/08/2010 09:46:47

u:\Stealth\Crystal.rpt\Form3LCS.rpt

1 of 1

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/24/2010

**Date Analyzed:** 06/28/2010

Lab Control Spike Summary Chlorinated Herbicides

Extraction Method: Method Analysis Method:

8151A

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006203

Lab Control Sample KWG1006203-3 Lah Control Snike

	Lad	Control Spike	P	%Rec
Analyte Name	Result	Expected	%Rec	Limits
MCPP	7970	8330	96	49-116
MCPA:	6620	8330	79	52-111
Dichlorprop	59.5	83.3	71	58-112

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/08/2010 09:46:50  $u:\Stealth\Crystal.rpt\Form3LCS.rpt$ 

Polynuclear Aromatic Hydrocarbons

Client: Project: Pacific EcoRisk Laboratories USACE San Rafael Channel/16087

Service Request:

K1006356

### Cover Page - Organic Analysis Data Package Polynuclear Aromatic Hydrocarbons

		Date	Date
Sample Name	Lab Code	Collected	Received
SRC-2010-1-Comp	K1006356-001	06/08/2010	06/18/2010
SRC-2010-2-Comp	K1006356-002	06/09/2010	06/18/2010
SRC-2010-3-Comp	K1006356-003	06/09/2010	06/18/2010
SRC-2010-4-Comp	K1006356-004	06/11/2010	06/18/2010
SRC-2010-5-Comp	K1006356-005	06/08/2010	06/18/2010
SRC-2010-6-Comp	K1006356-006	06/09/2010	06/18/2010
SRC-2010-7-Comp	K1006356-007	06/10/2010	06/18/2010
SRC-2010-7-Z-Comp	K1006356-008	06/10/2010	06/18/2010
SRC-2010-1-B-Comp	K1006356-009	6 06/08/2010	06/18/2010
SRC-2010-2-B-Comp	K1006356-010	06/09/2010	06/18/2010
SRC-2010-3-B-Comp	K1006356-011	06/09/2010	06/18/2010
SRC-2010-4-B-Comp	K1006356-012	06/11/2010	06/18/2010
SRC-2010-5-B-Comp	K1006356-013	06/08/2010	06/18/2010
SRC-2010-6-B-Comp	K1006356-014	06/09/2010	06/18/2010
SRC-2010-7-B-Comp	K1006356-015	06/10/2010	06/18/2010
SRC-2010-7-1	K1006356-016	06/10/2010	06/18/2010
SRC-2010-7-2	K1006356-017	06/10/2010	06/18/2010
SRC-2010-7-3	K1006356-018	06/10/2010	06/18/2010
SRC-2010-7-4	K1006356-019	06/10/2010	06/18/2010
SRC-2010-7-5	K1006356-020	06/10/2010	06/18/2010
SRC-2010-8-Z-Comp	K1006356-021	06/10/2010	06/23/2010
SRC-2010-1-CompMS	KWG1006224-1	06/08/2010	06/18/2010
SRC-2010-1-CompDMS	KWG1006224-2	06/08/2010	06/18/2010

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature: M. Hendrickson	Name: M. Hendrick Son
Date: 7/12/10	Title: Walyot

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356 **Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-1-Comp

Lab Code:

Analyte Name

K1006356-001

**Extraction Method:** 

EPA 3541

Analysis Method:

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
. 12	5.6	0.68	1	06/21/10	07/02/10	KWG1006224	and the same of th
<b>4.2</b> J	5.6	0.66	1	06/21/10	07/02/10	KWG1006224	
<b>3.1</b> J	5.6	0.85	1	06/21/10	07/02/10	KWG1006224	

12101, 10 1 101110		112222	******	T ###OFF	A2 A4 01 00 00 00	11Haij bea	4400	* 10
Naphthalene	. 12	5.6	0.68	1	06/21/10	07/02/10	KWG1006224	
Acenaphthylene	<b>4.2</b> J	5.6	0.66	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	<b>3.1</b> J	5.6	0.85	1	06/21/10	07/02/10	KWG1006224	
Fluorene	5.1 J	5.6	0.69	1	06/21/10	07/02/10	KWG1006224	
Phenanthrene	38	5.6	1.6	1	06/21/10	07/02/10	KWG1006224	
Anthracene	10	5.6	0.65	. 1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	91	5.6	1.1	1	06/21/10	07/02/10	KWG1006224	
Pyrene	150	5.6	0.85	1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	86	5.6	1.1	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	27	5.6	0.98	1	06/21/10	07/02/10	KWG1006224	
Benz(a)anthracene	46	5.6	0.81	1	06/21/10	07/02/10	KWG1006224	
Chrysene	54	5.6	0.90	1	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	90	5.6	0.85	1	06/21/10	07/02/10	KWG1006224	
Indeno(1,2,3-cd)pyrene	81	5.6	0.98	1	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	9.2	5.6	0.90	1	06/21/10	07/02/10	KWG1006224	
Benzo(g,h,i)perylene	99	5.6	0.96	1	06/21/10	07/02/10	KWG1006224	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	49	17-104	07/02/10	Acceptable	
Fluoranthene-d10	49	27-106	07/02/10	Acceptable	
Terphenyl-d14	64	35-109	07/02/10	Acceptable	

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-2-Comp

Lab Code:

K1006356-002

Extraction Method: EPA 3541 Analysis Method:

8270C SIM

Units: ug/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	11	5.3	0.63	1	06/21/10	07/02/10	KWG1006224	
Acenaphthylene	<b>4.9</b> J	5.3	0.62	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	<b>3.8</b> J	5.3	0.80	1	06/21/10	07/02/10	KWG1006224	
Fluorene	<b>4.8</b> J	5.3	0.64	1	06/21/10	07/02/10	KWG1006224	
Phenanthrene	40	5.3	1.5	1	06/21/10	07/02/10	KWG1006224	
Anthracene	13	5.3	0.61	1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	110	5.3	1.1	1	06/21/10	07/02/10	KWG1006224	
Pyrene	190	5.3	0.80	1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	110	5.3	0.96	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	32	5.3	0.91	1	06/21/10	07/02/10	KWG1006224	
Benz(a)anthracene	56	5.3	0.75	1	06/21/10	07/02/10	KWG1006224	
Chrysene	79	5.3	0.84	1	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	110	5.3	0.80	1	06/21/10	07/02/10	KWG1006224	
Indeno(1,2,3-cd)pyrene	90	5.3	0.91	1	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	10	5.3	0.84	1	06/21/10	07/02/10	KWG1006224	
Benzo(g,h,i)perylene	110	5.3	0.89	1	06/21/10	07/02/10	KWG1006224	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	50	17-104	07/02/10	Acceptable	
Fluoranthene-d10	51	27-106	07/02/10	Acceptable	~
Terphenyl-d14	62	35-109	07/02/10	Acceptable	

Comments:

Printed: 07/12/2010 11:18:36 

Merged

Form 1A Organic

Page 1 of 1

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-3-Comp

Lab Code:

K1006356-003

Extraction Method: EPA 3541 Analysis Method:

Units: ug/Kg Basis: Dry

Level: Low

8270C SIM

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	15	5.1	0.61	1	06/21/10	07/02/10	KWG1006224	
Acenaphthylene	9.1	5.1	0.60	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	6.1	5.1	0.77	1	06/21/10	07/02/10	KWG1006224	
Fluorene	7.9	5.1	0.62	1	06/21/10	07/02/10	KWG1006224	
Phenanthrene	80	5.1	1.5	1	06/21/10	07/02/10	KWG1006224	
Anthracene	30	5.1	0.59	1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	190	5.1	0.99	1	06/21/10	07/02/10	KWG1006224	
Pyrene	300	5.1	0.77	1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	160	5.1	0.93	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	51	5.1	0.88	1	06/21/10	07/02/10	KWG1006224	
Benz(a)anthracene	100	5.1	0.73	1	06/21/10	07/02/10	KWG1006224	
Chrysene	120	5.1	0.81	1.	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	180	5.1	0.77	1	06/21/10	07/02/10	KWG1006224	
Indeno(1,2,3-cd)pyrene	150	5.1	0.88	1	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	16	5.1	0.81	1	06/21/10	07/02/10	KWG1006224	
Benzo(g,h,i)perylene	170	5,1	0.86	1	06/21/10	07/02/10	KWG1006224	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	62	17-104	07/02/10	Acceptable
Fluoranthene-d10	64	27-106	07/02/10	Acceptable
Terphenyl-d14	-78	35-109	07/02/10	Acceptable

Comments:

Printed: 07/12/2010 11:18:40 

RR116495

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix: Se

Sediment

Service Request: K1006356

**Date Collected:** 06/11/2010 **Date Received:** 06/18/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-4-Comp

Lab Code:

K1006356-004

Extraction Method:

EPA 3541

Analysis Method:

8270C SIM

Units: ug/Kg
Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	11	5.3	0.64	1	06/21/10	07/02/10	KWG1006224	
Acenaphthylene	<b>4.2</b> J	5.3	0.63	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	<b>2.7</b> J	5.3	0.81	1	06/21/10	07/02/10	KWG1006224	
Fluorene	<b>4.0</b> J	5.3	0.65	1	06/21/10	07/02/10	KWG1006224	
Phenanthrene	32	5.3	1.5	1	06/21/10	07/02/10	KWG1006224	
Anthracene	9.9	5,3	0.62	1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	88	5.3	1.1	1	06/21/10	07/02/10	KWG1006224	
Pyrene	150	5.3	0.81	1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	93	5.3	0.98	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	31	5.3	0.93	1	06/21/10	07/02/10	KWG1006224	
Benz(a)anthracene	48	5.3	0.77	1 .	06/21/10	07/02/10	KWG1006224	
Chrysene	62	5.3	0.85	1	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	92	5.3	0.81	l	06/21/10	07/02/10	KWG1006224	
Indeno(1,2,3-cd)pyrene	84	5.3	0.93	1	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	8.9	5.3	0.85	1	06/21/10	07/02/10	KWG1006224	
Benzo(g,h,i)perylene	100	5.3	0.90	1	06/21/10	07/02/10	KWG1006224	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	59	17-104	07/02/10	Acceptable
Fluoranthene-d10	61	27-106	07/02/10	Acceptable
Terphenyl-d14	77	35-109	07/02/10	Acceptable

Comments:

Printed: 07/12/2010 11:18:44 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-5-Comp

Lab Code:

K1006356-005

Extraction Method:

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Analysis Method: 8270C SIM

A se a New A a New a se	B	B WITH I	BEDI	Dilution	Date	Date	Extraction	WY - 4 -
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	12	5.6	0.67	1	06/21/10	07/02/10	KWG1006224	
Acenaphthylene	7.5	5.6	0.66	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	<b>3.6</b> J	5.6	0.85	1	06/21/10	07/02/10	KWG1006224	
Fluorene	6.8	5,6	0.68	1	06/21/10	07/02/10	KWG1006224	
Phenanthrene	72	5.6	1.6	1	06/21/10	07/02/10	KWG1006224	
Anthracene	23	5.6	0.65	1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	260	5.6	1.1	1	06/21/10	07/02/10	KWG1006224	
Pyrene	360	5.6	0.85	1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	240	5.6	1.1	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	74	5.6	0.97	1	06/21/10	07/02/10	KWG1006224	
Benz(a)anthracene	140	5.6	0.80	1 .	06/21/10	07/02/10	KWG1006224	
Chrysene	180	5.6	0.89	1	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	210	5.6	0.85	1	06/21/10	07/02/10	KWG1006224	
Indeno(1,2,3-cd)pyrene	200	5.6	0.97	. 1	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	24	5.6	0.89	1	06/21/10	07/02/10	KWG1006224	
Benzo(g,h,i)perylene	210	5.6	0.95	1	06/21/10	07/02/10	KWG1006224	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	60	17-104	07/02/10	Acceptable	
Fluoranthene-d10	62	27-106	07/02/10	Acceptable	
Terphenyl-d14	77	35-109	07/02/10	Acceptable	

Comments:

Printed: 07/12/2010 11:18:48 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-6-Comp

Lab Code:

K1006356-006

Extraction Method:

EPA 3541

Analysis Method:

8270C SIM

Units: ug/Kg
Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	14	6.1	0.73	1	06/21/10	07/02/10	KWG1006224	CONTRACTOR
Acenaphthylene	<b>4.0</b> J	6.1	0.72	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	<b>3.2</b> J	6.1	0.93	1	06/21/10	07/02/10	KWG1006224	
Fluorene	<b>5.0</b> J	6.1	0.74	1	06/21/10	07/02/10	KWG1006224	
Phenanthrene	31	6.1	1.7	1	06/21/10	07/02/10	KWG1006224	
Anthracene	9.3	6.1	0.71	1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	100	6.1	1.2	1	06/21/10	07/02/10	KWG1006224	
Pyrene	200	6.1	0.93	1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	120	6.1	1.2	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	37	6.1	1.1	· 1	06/21/10	07/02/10	KWG1006224	
Benz(a)anthracene	54	6.1	0.88	1	06/21/10	07/02/10	KWG1006224	
Chrysene	78	6.1	0.97	1	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	100	6.1	0.93	1	06/21/10	07/02/10	KWG1006224	
Indeno(1,2,3-cd)pyrene	110	6.1	1.1	1	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	13	6.1	0.97	1	06/21/10	07/02/10	KWG1006224	
Benzo(g,h,i)perylene	140	6.1	1.1	1	06/21/10	07/02/10	KWG1006224	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	53	17-104	07/02/10	Acceptable
Fluoranthene-d10	48	27-106	07/02/10	Acceptable
Terphenyl-d14	63	35-109	07/02/10	Acceptable

Comments:

Printed: 07/12/2010 11:18:52 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010 **Date Received:** 06/18/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-7-Comp

Lab Code:

K1006356-007

**Extraction Method:** EPA 3541

Analysis Method:

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	16	5.8	0.69	1	06/21/10	07/02/10	KWG1006224	Indiana de la constanta de la
Acenaphthylene	9.4	5.8	0.68	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	12	5.8	0.88	1	06/21/10	07/02/10	KWG1006224	
Fluorene	16	5.8	0.70	1	06/21/10	07/02/10	KWG1006224	
Phenanthrene	170	5.8	1.7	1	06/21/10	07/02/10	KWG1006224	
Anthracene	47	5.8	0.67	1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	490	5.8	1.2	1	06/21/10	07/02/10	KWG1006224	
Pyrene	780	5.8	0.88	1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	510	5.8	1.1	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	170	5.8	1.0	1	06/21/10	07/02/10	KWG1006224	
Benz(a)anthracene	270	5.8	0.83	1	06/21/10	07/02/10	KWG1006224	
Chrysene	380	5.8	0.92	1	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	450	5.8	0.88	1	06/21/10	07/02/10	KWG1006224	
Indeno(1,2,3-cd)pyrene	420	5.8	1.0	1	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	56	5.8	0.92	1	06/21/10	07/02/10	KWG1006224	
Benzo(g,h,i)perylene	460	5.8	0.98	1	06/21/10	07/02/10	KWG1006224	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	59	17-104	07/02/10	Acceptable
Fluoranthene-d10	55	27-106	07/02/10	Acceptable
Terphenyl-d14	67	35-109	07/02/10	Acceptable

Comments:

Printed: 07/12/2010 11:18:56  $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} We will still the lemma of the$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356 **Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

### Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-7-Z-Comp

Lab Code:

K1006356-008

Extraction Method: Analysis Method:

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

8270C SIM

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	11	5.2	0.62	1	06/21/10	07/02/10	KWG1006224	
Acenaphthylene	<b>3.4</b> J	5.2	0.61	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	<b>4.6</b> J	5.2	0.79	1	06/21/10	07/02/10	KWG1006224	
Fluorene	5.4	5.2	0.63	1	06/21/10	07/02/10	KWG1006224	
Phenanthrene	28	5.2	1.5	1	06/21/10	07/02/10	KWG1006224	
Anthracene	8.5	5.2	0.60	1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	100	5.2	1.1	l	06/21/10	07/02/10	KWG1006224	
Pyrene	200	5.2	0.79	1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	110	5.2	0.95	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	35	5.2	0.90	1	06/21/10	07/02/10	KWG1006224	
Benz(a)anthracene	48	5.2	0.75	1	06/21/10	07/02/10	KWG1006224	
Chrysene	73	5.2	0.83	l	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	100	5.2	0.79	1	06/21/10	07/02/10	KWG1006224	
Indeno(1,2,3-cd)pyrene	100	5.2	0.90	I	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	9.9	5.2	0.83	1	06/21/10	07/02/10	KWG1006224	
Benzo(g,h,i)perylene	130	5.2	0.88	1	06/21/10	07/02/10	KWG1006224	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	56	17-104	07/02/10	Acceptable	
Fluoranthene-d10	60	27-106	07/02/10	Acceptable	
Terphenyl-d14	72	35-109	07/02/10	Acceptable	

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-1-B-Comp

Lab Code:

K1006356-009

Extraction Method: EPA 3541

Analysis Mathad

8270C SIM

Units: ug/Kg

Basis: Dry

Level: Low

Anaiysis Method:	8270C SIM
Analyta Nama	

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	13	5.0	0.60	1	06/21/10	07/02/10	KWG1006224	
Acenaphthylene	8.7	5.0	0.59	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	6.7	5.0	0.76	1	06/21/10	07/02/10	KWG1006224	
Fluorene	8.2	5.0	0.61	1	06/21/10	07/02/10	KWG1006224	
Phenanthrene	83	5.0	1.4	1	06/21/10	07/02/10	KWG1006224	
Anthracene	27	5.0	0.58	1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	150	5.0	0.98	1	06/21/10	07/02/10	KWG1006224	
Pyrene	240	5.0	0.76	1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	110	5.0	0.92	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	34	5.0	0.87	1	06/21/10	07/02/10	KWG1006224	The second secon
Benz(a)anthracene	83	5.0	0.72	1	06/21/10	07/02/10	KWG1006224	
Chrysene	94	5.0	0.80	1	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	120	5.0	0.76	1	06/21/10	07/02/10	KWG1006224	
Indeno(1,2,3-cd)pyrene	100	5.0	0.87	1	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	14	5.0	0.80	.1	06/21/10	07/02/10	KWG1006224	
Benzo(g,h,i)perylene	110	5.0	0.85	1	06/21/10	07/02/10	KWG1006224	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	52	17-104	07/02/10	Acceptable
Fluoranthene-d10	53	27-106	07/02/10	Acceptable
Terphenyl-d14	65	35-109	07/02/10	Acceptable

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: 06/09/2010

**Date Received:** 06/18/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-2-B-Comp

Lab Code:

K1006356-010

Extraction Method:
Analysis Method:

EPA 3541

8270C SIM

Units: ug/Kg

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	12	5.0	0.60	1	06/21/10	07/02/10	KWG1006224	Encontraction of the Contraction
Acenaphthylene	6.4	5.0	0.59	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	<b>3.7</b> J	5.0	0.76	1	06/21/10	07/02/10	KWG1006224	
Fluorene	6.4	5.0	0.61	1	06/21/10	07/02/10	KWG1006224	
Phenanthrene	50	5.0	1.4	1	06/21/10	07/02/10	KWG1006224	
Anthracene	16	5.0	0.58	. 1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	120	5.0	0.98	1	06/21/10	07/02/10	KWG1006224	
Pyrene	210	5.0	0.76	1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	110	5.0	0.92	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	33	5.0	0.87	1	06/21/10	07/02/10	KWG1006224	
Benz(a)anthracene	64	5.0	0.72	1	06/21/10	07/02/10	KWG1006224	
Chrysene	73	5.0	0.80	1	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	120	5.0	0.76	1	06/21/10	07/02/10	KWG1006224	
Indeno(1,2,3-cd)pyrene	110	5.0	0.87	1	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	12	5.0	0.80	1	06/21/10	07/02/10	KWG1006224	
Benzo(g,h,i)perylene	130	5.0	0.85	1	06/21/10	07/02/10	KWG1006224	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	41	17-104	07/02/10	Acceptable	
Fluoranthene-d10	40	27-106	07/02/10	Acceptable	
Terphenyl-d14	49	35-109	07/02/10	Acceptable	

Comments:

Printed: 07/12/2010 11:19:08 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-3-B-Comp

Lab Code:

K1006356-011

Extraction Method:

EPA 3541

Units: ug/Kg

Basis: Dry

Level: Low

8270C SIM Analysis Method:

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	14	5.0	0.60	1 4001	06/21/10	07/02/10	KWG1006224	T 1 1 0 0 0
Acenaphthylene	5.7	5.0	0.59	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	<b>3.9</b> J	5.0	0.76	1	06/21/10	07/02/10	KWG1006224	
Fluorene	6.0	5.0	0.61	1	06/21/10	07/02/10	KWG1006224	
Phenanthrene	46	5.0	1.4	1	06/21/10	07/02/10	KWG1006224	
Anthracene	13	5.0	0.58	1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	130	5.0	0.98	1	06/21/10	07/02/10	KWG1006224	
Pyrene	220	5.0	0.76	1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	130	5.0	0.92	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	38	5.0	0.87	1	06/21/10	07/02/10	KWG1006224	
Benz(a)anthracene	68	5.0	0.72	1	06/21/10	07/02/10	KWG1006224	
Chrysene	79	5.0	0.80	1	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	140	5.0	0.76	1	06/21/10	07/02/10	KWG1006224	···
Indeno(1,2,3-cd)pyrene	120	5.0	0.87	1	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	12	5.0	0.80	1	06/21/10	07/02/10.	KWG1006224	
Benzo(g,h,i)perylene	150	5.0	0.85	1	06/21/10	07/02/10	KWG1006224	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	62	17-104	07/02/10	Acceptable
Fluoranthene-d10	64	27-106	07/02/10	Acceptable
Terphenyl-d14	78	35-109	07/02/10	Acceptable

Comments:

Printed: 07/12/2010 11:19:12 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/11/2010

**Date Received:** 06/18/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-4-B-Comp

Lab Code:

K1006356-012

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3541

Analysis Method:

8270C SIM

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	11	4.9	0.60	1	06/21/10	07/02/10	KWG1006224	NAME OF THE PARTY
Acenaphthylene	4.8 J	4.9	0.59	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	<b>4.1</b> J	4.9	0.76	1	06/21/10	07/02/10	KWG1006224	
Fluorene	5.1	4.9	0.61	1	06/21/10	07/02/10	KWG1006224	
Phenanthrene	38	4.9	1.4	1	06/21/10	07/02/10	KWG1006224	
Anthracene	11	4.9	0.58	1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	100	4.9	0.98	1	06/21/10	07/02/10	KWG1006224	
Pyrene	180	4.9	0.76	1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	110	4.9	0.92	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	31	4.9	0.87	1	06/21/10	07/02/10	KWG1006224	
Benz(a)anthracene	55	4.9	0.72	1	06/21/10	07/02/10	KWG1006224	
Chrysene	63	4.9	0.80	1	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	110	4.9	0.76	1	06/21/10	07/02/10	KWG1006224	
Indeno(1,2,3-cd)pyrene	100	4.9	0.87	1	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	12	4.9	0.80	1	06/21/10	07/02/10	KWG1006224	
Benzo(g,h,i)perylene	120	4.9	0.85	1	06/21/10	07/02/10	KWG1006224	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	-
Fluorene-d10	53	17-104	07/02/10	Acceptable	
Fluoranthene-d10	51	27-106	07/02/10	Acceptable	
Terphenyl-d14	66	35-109	07/02/10	Acceptable	

Comments:

Printed: 07/12/2010 11:19:16 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-5-B-Comp

Lab Code:

K1006356-013

Extraction Method: Analysis Method:

EPA 3541 8270C SIM

Units: ug/Kg

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	15	5.1	0.62	1	06/21/10	07/02/10	KWG1006224	
Acenaphthylene	6.4	5.1	0.60	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	<b>4.4</b> J	5.1	0.78	1	06/21/10	07/02/10	KWG1006224	
Fluorene	6.6	5.1	0.63	1	06/21/10	07/02/10	KWG1006224	
Phenanthrene	70	5.1	1.5	1	06/21/10	07/02/10	KWG1006224	
Anthracene	19	5.1	0.59	1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	180	5.1	1.0	1	06/21/10	07/02/10	KWG1006224	
Pyrene	280	5.1	0.78	1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	180	5.1	0.94	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	55	5.1	0.89	1	06/21/10	07/02/10	KWG1006224	
Benz(a)anthracene	91	5.1	0.74	1	06/21/10	07/02/10	KWG1006224	
Chrysene	120	5.1	0.82	1	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	170	5.1	0.78	1	06/21/10	07/02/10	KWG1006224	
Indeno(1,2,3-cd)pyrene	160	5.1	0.89	. 1	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	22	5.1	0.82	1	06/21/10	07/02/10	KWG1006224	
Benzo(g,h,i)perylene	190	5.1	0.87	1	06/21/10	07/02/10	KWG1006224	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	56	17-104	07/02/10	Acceptable
Fluoranthene-d10	66	27-106	07/02/10	Acceptable
Terphenyl-d14	73	35-109	07/02/10	Acceptable

Comments:

Printed: 07/12/2010 11:19:20  $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} I m \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} \\ u: \label{lem:limit} V = \label{lem:limit} u: \label{lem:limit} \\ u: \label{lem:limit} V = \label{lem:limit} \\ u: \$ 

Merged

Page 1 of 1

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-6-B-Comp

Lab Code:

K1006356-014

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

Analysis Method:

8270C SIM

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	16	5.3	0.63	1	06/21/10	07/02/10	KWG1006224	
Acenaphthylene	6.0	5.3	0.62	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	<b>4.0</b> J	5.3	0.80	1	06/21/10	07/02/10	KWG1006224	
Fluorene	5.5	5.3	0.65	1	06/21/10	07/02/10	KWG1006224	
Phenanthrene	42	5.3	1.5	1	06/21/10	07/02/10	KWG1006224	
Anthracene	12	5.3	0.61	1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	140	5.3	1.1	1	06/21/10	07/02/10	KWG1006224	
Pyrene	300	5.3	0.80	1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	170	5.3	0.97	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	45	5.3	0.92	1	06/21/10	07/02/10	KWG1006224	
Benz(a)anthracene	69	5.3	0.76	. 1	06/21/10	07/02/10	KWG1006224	
Chrysene	56	5.3	0.84	1	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	160	5.3	0.80	l	06/21/10	07/02/10	KWG1006224	
Indeno(1,2,3-cd)pyrene	170	5.3	0.92	1	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	16	5.3	0.84	1	06/21/10	07/02/10	KWG1006224	
Benzo(g,h,i)perylene	210	5.3	0.90	1	06/21/10	07/02/10	KWG1006224	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	59	17-104	07/02/10	Acceptable
Fluoranthene-d10	58	27-106	07/02/10	Acceptable
Terphenyl-d14	74	35-109	07/02/10	Acceptable

Comments:

Printed: 07/12/2010 11:19:24  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Form 1A Organic

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-7-B-Comp

Lab Code:

K1006356-015

Extraction Method:

----

Analysis Method:

EPA 3541 8270C SIM Units: ug/Kg
Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	13	4.7	0.60	1	06/21/10	07/02/10	KWG1006224	BOWCOUS COMMISSIONS
Acenaphthylene	6.9	4.7	0.59	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	<b>3.6</b> J	4.7	0.76	1	06/21/10	07/02/10	KWG1006224	
Fluorene	<b>2.9</b> J	4.7	0.61	1	06/21/10	07/02/10	KWG1006224	
Phenanthrene	30	4.7	1.4	1	06/21/10	07/02/10	KWG1006224	
Anthracene	<b>8.7</b>	4.7	0.58	1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	170	4.7	0.98	1	06/21/10	07/02/10	KWG1006224	AMERICA PROPERTY OF THE PARTY O
Pyrene	510	4.7	0.76	1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	210	4.7	0.92	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	53	4.7	0.87	1	06/21/10	07/02/10	KWG1006224	Manual Street Annie Street Street
Benz(a)anthracene	65	4.7	0.72	1	06/21/10	07/02/10	KWG1006224	
Chrysene	56	4.7	0.80	1	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	230	4.7	0.76	1	06/21/10	07/02/10	KWG1006224	
Indeno(1,2,3-cd)pyrene	260	4.7	0.87	1	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	17	4.7	0.80	i	06/21/10	07/02/10	KWG1006224	
Benzo(g,h,i)perylene	340	4.7	0.85	1	06/21/10	07/02/10	KWG1006224	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	43	17-104	07/02/10	Acceptable	
Fluoranthene-d10	48	27-106	07/02/10	Acceptable	
Terphenyl-d14	. 52	35-109	07/02/10	Acceptable	

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-7-1

Lab Code:

K1006356-016

Extraction Method: Analysis Method:

EPA 3541 8270C SIM Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	11	6.3	0.75	1	06/21/10	07/02/10	KWG1006224	and a second
Acenaphthylene	<b>5.5</b> J	6.3	0.74	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	<b>2.7</b> J	6.3	0.95	1	06/21/10	07/02/10	KWG1006224	
Fluorene	<b>4.3</b> J	6.3	0.77	1	06/21/10	07/02/10	KWG1006224	
Phenanthrene	44	6.3	1.8	1	06/21/10	07/02/10	KWG1006224	
Anthracene	15	6.3	0.73	1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	130	6.3	1.3	1	06/21/10	07/02/10	KWG1006224	
Pyrene	180	6.3	0.95	· 1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	130	6.3	1.2	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	38	6.3	1,1	1	06/21/10	07/02/10	KWG1006224	
Benz(a)anthracene	59	6.3	0.90	1	06/21/10	07/02/10	KWG1006224	
Chrysene	92	6.3	1.0	1	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	110	6.3	0.95	1	06/21/10	07/02/10	KWG1006224	
Indeno(1,2,3-cd)pyrene	130	6.3	1.1	1	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	20	6.3	1.0	1	06/21/10	07/02/10	KWG1006224	
Benzo(g,h,i)perylene	130	6.3	1.1	1	06/21/10	07/02/10	KWG1006224	•

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	÷
Fluorene-d10	60	17-104	07/02/10	Acceptable	
Fluoranthene-d10	75	27-106	07/02/10	Acceptable	
Terphenyl-d14	79	35-109	07/02/10	Acceptable	

Comments:

Printed: 07/12/2010 11:19:32  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-7-2

Lab Code:

K1006356-017

**Extraction Method:** 

EPA 3541

Analysis Method:

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	13	6.0	0.72	1	06/21/10	07/02/10	KWG1006224	MANUFACTURE PROPERTY OF THE PR
Acenaphthylene	<b>5.8</b> J	6.0	0.70	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	<b>2.6</b> J	6.0	0.91	1	06/21/10	07/02/10	KWG1006224	
Fluorene	<b>4.3</b> J	6.0	0.73	1	06/21/10	07/02/10	KWG1006224	
Phenanthrene	44	6.0	1.7	1	06/21/10	07/02/10	KWG1006224	
Anthracene	11	6.0	0.69	1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	140	6.0	1.2	1	06/21/10	07/02/10	KWG1006224	
Pyrene	230	6.0	0.91	1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	150	6.0	1.1	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	46	6.0	1.1	1	06/21/10	07/02/10	KWG1006224	
Benz(a)anthracene	56	6.0	0.86	1	06/21/10	07/02/10	KWG1006224	
Chrysene	86	6.0	0.95	1	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	140	6.0	0.91	1	06/21/10	07/02/10	KWG1006224	
Indeno(1,2,3-cd)pyrene	170	6.0	1.1	1	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	23	6.0	0.95	1	06/21/10	07/02/10	KWG1006224	
Benzo(g,h,i)perylene	180	6.0	1.1	1	06/21/10	07/02/10	KWG1006224	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	61	17-104	07/02/10	Acceptable
Fluoranthene-d10	75	27-106	07/02/10	Acceptable
Terphenyl-d14	75	35-109	07/02/10	Acceptable

Comments:

Printed: 07/12/2010 11:19:36

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Page 1 of 1

RR116495 SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-7-3

Lab Code:

K1006356-018

Extraction Method:

EPA 3541

Units: ug/Kg
Basis: Dry

Level: Low

Analysis Method:

8270C SIM

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	12	5.9	0.71	1	06/21/10	07/02/10	KWG1006224	describe de describer de la constitución de la cons
Acenaphthylene	7.5	5.9	0.70	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	<b>3.5</b> J	5.9	0.90	1	06/21/10	07/02/10	KWG1006224	
Fluorene	<b>5.2</b> J	5.9	0.72	1	06/21/10	07/02/10	KWG1006224	
Phenanthrene	65	5.9	1.7	1 .	06/21/10	07/02/10	KWG1006224	
Anthracene	18	5.9	0.68	1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	200	5.9	1.2	1	06/21/10	07/02/10	KWG1006224	
Pyrene	340	5.9	0.90	1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	220	5.9	1.1	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	64	5.9	1.1	1	06/21/10	07/02/10	KWG1006224	
Benz(a)anthracene	91	5.9	0.85	1	06/21/10	07/02/10	KWG1006224	
Chrysene	140	5.9	0.94	1	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	180	5.9	0.90	1	06/21/10	07/02/10	KWG1006224	
lndeno(1,2,3-ed)pyrene	200	5,9	1.1	1	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	24	5,9.	0.94	1	06/21/10	07/02/10	KWG1006224	
Benzo(g,h,i)perylene	220	5.9	1.0	1	06/21/10	07/02/10	KWG1006224	-

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	57	17-104	07/02/10	Acceptable
Fluoranthene-d10	63	27-106	07/02/10	Acceptable
Terphenyl-d14	73	35-109	07/02/10	Acceptable

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010 **Date Received:** 06/18/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-7-4

Lab Code:

K1006356-019

Extraction Method:

EPA 3541

Analysis Method:

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	13	6.3	0.76	1	06/21/10	07/02/10	KWG1006224	oyaquiqaçorosane-yasında
Acenaphthylene	6.6	6.3	0.74	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	<b>4.5</b> J	6.3	0.96	1	06/21/10	07/02/10	KWG1006224	
Fluorene	<b>5.5</b> J	6.3	0.77	1	06/21/10	07/02/10	KWG1006224	
Phenanthrene	69	6.3	1.8	1	06/21/10	07/02/10	KWG1006224	
Anthracene	20	6.3	0.73	1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	250	6.3	1.3	1	06/21/10	07/02/10	KWG1006224	
Pyrene	450	6.3	0.96	1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	260	6.3	1.2	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	72	6.3	1.1	1	06/21/10	07/02/10	KWG1006224	
Benz(a)anthracene	110	6.3	0.91	1	06/21/10	07/02/10	KWG1006224	
Chrysene	110	6.3	1.1.	1	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	210	6.3	0.96	1	06/21/10	07/02/10	KWG1006224	
Indeno(1,2,3-cd)pyrene	220	6.3	1.1	1	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	27	6.3	1.1	1	06/21/10	07/02/10	KWG1006224	
Benzo(g,h,i)perylene	250	6.3	1.1	1	06/21/10	07/02/10	KWG1006224	TOOLOGY MANAGEMENT OF THE PARTY THE PARTY TO STATE OF THE PARTY TH

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	42	17-104	07/02/10	Acceptable	
Fluoranthene-d10	48	27-106	07/02/10	Acceptable	
Terphenyl-d14	53	35-109	07/02/10	Acceptable	

Comments:

Printed: 07/12/2010 11:19:44 

Form 1A3 Organic

Merged

Page 1 of 1

SuperSet Reference:

RR116495

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-7-5

Lab Code:

K1006356-020

Units: ug/Kg Basis: Dry

Extraction Method: EPA 3541

Analysis Method:

8270C SIM

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	25	5.7	0.68	1	06/21/10	07/02/10	KWG1006224	
Acenaphthylene	11	5.7	0.67	1	06/21/10	07/02/10	KWG1006224	
Acenaphthene	33	5.7	0.86	1	06/21/10	07/02/10	KWG1006224	
Fluorene	42	5.7	0.70	1 .	06/21/10	07/02/10	KWG1006224	
Phenanthrene	230	5.7	1.6	1	06/21/10	07/02/10	KWG1006224	
Anthracene	59	5.7	0.66	. 1	06/21/10	07/02/10	KWG1006224	
Fluoranthene	750	5.7	1.2	1	06/21/10	07/02/10	KWG1006224	
Pyrene	1000	5.7	0.86	1	06/21/10	07/02/10	KWG1006224	
Benzo(b)fluoranthene	500	5.7	1.1	1	06/21/10	07/02/10	KWG1006224	
Benzo(k)fluoranthene	150	5.7	0.99	1	06/21/10	07/02/10	KWG1006224	
Benz(a)anthracene	310	5.7	0.82	1	06/21/10	07/02/10	KWG1006224	
Chrysene	360	5.7	0.91	1	06/21/10	07/02/10	KWG1006224	
Benzo(a)pyrene	430	5.7	0.86	1	06/21/10	07/02/10	KWG1006224	
Indeno(1,2,3-cd)pyrene	430	5.7	0.99	1	06/21/10	07/02/10	KWG1006224	
Dibenz(a,h)anthracene	53	5.7	0.91	ĺ	06/21/10	07/02/10	KWG1006224	
Benzo(g,h,i)perylene	490	5.7	0.97	1	06/21/10	07/02/10	KWG1006224	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	58	17-104	07/02/10	Acceptable
Fluoranthene-d10	69	27-106	07/02/10	Acceptable
Terphenyl-d14	70	35-109	07/02/10	Acceptable

Comments:

Printed: 07/12/2010 11:19:48  $u: \label{lem:linear_continuous_continuous} u: \label{lem:linear_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous$ 

Merged

Form 1A3 Organic

Page 1 of 1

SuperSet Reference: RR116495

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project: Sample Matrix: USACE San Rafael Channel/16087 Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/23/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-8-Z-Comp

Lab Code:

K1006356-021

Extraction Method:

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

8270C SIM Analysis Method:

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	37	5.6	0.67	1	06/24/10	07/01/10	KWG1006323	
Acenaphthylene	21	5.6	0.66	1	06/24/10	07/01/10	KWG1006323	
Acenaphthene	21	5.6	0.85	1	06/24/10	07/01/10	KWG1006323	
Fluorene	20	5.6	0.68	1	06/24/10	07/01/10	KWG1006323	
Phenanthrene	230	5.6	1.6	1	06/24/10	07/01/10	KWG1006323	
Anthracene	54	5.6	0.65	1	06/24/10	07/01/10	KWG1006323	
Fluoranthene	990	5.6	1.1	1	06/24/10	07/01/10	KWG1006323	5 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -
Pyrene	1600	5.6	0.85	1	06/24/10	07/01/10	KWG1006323	
Benzo(b)fluoranthene	670	5.6	1.1	1	06/24/10	07/01/10	KWG1006323	
Benzo(k)fluoranthene	170	5.6	0.97	1	06/24/10	07/01/10	KWG1006323	
Benz(a)anthracene	300	5.6	0.81	1	06/24/10	07/01/10	KWG1006323	
Chrysene	400	5.6	0.89	1	06/24/10	07/01/10	KWG1006323	
Benzo(a)pyrene	710	5,6	0.85	1	06/24/10	07/01/10	KWG1006323	
Indeno(1,2,3-cd)pyrene	850	5,6	0.97	1	06/24/10	07/01/10	KWG1006323	
Dibenz(a,h)anthracene	61	5.6	0.89	1	06/24/10	07/01/10	KWG1006323	
Benzo(g,h,i)perylene	970	5.6	0.95	1	06/24/10	07/01/10	KWG1006323	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	61	17-104	07/01/10	Acceptable
Fluoranthene-d10	73	27-106	07/01/10	Acceptable
Terphenyl-d14	72	35-109	07/01/10	Acceptable

Comments:

Printed: 07/12/2010 11:19:52  $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} We w. rpt$ 

Merged

Page 1 of 1

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: NA Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name:

Method Blank

Lab Code:

KWG1006224-5

Extraction Method: EPA 3541

Analysis Method:

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	1.8 J	2.4	0.60	1	06/21/10	07/03/10	KWG1006224	BERTAN STANSON
Acenaphthylene	ND U	2.4	0.59	1	06/21/10	07/03/10	KWG1006224	
Acenaphthene	ND U	2.4	0.76	1	06/21/10	07/03/10	KWG1006224	
Fluorene	ND U	2.4	0,61	. 1	06/21/10	07/03/10	KWG1006224	
Phenanthrene	ND U	2.4	1.4	1	06/21/10	07/03/10	KWG1006224	
Anthracene	ND U	2.4	0.58	1	06/21/10	07/03/10	KWG1006224	
Fluoranthene	ND U	2.4	0.98	1	06/21/10	07/03/10	KWG1006224	
Pyrene	ND U	2.4	0.76	1	06/21/10	07/03/10	KWG1006224	
Benzo(b)fluoranthene	ND U	2.4	0.92	1	06/21/10	07/03/10	KWG1006224	
Benzo(k)fluoranthene	ND U	2.4	0.87	1	06/21/10	07/03/10	KWG1006224	
Benz(a)anthracene	ND U	2.4	0.72	1	06/21/10	07/03/10	KWG1006224	
Chrysene	ND U	2.4	0.80	1	06/21/10	07/03/10	KWG1006224	
Benzo(a)pyrene	ND U	2.4	0.76	1	06/21/10	07/03/10	KWG1006224	
Indeno(1,2,3-cd)pyrene	ND U	2.4	0.87	1	06/21/10	07/03/10	KWG1006224	
Dibenz(a,h)anthracene	ND U	2.4	0.80	1	06/21/10	07/03/10	KWG1006224	
Benzo(g,h,i)perylene	ND U	2.4	0.85	1	06/21/10	07/03/10	KWG1006224	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	71	17-104	07/03/10	Acceptable	
Fluoranthene-d10	65	27-106	07/03/10	Acceptable	
Terphenyl-d14	92	35-109	07/03/10	Acceptable	

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: NA
Date Received: NA

# Polynuclear Aromatic Hydrocarbons

Sample Name:

Method Blank

Lab Code:

KWG1006323-5

Extraction Method:

EPA 3541

Analysis Method:

8270C SIM

**Units:** ug/Kg **Basis:** Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	<b>2.3</b> J	2.4	0,60	1	06/24/10	07/01/10	KWG1006323	-
Acenaphthylene	ND U	2.4	0.59	1	06/24/10	07/01/10	KWG1006323	
Acenaphthene	ND U	2.4	0.76	1.	06/24/10	07/01/10	KWG1006323	
Fluorene	ND U	2.4	0.61	1	06/24/10	07/01/10	KWG1006323	
Phenanthrene	ND U	2.4	1.4	1	06/24/10	07/01/10	KWG1006323	
Anthracene	ND U	2.4	0.58	1	06/24/10	07/01/10	KWG1006323	
Fluoranthene	ND U	2.4	0.98	1	06/24/10	07/01/10	KWG1006323	
Pyrene	ND U	2.4	0.76	1	06/24/10	07/01/10	KWG1006323	
Benzo(b)fluoranthene	ND U	2.4	0.92	1	06/24/10	07/01/10	KWG1006323	
Benzo(k)fluoranthene	ND U	2.4	0.87	1	06/24/10	07/01/10	KWG1006323	
Benz(a)anthracene	ND U	2.4	0.72	1	06/24/10	07/01/10	KWG1006323	
Chrysene	ND U	2.4	0.80	1	06/24/10	07/01/10	KWG1006323	
Benzo(a)pyrene	ND U	2.4	0.76	1	06/24/10	07/01/10	KWG1006323	
Indeno(1,2,3-cd)pyrene	ND U	2.4	0.87	1	06/24/10	07/01/10	KWG1006323	
Dibenz(a,h)anthracene	ND U	2.4	0.80	1	06/24/10	07/01/10	KWG1006323	
Benzo(g,h,i)perylene	ND U	2.4	0.85	1	06/24/10	07/01/10	KWG1006323	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	68	17-104	07/01/10	Acceptable
Fluoranthene-d10	67	27-106	07/01/10	Acceptable
Terphenyl-d14	83	35-109	07/01/10	Acceptable

Comments:

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3541

Analysis Method:

8270C SIM

Service Request: K1006356

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
SRC-2010-1-B-Comp	K1006356-009	52	53	65
SRC-2010-2-B-Comp	K1006356-010	41	40	49
SRC-2010-3-B-Comp	K1006356-011	62	64	78
SRC-2010-4-B-Comp	K1006356-012	53	51	66
SRC-2010-5-B-Comp	K1006356-013	56	66	73
SRC-2010-6-B-Comp	K1006356-014	59	58	74
SRC-2010-7-B-Comp	K1006356-015	43	48	52
SRC-2010-7-1	K1006356-016	60	75	79
SRC-2010-7-2	K1006356-017	61	75	75
SRC-2010-7-3	K1006356-018	57	63	73
SRC-2010-7-4	K1006356-019	42	48	53
SRC-2010-7-5	K1006356-020	58	69	70
SRC-2010-8-Z-Comp	K1006356-021	61	73	72
Method Blank	KWG1006224-5	71	65	92
Method Blank	KWG1006323-5	68	67	83
Batch QC	K1006486-001	56	63	67
SRC-2010-1-CompMS	KWG1006224-1	56	63	67
SRC-2010-1-CompDMS	KWG1006224-2	69	85	83
Batch QCMS	KWG1006323-1	52	63	60
Batch QCDMS	KWG1006323-2	57	65	67
Lab Control Sample	KWG1006224-3	69	67	79
Duplicate Lab Control Sample	KWG1006224-4	69	77	76
Lab Control Sample	KWG1006323-3	58	59	64
Duplicate Lab Control Sample	KWG1006323-4	72	70	80
SRC-2010-1-Comp	K1006356-001	49	49	64
SRC-2010-2-Comp	K1006356-002	50	51	62
SRC-2010-3-Comp	K1006356-003	62	64	78
SRC-2010-4-Comp	K1006356-004	59	61	77
SRC-2010-5-Comp	K1006356-005	60	62	77
SRC-2010-6-Comp	K1006356-006	53	48	63
SRC-2010-7-Comp	K1006356-007	59	55	67
SRC-2010-7-Z-Comp	K1006356-008	56	60	72

### Surrogate Recovery Control Limits (%)

Sur1 =	Fluorene-d10	17-104
Sur2 =	Fluoranthene-d10	27-106
Sur3 =	Terphenyl-d14	35-109

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/12/2010 11:20:12  $u:\Stealth\Crystal.rpt\Form 2.rpt$ 

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories

USACE San Rafael Channel/16087

Service Request: K1006356 **Date Analyzed:** 07/01/2010

Time Analyzed: 13:43

Internal Standard Area and RT Summary Polynuclear Aromatic Hydrocarbons

72,469

65,667

70.991

67,179

66,803

76,100

File ID:

J:\MS11\DATA\070110\0701F004.D

KWG1006323-3

KWG1006323-4

KWG1006323-1

KWG1006323-2

K1006486-001

K1006356-021

Instrument ID:

MS11

Analysis Method:

Associated Analyses Method Blank

Lab Control Sample

SRC-2010-8-Z-Comp

Batch OCMS

Batch QC

Batch QCDMS

Duplicate Lab Control Sample

8270C SIM

**Lab Code:** KWG1006532-2

Analysis Lot: KWG1006532

81,405

76,848

73,344

80,090

76,235

86,278

7.55

7.56

7.54

7.55

7.56

7.55

_	Naphthalene-d8		Acenaphthen	e-d10	Phenanthrene-d10		
	Area	RT	<u>Area</u>	RT	Area	RT	
Results ==>	93,530	4.91	50,761	6.32	102,373	7.55	
Upper Limit ==>	187,060	5.41	101,522	6.82	204,746	8.05	
Lower Limit ==>	46,765	4.41	25,381	5.82	51,187	7.05	
ICAL Result ==>	96,897	4.94	52,741	6.36	94,220	7.59	
KWG1006323-5	82,749	4.90	48,100	6.32	90,604	7.55	

42,434

40,141

41,211

40,542

40,127

47,138

6.32

6.32

6.32

6.32

6.32

6.32

4.90

4,90

4.90

4.90

4.90

4.90

Results flagged with an asterisk (*) indicate values outside control criteria.

Printed: 07/12/2010 11:20:24  $u:\Stealth\Crystal.rpt\Form2IS3New.rpt$ 

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories

USACE San Rafael Channel/16087

Service Request: K1006356 **Date Analyzed:** 07/01/2010

Time Analyzed: 13:43

Internal Standard Area and RT Summary Polynuclear Aromatic Hydrocarbons

File ID:

J:\MS11\DATA\070110\0701F004.D

Lab Code: KWG1006532-2

Instrument ID:

Analysis Lot: KWG1006532

MS11

Analysis Method: 8270C SIM

	_	Chrysene-d12		Perylene-d12			
		Area	RT	<u>Area</u>	<u>RT</u>	Area	<u>RT</u>
	Results ==>	111,977	10,30	104,238	13.94		
	Upper Limit ==>	223,954	10.80	208,476	14.44		
	Lower Limit ==>	55,989	9.80	52,119	13.44		
	ICAL Result ==>	131,231	10.35	113,534	14.00		
Associated Analyses							
Method Blank	KWG1006323-5	96,608	10.29	88,235	13.93		
Lab Control Sample	KWG1006323-3	87,950	10.29	79,312	13.92		
Duplicate Lab Control Sample	KWG1006323-4	84,461	10.29	78,171	13.93		
Batch QCMS	KWG1006323-1	92,841	10.29	87,335	13.93		
Batch QCDMS	KWG1006323-2	95,557	10.29	92,023	13.93		
Batch QC	K1006486-001	89,657	10.29	86,073	13.92		
SRC-2010-8-Z-Comp	K1006356-021	108,341	10.29	108,881	13.95		

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories

USACE San Rafael Channel/16087

Service Request: K1006356 **Date Analyzed:** 07/02/2010 Time Analyzed: 10:48

Internal Standard Area and RT Summary Polynuclear Aromatic Hydrocarbons

File ID:

J:\MS11\DATA\070210\0702F004.D

Instrument ID:

Analysis Method:

MS11

8270C SIM

**Lab Code:** KWG1006570-2

Inalys	is Lot:	KWG1006570

	_	Naphthalen	Naphthalene-d8		ie-d10	Phenanthrene-d10	
		Area	<u>RT</u>	Area	RT	<u>Area</u>	<u>RT</u>
	Results ==>	93,038	4.90	56,217	6.32	109,878	7.54
	Upper Limit ==>	186,076	5.40	112,434	6.82	219,756	8.04
	Lower Limit ==>	46,519	4.40	28,109	5.82	54,939	7.04
	ICAL Result ==>	96,897	4.94	52,741	6.36	94,220	7.59
Associated Analyses							
SRC-2010-1-Comp	K1006356-001	85,584	4.90	49,834	6.31	97,039	7.54
SRC-2010-2-Comp	K1006356-002	59,066	4.89	34,882	6.32	73,174	7.54
SRC-2010-3-Comp	K1006356-003	80,519	4.89	47,492	6.32	95,139	7.54
SRC-2010-4-Comp	K1006356-004	59,470	4.89	33,573	6.32	66,355	7.54
SRC-2010-5-Comp	K1006356-005	80,488	4.90	47,267	6.32	97,436	7.54
SRC-2010-6-Comp	K1006356-006	79,582	4.89	48,262	6.32	100,929	7.54
SRC-2010-7-Comp	K1006356-007	82,391	4.90	49,657	6.31	107,261	7.54
SRC-2010-7-Z-Comp	K1006356-008	84,852	4.89	49,580	6.31	98,895	7.54
SRC-2010-1-B-Comp	K1006356-009	72,941	4.89	43,252	6.32	87,287	7.54
SRC-2010-2-B-Comp	K1006356-010	80,925	4.89	45,973	6.32	96,054	7.54
SRC-2010-3-B-Comp	K1006356-011	67,515	4.89	40,270	6.32	78,967	7.54
SRC-2010-4-B-Comp	K1006356-012	62,627	4.89	36,833	6.32	77,611	7.54
SRC-2010-5-B-Comp	K1006356-013	61,795	4.88	34,528	6.32	65,557	7.54
SRC-2010-6-B-Comp	K1006356-014	76,341	4.89	44,920	6.31	93,697	7.54
SRC-2010-7-B-Comp	K1006356-015	64,891	4.89	38,960	6.31	77,435	7.54
SRC-2010-7-1	K1006356-016	77,979	4.90	44,647	6.32	77,020	7.55
SRC-2010-7-2	K1006356-017	85,256	4.89	46,981	6.32	71,092	7.55
SRC-2010-7-3	K1006356-018	78,047	4.89	43,356	6.32	70,024	7.54
SRC-2010-7-4	K1006356-019	74,345	4.89	41,755	6.32	68,880	7.54
SRC-2010-7-5	K1006356-020	74,386	4.89	41,179	6.32	66,023	7.54

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories

USACE San Rafael Channel/16087

Service Request: K1006356 **Date Analyzed:** 07/02/2010

Time Analyzed: 10:48

Internal Standard Area and RT Summary Polynuclear Aromatic Hydrocarbons

File ID:

J:\MS11\DATA\070210\0702F004.D

K1006356-018

K1006356-019

K1006356-020

Instrument ID:

SRC-2010-7-3

SRC-2010-7-4

SRC-2010-7-5

MS11

8270C SIM Analysis Method:

**Lab Code:** KWG1006570-2

Analysis Lot: KWG1006570

	· · · · · · · · · · · · · · · · · · ·	Chrysene-	Chrysene-d12		d12		
		Area	RT	Area	RT	<u>Area</u>	RT
	Results ==>	118,461	10.28	110,591	13.90		
	Upper Limit ==>	236,922	10.78	221,182	14.40		
	Lower Limit ==>	59,231	9.78	55,296	13.40		
	ICAL Result ==>	131,231	10.35	113,534	14.00		
Associated Analyses							
SRC-2010-1-Comp	K1006356-001	95,965	10.28	92,300	13.89		
SRC-2010-2-Comp	K1006356-002	70,432	10.27	66,049	13.89		
SRC-2010-3-Comp	K1006356-003	95,013	10.27	92,128	13.89		
SRC-2010-4-Comp	K1006356-004	65,494	10.28	62,960	13.89		
SRC-2010-5-Comp	K1006356-005	95,494	10.28	92,332	13.89		
SRC-2010-6-Comp	K1006356-006	99,398	10.28	101,094	13.89		
SRC-2010-7-Comp	K1006356-007	112,801	10.28	115,426	13.90		
SRC-2010-7-Z-Comp	K1006356-008	100,500	10.28	102,542	13.90		
SRC-2010-1-B-Comp	K1006356-009	87,283	10.27	86,505	13.89		
SRC-2010-2-B-Comp	K1006356-010	91,788	10.27	89,013	13.89		
SRC-2010-3-B-Comp	K1006356-011	79,975	10.27	80,523	13.89		
SRC-2010-4-B-Comp	K1006356-012	75,422	10.27	73,406	13.88		
SRC-2010-5-B-Comp	K1006356-013	68,246	10.27	67,498	13.89		
SRC-2010-6-B-Comp	K1006356-014	91,751	10.27	91,353	13.89		
SRC-2010-7-B-Comp	K1006356-015	83,281	10.27	85,027	13.89		
SRC-2010-7-1	K1006356-016	92,528	10.30	92,142	13.95		
SRC-2010-7-2	K1006356-017	89,807	10.29	90,740	13.94		

85,507

79,204

79,580

10.29

10.29

10.29

84,391

78,411

76,966

13.93

13.93

13.95

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories

USACE San Rafael Channel/16087

Service Request: K1006356 **Date Analyzed:** 07/03/2010

Time Analyzed: 08:29

Internal Standard Area and RT Summary Polynuclear Aromatic Hydrocarbons

File ID:

J:\MS11\DATA\070310\0703F002.D

Instrument ID:

MS11

Analysis Method:

8270C SIM

**Lab Code:** KWG1006565-2

Analysis Lot: KWG1006565

	wa	Naphthalen	e-d8	Acenaphthen	e-d10	Phenanthrene-d10	
		Area	RT	<u>Area</u>	RT	Area	RT
	Results ==>	104,822	4.89	61,409	6.31	114,193	7.54
	Upper Limit ==>	209,644	5.39	122,818	6.81	228,386	8.04
	Lower Limit ==>	52,411	4.39	30,705	5.81	57,097	7.04
	ICAL Result ==>	96,897	4.94	52,741	6.36	94,220	7.59
Associated Analyses			***************************************				\$40356MAA43M <del>AAA</del> AAA3MAAAAA
Method Blank	KWG1006224-5	90,612	4.89	49,588	6.31	94,926	7.54
Lab Control Sample	KWG1006224-3	77,592	4.88	44,597	6.31	88,653	7.54
Duplicate Lab Control Sample	KWG1006224-4	79,537	4.88	44,227	6.31	78,527	7.54
SRC-2010-1-CompMS	KWG1006224-1	80,437	4.88	46,039	6.31	87,903	7.54
SRC-2010-1-CompDMS	KWG1006224-2	78,931	4.89	45,560	6.31	78,659	7.54

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories

USACE San Rafael Channel/16087

Service Request: K1006356 **Date Analyzed:** 07/03/2010

Time Analyzed: 08:29

Internal Standard Area and RT Summary Polynuclear Aromatic Hydrocarbons

File ID:

J:\MS11\DATA\070310\0703F002.D

Instrument ID:

Analysis Method:

MS11

8270C SIM

**Lab Code:** KWG1006565-2

Analysis Lot: KWG1006565

		Chrysene	·d12	Perylene-d12			
		Area	<u>RT</u>	<u>Area</u>	RT	Area	<u>RT</u>
	Results ==>	133,701	10.28	124,506	13.90		
	Upper Limit ==>	267,402	10.78	249,012	14.40		
	Lower Limit ==>	66,851	9.78	62,253	13.40		
	ICAL Result ==>	131,231	10.35	113,534	14.00		
Associated Analyses				Aprezzone principale anno adologiczny przecione por Bone i rodez pocessko distribution de Benezione propositio	anandio-Niciaan <del>i waxaanaa</del> aaaaaaaa		
Method Blank	KWG1006224-5	87,427	10.28	82,121	13.91		
Lab Control Sample	KWG1006224-3	95,648	10.28	89,795	13.90		
Duplicate Lab Control Sample	KWG1006224-4	97,962	10.28	89,110	13.90		
SRC-2010-1-CompMS	KWG1006224-1	102,716	10.28	95,120	13.90		
SRC-2010-1-CompDMS	KWG1006224-2	99,878	10.27	93,366	13.90		

Results flagged with an asterisk (*) indicate values outside control criteria.

Printed: 07/12/2010 11:20:49. u:\Stealth\Crystal.rpt\Form2IS3New.rpt

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356 **Date Extracted:** 06/21/2010

**Date Analyzed:** 07/03/2010

# Matrix Spike/Duplicate Matrix Spike Summary Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-1-Comp

Lab Code:

K1006356-001

**Extraction Method:** 

EPA 3541

Analysis Method:

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1006224

SRC-2010-1-CompMS

SRC-2010-1-CompDMS

KWG1006224-1 KWG1006224-2

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	12	291	560	50	425	559	74	11-119	38	40
Acenaphthylene	4.2	318	560	56	464	559	82	32-106	37	40
Acenaphthene	3.1	327	560	58	445	559	79	29-110	30	40
Fluorene	5.1	355	560	62	471	559	83	29-117	28	40
Phenanthrene	38	435	560	71	557	559	93	19-128	25	40
Anthracene	10	352	560	61	491	559	86	31-115	33	40
Fluoranthene	91	463	560	66	617	559	94	22-138	28	40
Pyrene	150	524	560	66	666	559	92	11-148	24	40
Benzo(b)fluoranthene	86	473	560	69	609	559	93	15-136	25	40
Benzo(k)fluoranthene	27	407	560	68	532	559	90	29-126	27	40
Benz(a)anthracene	46	423	560	. 67	548	. 559	90	25-128	26	40
Chrysene	54	422	560	66	562	559	91	25-132	28	40
Benzo(a)pyrene	90	479	560	70	643	559	99	24-131	29	40
Indeno(1,2,3-cd)pyrene	81	530	560	80	687	559	108	20-136	26	40
Dibenz(a,h)anthracene	9.2	381	560	66	521	559	91	29-124	31	40
Benzo(g,h,i)perylene	99	529	560	77	698	559	107	24-127	28	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/12/2010 11:20:53  $u:\Stealth\Crystal.rpt\Form3DMS.rpt$ 

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/24/2010

**Date Analyzed:** 07/01/2010

# Matrix Spike/Duplicate Matrix Spike Summary Polynuclear Aromatic Hydrocarbons

Sample Name:

Batch QC

Lab Code:

K1006486-001

Extraction Method:

EPA 3541

Analysis Method:

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1006323

LOW LOOK

Batch QCMS

Batch QCDMS KWG1006323-2

Analyte Name	Sample Result	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
		Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	4.1	366	546	66	330	545	60	11-119	10	40
Acenaphthylene	1.3	395	546	72	356	545	65	32-106	11	40
Acenaphthene	1.1	392	546	72	361	545	66	29-110	8	40
Fluorene	3.1	413	546	75	395	545	72	29-117	4	40
Phenanthrene	13	495	546	88	448	545	80 .	19-128	10	40
Anthracene	2.1	414	546	75	401	545	73	31-115	3	40
Fluoranthene	38	497	546	84	454	545	76	22-138	9	40
Pyrene	50	478	546	78	477	545	78	11-148	0	40
Benzo(b)fluoranthene	30	447	546	76	432	545	74	15-136	3	40
Benzo(k)fluoranthene	10	434	546	78	420	545	75	29-126	3	40
Benz(a)anthracene	14	424	546	75	417	545	74	25-128	2	40
Chrysene	19	445	546	78	429	545	75	25-132	4	40
Benzo(a)pyrene	25	446	546	77	425	545	73	24-131	5	40
Indeno(1,2,3-cd)pyrene	32	475	546	81	464	545	79	20-136	2	40
Dibenz(a,h)anthracene	4.1	423	546	77	415	545	75	29-124	2	40
Benzo(g,h,i)perylene	41	508	546	86	500	545	84	24-127	2	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/12/2010 11:20:56 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A324ganic

Page 1 of 1

SuperSet Reference: RR116495

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356 **Date Extracted:** 06/21/2010

**Date Analyzed:** 07/03/2010

# Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3541

Analysis Method:

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low Extraction Lot: KWG1006224

Lab Control Sample

Duplicate Lab Control Sample

Analyte Name	KWG1006224-3 Lab Control Spike			KWG1006224-4  Duplicate Lab Control Spike			%Rec		RPD
	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	404	500	81	416	500	83	43-99	3	40
Acenaphthylene	450	500	90	470	500	94	41-110	4	40
Acenaphthene	434	500	87	453	500	91	44-104	4	40
Fluorene	449	500	90	472	500	94	49-105	5	40
Phenanthrene	393	500	79	487	500	97	47-104	21	40
Anthracene	467	500	93	470	500	94	47-112	1 .	40
Fluoranthene	417	.500	83	450	500	90	51-111	8	40
Pyrene	459	500	92	448	500	90	48-113	3	40
Benzo(b)fluoranthene	476	500	95	494	500	99	51-113	4	40
Benzo(k)fluoranthene	462	500	92	482	500	96	56-114	4	40
Benz(a)anthracene	457	500	91	474	500	95	51-111	4	40
Chrysene	458	500	92	468	500	94	54-111	2	40
Benzo(a)pyrene	479	500	96	504	500	101	52-118	5	40
Indeno(1,2,3-cd)pyrene	499	500	100	508	500	102	42-123	2	40
Dibenz(a,h)anthracene	478	500	96	489	500	- 98	44-119	2	40
Benzo(g,h,i)perylene	489	500	98	504	500	101	46-114	3	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/12/2010 11:20:59 u:\Stealth\Crystal.rpt\Form3DLC.rpt

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project: Sample Matrix: USACE San Rafael Channel/16087 Sediment

Service Request: K1006356 **Date Extracted:** 06/24/2010

**Date Analyzed:** 07/01/2010

#### Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3541

Units: ug/Kg

Basis: Dry Level: Low

Extraction Lot: KWG1006323

Analysis Method:

8270C SIM

Lab Control Sample KWG1006323-3

Duplicate Lab Control Sample KWG1006323-4

		Control Spik		Duplicate Lab Control Spik			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	386	500	77	402	500	80	43-99	4	40
Acenaphthylene	417	500	83	439	500	88	41-110	5	40
Acenaphthene	406	500	81	428	500	86	44-104	5	40
Fluorene	424	500	85	459	500	92	49-105	8	40
Phenanthrene	406	500	81	470	500	94	47-104	15	40
Anthracene	427	500	85	454	500	91	47-112	6	40
Fluoranthene	395	500	79	435	500	87	51-111	10	40
Pyrene	441	500	88	456	500	91	48-113	4	40
Benzo(b)fluoranthene	431	500	86	437	500	87	51-113	1	40
Benzo(k)fluoranthene	444	500	89	467	500	93	56-114	5	40
Benz(a)anthracene	416	500	83	427	500	85	51-111	2	40
Chrysene	430	500	86	449	500	90	54-111	4	40
Benzo(a)pyrene	447	500	89	461	500	92	52-118	3	40
Indeno(1,2,3-cd)pyrene	444	500	89	460	500	92	42-123	3	40
Dibenz(a,h)anthracene	444	500	89	459	500	92	44-119	3	40
Benzo(g,h,i)perylene	474	500	95	493	500	99	46-114	4	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/12/2010 11:21:02 u:\Stealth\Crystal.rpt\Form3DLC.rpt

RR116495

**Semi-Volatile Organic Compounds** 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

#### Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SRC-2010-1-Comp

Lab Code:

K1006356-001

Units: ug/Kg

Basis: Dry

Extraction Method:

EPA 3541

Level: Low

Analysis Method:

8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Phenol	<b>5.4</b> J	34	2.3	Ĭ	06/24/10	07/09/10	KWG1006611	Lyanish Conference of Conferen
Pentachlorophenol	ND U	120	23	1	06/24/10	07/09/10	KWG1006611	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	58	20-86	07/09/10	Acceptable	
2,4,6-Tribromophenol	49	10-119	07/09/10	Acceptable	

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

#### Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SRC-2010-2-Comp

Lab Code:

K1006356-002

Extraction Method:

EPA 3541

Units: ug/Kg

Basis: Dry

Level: Low

Analysis Method:

8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Phenol	<b>4.0</b> J	32	2.2	l	06/24/10	07/09/10	KWG1006611	
Pentachlorophenol	ND U	110	22	1	06/24/10	07/09/10	KWG1006611	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Phenol-d6	54	20-86	07/09/10	Acceptable
2,4,6-Tribromophenol	39	10-119	07/09/10	Acceptable

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

#### Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SRC-2010-3-Comp

Lab Code:

K1006356-003

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

Analysis Method:

8270C

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Phenol	<b>3.7</b> J	31	2.1	1	06/24/10	07/09/10	KWG1006611	
Pentachlorophenol	ND U	110	21	. 1	06/24/10	07/09/10	KWG1006611	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Phenol-d6	53	20-86	07/09/10	Acceptable
2,4,6-Tribromophenol	42	10-119	07/09/10	Acceptable

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/11/2010

**Date Received:** 06/18/2010

#### Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SRC-2010-4-Comp

Lab Code:

K1006356-004

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3541

Level: Low

Analysis Method:

8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Phenol	<b>19</b> J	32	2.2	1	06/24/10	07/09/10	KWG1006611	
Pentachlorophenol	ND U	110	22	1	06/24/10	07/09/10	KWG1006611	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Phenol-d6	58	20-86	07/09/10	Acceptable
2,4,6-Tribromophenol	51	10-119	07/09/10	Acceptable

Comments:

Printed: 07/19/2010 09:47:10  $u: \label{lem:limit} u: \label{lem:limit} I m \label{lem:limit} I m \label{lem:limit} We w. rpt$ 

Merged

1 of 1 Page

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/08/2010

**Date Received:** 06/18/2010

#### Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SRC-2010-5-Comp

Lab Code:

K1006356-005

Units: ug/Kg Basis: Dry

Extraction Method: EPA 3541

Level: Low

Analysis	Method:	8270C

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Phenol	<b>4.6</b> J	34	2.3	1	06/24/10	07/09/10	KWG1006611	
Pentachlorophenol	ND U	120	23	1	06/24/10	07/09/10	KWG1006611	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	57	20-86	07/09/10	Acceptable	
2,4,6-Tribromophenol	53	10-119	07/09/10	Acceptable	

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/09/2010

**Date Received:** 06/18/2010

#### Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SRC-2010-6-Comp

Lab Code:

K1006356-006

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg

Basis: Dry

Level: Low

Analyte Name	Result O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Phenol Pentachlorophenol	3.7 J ND U	36 120	2.4 24	1	06/24/10 06/24/10	07/09/10	KWG1006611 KWG1006611	<del>and the state of </del>

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	59	20-86	07/09/10	Acceptable	
2,4,6-Tribromophenol	57	10-119	07/09/10	Acceptable	

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

#### Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SRC-2010-7-Comp

Lab Code:

K1006356-007

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3541

Level: Low

Analysis Method:

8270C

•					
	Dilution	Date	Date	Extraction	
 ~ ~~~~	-			<b>.</b>	- ·

Analyte Name	Result O	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Phenol	<b>150</b> JD	360	24	10	06/24/10		KWG1006611	
Pentachlorophenol	ND U	1200	240	10	06/24/10	07/09/10	KWG1006611	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	70	20-86	07/09/10	Acceptable	
2,4,6-Tribromophenol	73	10-119	07/09/10	Acceptable	

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

#### Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SRC-2010-7-Z-Comp

Lab Code:

K1006356-008

Units: ug/Kg Basis: Dry

Extraction Method: EPA 3541

Level: Low

Analysis	Methoa:	8270C

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Phenol	ND U	160	11	5	06/24/10	07/09/10	KWG1006611	
Pentachlorophenol	ND U	530	110	5	06/24/10	07/09/10	KWG1006611	

%Rec	Control Limits	Date Analyzed	Note	
62 65	20-86 10-119	07/09/10 07/09/10	Acceptable Acceptable	
	· · · · · · · · · · · · · · · · · · ·	%Rec         Limits           62         20-86	%Rec         Limits         Analyzed           62         20-86         07/09/10	%Rec Limits Analyzed Note 62 20-86 07/09/10 Acceptable

Comments:

Merged

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010 **Date Received:** 06/18/2010

#### Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SRC-2010-7-1

Lab Code:

K1006356-016

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3541

Analysis Method:

8270C

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Phenol	<b>4.4</b> J	39	2.6	1	06/24/10	07/12/10	KWG1006611	
Pentachlorophenol	ND U	130	26	1	06/24/10	07/12/10	KWG1006611	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	62	20-86	07/12/10	Acceptable	
2,4,6-Tribromophenol	71	10-119	07/12/10	Acceptable	

Comments:

Printed: 07/19/2010 09:47:30  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

#### Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SRC-2010-7-2

Lab Code:

K1006356-017

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3541

Analysis Method:

8270C

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Phenol	<b>4.2</b> J	36	2.4	1	06/24/10	07/12/10	KWG1006611	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Pentachlorophenol	ND U	120	24	1	06/24/10	07/12/10	KWG1006611	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	54	20-86	07/12/10	Acceptable	
2,4,6-Tribromophenol	70	10-119	07/12/10	Acceptable	

Comments:

RR116822

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

#### Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SRC-2010-7-3

Lab Code:

K1006356-018

Units: ug/Kg

Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

Analysis Method:

8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Phenol	<b>5.0</b> J	36	2.4	1	06/24/10	07/12/10	KWG1006611	-
Pentachlorophenol	ND U	120	- 24	1	06/24/10	07/12/10	KWG1006611	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	61	20-86	07/12/10	Acceptable	
2,4,6-Tribromophenol	72	10-119	07/12/10	Acceptable	

Comments:

Printed: 07/19/2010 09:47:38

 $u: \label{lem:limin} w: \label{lem:limin} u: \label{lem:limin} We w: pt = \label{lem:limin} u: \label{lem:limin} u: \label{lem:limin} We w: \label{lem:limin} u: \label{lem:limin}$ 

Merged

Page 1 of 1

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

#### Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SRC-2010-7-4

Lab Code:

K1006356-019

**Extraction Method:** EPA 3541

Basis: Dry

Level: Low

Units: ug/Kg

Analysis Method:

8270C

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Phenol	<b>7.4</b> J	38	2.6	1	06/24/10	07/12/10	KWG1006611	
Pentachlorophenol	ND U	130	26	1	06/24/10	07/12/10	KWG1006611	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	62	20-86	07/12/10	Acceptable	
2,4,6-Tribromophenol	78	10-119	07/12/10	Acceptable	

Comments:

Printed: 07/19/2010 09:47:42  $u:\Stealth\Crystal.rpt\Form\Im\New.rpt$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/18/2010

#### Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SRC-2010-7-5

Lab Code:

K1006356-020

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3541

Level: Low

Analysis Method:

8270C

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Phenol	<b>6.7</b> J	34	2.3	1	06/24/10	07/12/10	KWG1006611	ENTERPRISE SOUTH STATE OF
Pentachlorophenol	ND U	120	23	1	06/24/10	07/12/10	KWG1006611	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
henol-d6	44	20-86	07/12/10	Acceptable	
2,4,6-Tribromophenol	54	10-119	07/12/10	Acceptable	

Comments:

 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Merged

RR116822

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Collected:** 06/10/2010

**Date Received:** 06/23/2010

#### Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SRC-2010-8-Z-Comp

Lab Code:

K1006356-021

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Phenol	ND U	350	23	10	06/24/10	07/12/10	KWG1006611	
Pentachlorophenol	ND U	1200	230	10	06/24/10	07/12/10	KWG1006611	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Phenol-d6	63	20-86	07/12/10	Acceptable Acceptable
2,4,6-Tribromophenol	81	10-119	07/12/10	

Comments:

Printed: 07/19/2010 09:47:50  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Merged

Page 1 of 1

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

Date Collected: NA

Date Received: NA

#### Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG1006611-5

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3541

Level: Low

Analysis Method:

8270C

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Phenol	ND U	15	2.0	1	06/24/10	07/09/10	KWG1006611	
Pentachlorophenol	ND U	49	20	1	06/24/10	07/09/10	KWG1006611	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	60	20-86	07/09/10	Acceptable	
2,4,6-Tribromophenol	58	10-119	07/09/10	Acceptable	

Comments:

Printed: 07/19/2010 09:47:54 

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

#### **Surrogate Recovery Summary** Semi-Volatile Organic Compounds by GC/MS

**Extraction Method:** 

EPA 3541

Analysis Method:

8270C

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2
SRC-2010-1-Comp	K1006356-001	58	49
SRC-2010-2-Comp	K1006356-002	54	39
SRC-2010-3-Comp	K1006356-003	53	42
SRC-2010-4-Comp	K1006356-004	58	51
SRC-2010-5-Comp	K1006356-005	57	53
SRC-2010-6-Comp	K1006356-006	59	57
SRC-2010-7-Comp	K1006356-007	70 D	73 D
SRC-2010-7-Z-Comp	K1006356-008	62 D	65 D
SRC-2010-7-1	K1006356-016	62	71
SRC-2010-7-2	K1006356-017	54	70
SRC-2010-7-3	K1006356-018	61	72
SRC-2010-7-4	K1006356-019	62	78
SRC-2010-7-5	K1006356-020	44	54
SRC-2010-8-Z-Comp	K1006356-021	63 D	81 D
Method Blank	KWG1006611-5	60	58
SRC-2010-7-Z-CompMS	KWG1006611-1	59 D	71 D
SRC-2010-7-Z-CompDMS	KWG1006611-2	74 D	83 D
Lab Control Sample	KWG1006611-3	70	75
Duplicate Lab Control Sample	KWG1006611-4	58	59

#### Surrogate Recovery Control Limits (%)

Sur1 =	Phenol-d6	20-86
Sur2 =	2,4,6-Tribromophenol	10-119

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/19/2010 09:48:01  $u:\Stealth\Crystal.rpt\Form2.rpt$ 

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/24/2010

**Date Analyzed:** 07/09/2010

Matrix Spike/Duplicate Matrix Spike Summary Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SRC-2010-7-Z-Comp

Lab Code:

K1006356-008

**Extraction Method:** 

Analysis Method:

EPA 3541

8270C

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006611

SRC-2010-7-Z-CompMS

KWG1006611-1

SRC-2010-7-Z-CompDMS

KWG1006611-2

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result Expected		%Rec	Result Expected		%Rec	Limits	RPD	Limit
Phenol	ND	140	262	54	158	262	60	15-98	12	40
Pentachlorophenol	ND	77.6	262	30	149	262	57	10-123	63 *	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

Printed: 07/19/2010 09:48:04 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic 344

Page 1 of

SuperSet Reference: RR116822

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

USACE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006356

**Date Extracted:** 06/24/2010

**Date Analyzed:** 07/09/2010

#### Lab Control Spike/Duplicate Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3541

Analysis Method:

8270C

Units: ug/Kg

Basis: Dry

Level: Low Extraction Lot: KWG1006611

Lab Control Sample

KWG1006611-3

Duplicate Lab Control Sample

KWG1006611-4

Lab Control Spike **Duplicate Lab Control Spike** %Rec RPD Limits **RPD** Limit %Rec %Rec Analyte Name Result Expected Result Expected 158 28-91 19 40 250 63 130 250 52 Phenol 149 250 21-97 40 Pentachlorophenol 60 103 250 41 37

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/19/2010 09:48:07 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C Organic 345

Page 1 of 1

### **Dioxins and Furans**



July 21, 2010 Service Request No: K1006356

Pradeep Divvela Columbia Analytical Services, Inc 1317 S. 13th Avenue Kelso, WA 98626

#### Laboratory Results for: Pacific EcoRisk Laboratories/USACE San Rafael Channel/16087 Dear Pradeep Divvela:

Enclosed are the results of the sample(s) submitted to our laboratory on June 23rd and July 3rd, 2010. For your reference, these analyses have been assigned our service request number: **K1006356.** All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My direct number is 281-994-2954. You may also contact me via email at DBiles@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Darren Biles	
Project Manage	r

Page 1 of



### Certificate of Analysis

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

An Employee Owned Company

Client: Pacific EcoRisk Laboratories Service Request No.: K1006356

Project: USACE San Rafael Channel/16087 Date Received: 6/23/10-7/03/10

**Sample Matrix:** Sediment

#### **CASE NARRATIVE**

All analyses were performed in adherence to the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II. When appropriate to the method, method blank results have been reported with each analytical test.

#### **Sample Receipt**

Nine sediment samples were received for analysis at Columbia Analytical Services between 6/23/10 and 7/03/10.

The samples were received at 0°C in good condition and are consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Please note the reporting forms are currently referencing the date CAS- Kelso received the samples (6/18/10-6/23/10) and not the date CAS-Houston received the samples (6/23/10-7/3/10.)

#### **Data Validation Notes and Discussion**

#### B flags - Method Blanks

The Method Blank EQ1000320-01 contained low levels of 1234678-HpCDD, OCDD, and OCDF at or below the Method Reporting Limit (MRL).

The Method Blank EQ1000323-01 contained low levels of OCDD at or below the Method Reporting Limit (MRL).

The Method Blank EQ1000340-01 contained low levels of 1234678-HpCDD and OCDD at or below the Method Reporting Limit (MRL).

The associated compounds in the samples are flagged with 'B' flags.

#### Y flags - Labeled Standards

Samples that had recoveries of labeled standards outside the acceptance limits are flagged with 'Y' flags. In all cases, the signal-to-noise ratios are greater than 10:1, making these data acceptable.

**Approved by: Date:** 07/21/10

Xiangqiu Liang, Laboratory Director

#### MS/DMS

EQ1000320: Laboratory Control Spike/Duplicate Laboratory Control Spike (LCS/DLCS) samples were analyzed and reported in lieu of an MS/DMS for this extraction batch. The batch quality control criteria were met.

EQ1000323: Laboratory Control Spike/Duplicate Laboratory Control Spike (LCS/DLCS) samples were analyzed and reported in lieu of an MS/DMS for this extraction batch. The batch quality control criteria were met.

EQ1000340: Laboratory Control Spike/Duplicate Laboratory Control Spike (LCS/DLCS) samples were analyzed and reported in lieu of an MS/DMS for this extraction batch. The batch quality control criteria were met.

#### <u>C flags – 2378-TCDF Confirmation</u>

Confirmation of the TCDF compound: When 2378-TCDF is detected on the DB-5 column, confirmation analyses are performed on a second column (DB-225.) The results from both the DB-5 column and the DB-225 column are included in this data package.

The valid result for the 2378-TCDF compound is reported from the confirmation column.

The confirmation results have been included on the TEQ summary pages.

#### K flags

EMPC - When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.

#### **Detection Limits**

Detection limits are calculated for each congener in each sample by measuring the height of the noise level for each quantitation ion for the associated labeled standard. The concentration equivalent to 2.5 times the height of the noise is then calculated using the appropriate response factor and the weight of the sample. The calculated concentration equals the detection limit.

#### The TEO results for each sample have been calculated by CAS/Houston to include:

- WHO-2005 TEFs ("The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds", M. Van den Berg et al., Toxicological Sciences 93(2):223-241, 2006)
- ≥ 2378-TCDF from the DB-225 column, when confirmation required
- Non-detected compounds are not included in the 'Total'

**Approved by:** Date: 07/21/10

Xiangqiu Liang, Laboratory Director

Client: Pacific EcoRisk Laboratories Service Request: K1006356

Project: USACE San Rafael Channel/16087

#### SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	TIME
K1006356-001	SRC-2010-1-Comp	6/8/10	09:20
K1006356-002	SRC-2010-2-Comp	6/9/10	08:00
K1006356-003	SRC-2010-3-Comp	6/9/10	11:05
K1006356-004	SRC-2010-4-Comp	6/11/10	08:40
K1006356-005	SRC-2010-5-Comp	6/8/10	13:35
K1006356-006	SRC-2010-6-Comp	6/9/10	15:30
K1006356-007	SRC-2010-7-Comp	6/10/10	09:00
K1006356-008	SRC-2010-7-Z-Comp	6/10/10	11:55
K1006356-009	SRC-2010-1-B-Comp	6/8/10	09:20
K1006356-010	SRC-2010-2-B-Comp	6/9/10	08:00
K1006356-011	SRC-2010-3-B-Comp	6/9/10	11:05
K1006356-012	SRC-2010-4-B-Comp	6/11/10	08:40
K1006356-013	SRC-2010-5-B-Comp	6/8/10	13:35
K1006356-014	SRC-2010-6-B-Comp	6/9/10	15:30
K1006356-015	SRC-2010-7-B-Comp	6/10/10	09:00
K1006356-016	SRC-2010-7-1	6/10/10	09:00
K1006356-017	SRC-2010-7-2	6/10/10	09:40
K1006356-018	SRC-2010-7-3	6/10/10	10:10
K1006356-019	SRC-2010-7-4	6/10/10	10:35
K1006356-020	SRC-2010-7-5	6/10/10	11:00
K1006356-021	SRC-2010-8-Z-Comp	6/10/10	11:55

# Laboratory Certifications 2010-2011

STATE/PROGRAM	AGENCY	CERTIFICATION ID	EXP DATE
ARIZONA	AZ-DHS	AZ0725	05/27/11
ARKANSAS	ADEQ	10-035-0	06/16/11
CALIFORNIA	CA-ELAP	2452	02/28/11
DoD ELAP	A2LA	2897.01	11/30/11
FLORIDA/NELAP	FL-DOHS	E87611	06/30/11
HAWAII	HI-DOH	N/A	06/30/11
ILLINOIS/NELAP	IL-EPA	002380	10/06/10
ISO 17025	A2LA	2897.01	11/30/11
LOUISIANA/NELAP	LELAP	03048	06/30/10
LOUISIANA/NELAP	LDHH	LA100032	12/31/10
MAINE	ME-DOHS	2010041	06/05/12
MICHIGAN	MIDEQ	9971	06/30/10
MINNESOTA	MDH	048-999-427	12/31/10
NEVADA	NDEP	TX014112010A	07/31/10
NEW JERSEY	NJDEP	TX008	06/30/11
NEW MEXICO	NMED-DWB	N/A	06/30/11
NEW YORK/NELAP	NY-DOH	11707	04/01/11
OKLAHOMA	OKDEQ	2009-25	08/31/10
OREGON/NELAP	ORELAP	TX200002-006	03/24/10
PENNSYLVANIA/NELAP	PLAP	002	06/30/11
TENNESSEE	TNDEC	04016	06/30/11
TEXAS/NELAP	TCEQ	T104704216-10-1	06/30/11
UTAH/NELAP	UTELCP	COLU2	06/30/10
SOIL IMPORT PERMIT	USDA	P330-09-00067	03/27/12
WASHINGTON/NELAP	WA-Ecology	C1855	11/14/10
WEST VIRGINIA	WVDEP	347	06/30/11

#### Abbreviations, Acronyms & Definitions

Conc ConCentration

**Dioxin(s)** Polychlorinated dibenzo-p-dioxin(s)

**EDL** Estimated Detection Limit

**EMPC** Estimated Maximum Possible Concentration

**Flags** Data qualifiers

**Furan(s)** Polychlorinated dibenzofuran(s)

**g** Grams

**ICAL** Initial CALibration

**ID** IDentifier

**lons** Masses monitored for the analyte during data acquisition

**L** Liter (s)

**LCS** Laboratory Control Sample

**DLCS** Duplicate Laboratory Control Sample

MB Method Blank

MCL Method Calibration LimitMDL Method Detection LimitMRL Method Reporting Limit

**mL** Milliliters

MS Matrix Spiked sample

**DMS** Duplicate Matrix Spiked sample

NO Number of peaks meeting all identification criteria

PCDD(s) Polychlorinated dibenzo-p-dioxin(s)
PCDF(s) Polychlorinated dibenzofuran(s)

ppb
 ppm
 parts per billion
 ppq
 parts per quadrillion
 ppt
 parts per trillion
 QA
 Quality Assurance
 QC
 Quality Control

**Ratio** Ratio of areas from monitored ions for an analyte

**% Rec.** Percent Recovery

RPD Relative Percent Difference
RRF Relative Response Factor

**RT** Retention Time

RRT Relative Retention Time
SDG Sample Delivery Group
S/N Signal-to-Noise ratio

TEF Toxicity Equivalence Factor
TEQ Toxicity Equivalence Quotient

#### Data Qualifier Flags – Dioxin/Furans

- B Indicates the associated analyte is found in the method blank, as well as in the sample.
- C Confirmation of the TCDF compound: When 2378-TCDF is detected on the DB-5 column, confirmation analyses are performed on a second column (DB-225). The results from both the DB-5 column and the DB-225 column are included in this data package. The results from the DB-225 analyses should be used to evaluate the 2378-TCDF in the samples. The confirmed result should be used in determining the TEQ value for TCDF.
- E Indicates an estimated value used when the analyte concentration exceeds the upper end of the linear calibration range.
- J Indicates an estimated value used when the analyte concentration is below the method reporting limit (MRL) and above the estimated detection limit (EDL).
- K EMPC When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.
- o **U** Indicates the compound was analyzed and not detected.
- Y Samples that had recoveries of labeled standards outside the acceptance limits are flagged with 'Y'. In all cases, the signal-to-noise ratios are greater than 10:1, making these data acceptable.
- ND Indicates concentration is reported as 'Not Detected.'
- S Peak is saturated; data not reportable.
- P Indicates chlorodiphenyl ether interference present at the retention time of the target compound.
- **Q** Lock-mass interference by chlorodiphenyl ether compounds.

5	SR# Unique I	D	K1006	356			OB-5	DB-225	SPB-Octyl
	Ħ	rst	Level - Data P	rocessing	- to be f	illed by	oerson (	generating the	e forms
	Date: Q7	19	D Analyst:	MC	S	Samples:	021		
							٧		
		_				C-11 1 1	41.25435		
		Sec	ond Level - D	ata Review	– to be	filled by	person	doing peer re	eview
	Date:	¥	Analyst:		S	Samples:			
	712111		(k			021			
	/		7			- /			

PEER REVIEW PAGE

SR# Unique ID	K.1006356		DB-5	DB-225	SPB-Octyl
Firs	t Level – Data Proce	essing - to be f	illed by person	generating the fo	oms to the
Date:	Analyst:	S	Samples:		
07/20/10	XX	(-	-021)		
/ /					
Se	econd Level - Data	<b>Review</b> — to be	filled by person	doing peer revie	W.
Date: 07/20/1	Analyst:	, S	Samples: 021		
			•		

SR# Unique	K1006356		DB-5	DB-225	) SPB-Octyl
	First Level - Data Proc	essing - to be fi	lled by person g	generating the	forms
Date:	Analyst:	Sa	amples:		
07/14/10	XX	( - 0	003, -004	)	
1 1					
	Second Level - Data	Review — to be f	filled by person	doing peer re	view
Date: 6/1	Analyst:	Sa	amples: (003_0	مدل	
	144				

SR# Unique ID	K1006356		DB-5	DB-225	SPB-Octyl
firs	t Level - Data Proces	sing - to be filled b	y person (	generating the fo	oms 1113
Date:	Analyst:	Samples	S:_		
07/13/10	ZZ	(-001	)		
			<u> </u>	•	
; s	econd Level - Data Re	e <b>view</b> – to be filled l	ly person	doing peer revi	ew 🗼 🖖
Date: <b>07//3</b> /	∕o Analyst: ∰	s Samples	: 00 \		

SR# Unique ID	K1006356			B-5)	DB-225	SPB-Octyl
Firs	t Level - Data	Processing -	to be filled by p	erson ge	enerating the f	orms
Date: 7/13/	//ひ Analyst:	cel	Samples:	3,4		
Se	econd Level -	Data Review –	to be filled by	person d	oing peer revi	ew
Date: 07/13	ハ Analyst:	ON.	Samples:	003,90	-(	
				7		

SR	# Uni	ique II	<u> </u>	K	100635	.6		DB-5	DB-225	SPB-Octyl
		Fi	St.	_ev	el - Data P	rocessing - to b	be filled by p	person g	penerating the	e forms
D	ate:	07	13	10	Analyst:	Øy	Samples:	001-	002	
			Sec	n a	llevel-D	ata Review – to	be filled by	nerson	doina peer re	eview
Da	ate:	07	12	115	<b>)</b> Analyst:	MC	Samples:	QQ -	-002	
		J.	-	415						

SR# Unique ID <b>K1006356</b>	DB-5	DB-225	SPB-Octyl							
First Level - Data Processing - to be filled by person generating the forms										
Date: 07 00 10 Analyst: M.C. S	amples: 005 - 6	800								
Second Level - Data Review – to be	filled by person d	oing peer revi	ew							
Date: Alo Analyst: Alo S	amples: 005-00[	<b>1</b>								
<b>V</b> -										

# COLUMBIA ANALYTICAL SERVICES, INC. – Houston Data Processing/Form Production and Peer Review Signatures

SR# Uni	que ID	K100635	6		DB-5		B-225)	SPB-Octyl
	Fir	st Level - Data P	rocessing -	to be filled b	y perso	rgenerali	ing the for	ms,
Date:	,	Analyst:		Sample	S:			
07/07/	10	LL		(-005	-006	, -007	, -008	
							,	
	, s	econd Level - D	ata Review -	-to be filed	oy perso	n doing	deerneviev	V
Date:	9	07 0 Analyst:	MC	Sample	: <del>-00</del>	5-008	,007	
	- 0				pla	2010		
Constitution of the Consti								

No 2378-700F on DB-5 For 005,006



# **Analytical Results**

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

An Employee Owned Company

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

**Sample Name:** SRC-2010-1-Comp **Lab Code:** K1006356-001

 Service Request:
 K1006356

 Date Collected:
 6/8/10 0920

 Date Received:
 6/18/10

Units: ng/KgBasis: DryPercent Solids: 44.6

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:8290Prep Method:MethodSample Amount:11.341g

Data File Name: P109694 ICAL Date: 09/11/09 Date Analyzed: 7/12/10 1411
Date Extracted: 6/25/10
Instrument Name: E-HRMS-03
GC Column: DB-5

Blank File Name: P208554
Cal Ver. File Name: P109689

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	ND	U	0.250	1.98			1	
1,2,3,7,8-PeCDD	ND	U	0.170	4.94			1	
1,2,3,4,7,8-HxCDD	ND	U	0.122	4.94			1	
1,2,3,6,7,8-HxCDD	0.926	J	0.109	4.94	1.29	1.000	1	
1,2,3,7,8,9-HxCDD	0.625	J	0.116	4.94	1.33	1.008	1	
1,2,3,4,6,7,8-HpCDD	14.3	В	0.154	4.94	1.11	1.000	1	
OCDD	107	В	0.195	9.89	0.88	1.000	1	
2,3,7,8-TCDF	0.952	CJ	0.389	1.98	0.70	1.001	1	
1,2,3,7,8-PeCDF	ND	U	0.161	4.94			1	
2,3,4,7,8-PeCDF	ND	U	0.160	4.94			1	
1,2,3,4,7,8-HxCDF	0.416	J	0.139	4.94	1.33	1.000	1	
1,2,3,6,7,8-HxCDF	ND	U	0.131	4.94			1	
1,2,3,7,8,9-HxCDF	ND	U	0.177	4.94			1	
2,3,4,6,7,8-HxCDF	ND	U	0.151	4.94			1	
1,2,3,4,6,7,8-HpCDF	2.72	J	0.136	4.94	1.02	1.000	1	
1,2,3,4,7,8,9-HpCDF	ND	U	0.189	4.94			1	
OCDF	7.08	BJ	0.203	9.89	0.87	1.004	1	
Total Tetra-Dioxins	0.883	J	0.250	1.98	0.83		1	
Total Penta-Dioxins	0.496	J	0.170	4.94	1.56		1	
Total Hexa-Dioxins	7.58		0.109	4.94	1.27		1	
Total Hepta-Dioxins	34.0		0.154	4.94	1.08		1	
Total Tetra-Furans	0.952	J	0.389	1.98	0.70		1	
Total Penta-Furans	2.38	J	0.160	4.94	1.59		1	
Total Hexa-Furans	2.48	J	0.131	4.94	1.37		1	
Total Hepta-Furans	7.31		0.136	4.94	1.02		1	

364

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

**Sample Name:** SRC-2010-1-Comp **Lab Code:** K1006356-001

**Service Request:** K1006356 **Date Collected:** 6/8/10 0920 **Date Received:** 6/18/10

Units: Percent
Basis: Dry
Percent Solids: 44.6

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 11.341g

Data File Name: P109694 ICAL Date: 09/11/09 Date Analyzed: 7/12/10 1411
Date Extracted: 6/25/10
Instrument Name: E-HRMS-03
GC Column: DB-5

Blank File Name: P208554 Cal Ver. File Name: P109689

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	749.290	75	40-135	0.80	1.009
13C-1,2,3,7,8-PeCDD	1000	974.095	97	40-135	1.59	1.181
3C-1,2,3,6,7,8-HxCDD	2500	1443.984	58	40-135	1.26	0.992
3C-1,2,3,4,6,7,8-HpCDD	2500	1497.977	60	40-135	1.07	1.068
3C-OCDD	5000	2395.543	48	40-135	0.91	1.146
2,3,7,8-TCDF	1000	689.236	69	40-135	0.79	0.978
C-1,2,3,7,8-PeCDF	1000	978.866	98	40-135	1.60	1.140
C-1,2,3,4,7,8-HxCDF	2500	1244.820	50	40-135	0.53	0.970
C-1,2,3,4,6,7,8-HpCDF	2500	1340.879	54	40-135	0.45	1.045
Cl-2,3,7,8-TCDD	800	806.737	101	40-135	NA	1.009

Comments:
Comments.

Analytical Report

Pacific EcoRisk Laboratories Service Request: K1006356 **Client:** USACE San Rafael Channel/16087 **Date Collected:** 6/8/10 0920 **Project: Date Received:** 6/18/10

Sediment **Sample Matrix:** 

SRC-2010-1-Comp Sample Name: Units: ng/Kg K1006356-001 Lab Code: Basis: Dry

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method

			Dilution		TEF - Adjusted	
Analyte Name	Result	DL	Factor	TEF	Concentration	
2,3,7,8-TCDD	ND	0.250	1	1		
1,2,3,7,8-PeCDD	ND	0.170	1	1		
1,2,3,4,7,8-HxCDD	ND	0.122	1	0.1		
1,2,3,6,7,8-HxCDD	0.926	0.109	1	0.1	0.0926	
1,2,3,7,8,9-HxCDD	0.625	0.116	1	0.1	0.0625	
1,2,3,4,6,7,8-HpCDD	14.3	0.154	1	0.01	0.143	
OCDD	107	0.195	1	0.0003	0.0321	
2,3,7,8-TCDF	0.781	0.133	1	0.1	0.0781	
1,2,3,7,8-PeCDF	ND	0.161	1	0.03		
2,3,4,7,8-PeCDF	ND	0.160	1	0.3		
1,2,3,4,7,8-HxCDF	0.416	0.139	1	0.1	0.0416	
1,2,3,6,7,8-HxCDF	ND	0.131	1	0.1		
1,2,3,7,8,9-HxCDF	ND	0.177	1	0.1		
2,3,4,6,7,8-HxCDF	ND	0.151	1	0.1		
1,2,3,4,6,7,8-HpCDF	2.72	0.136	1	0.01	0.0272	
1,2,3,4,7,8,9-HpCDF	ND	0.189	1	0.01		
OCDF	7.08	0.203	1	0.0003	0.00212	

Total TEQ 0.479

2005 WHO TEFs, ND = 0

Analytical Report

**Client:** Pacific EcoRisk Laboratories **Project:** USACE San Rafael Channel/16087

Sediment **Sample Matrix:** 

SRC-2010-1-Comp Sample Name: Lab Code: K1006356-001

Run Type: Reanalysis Service Request: K1006356 **Date Collected:** 6/8/10 0920 **Date Received:** 6/18/10

Units: ng/Kg Basis: Dry Percent Solids: 44.6

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method **Sample Amount:** 11.341g

**Data File Name:** U137034 12/17/07 **ICAL Date:** 

**Date Analyzed:** 7/12/10 1813 **Date Extracted:** 6/25/10

**Instrument Name:** E-HRMS-01 GC Column: DB-225 Blank File Name: U137025

Cal Ver. File Name: U137024

Ion Dilution Result Q **EDL** MRL Ratio RRT **Analyte Name Factor** 2,3,7,8-TCDF **0.781** J 0.133 1.98 0.76 1.001

Control Spike Conc. Ion **Labeled Compounds** %Rec Q Limits Ratio Conc.(pg) Found (pg) **RRT** 13C-2,3,7,8-TCDF 1000 637.599 64 40-135 0.781.061 37Cl-2,3,7,8-TCDD 800 719.378 90 40-135 NA 0.989

Comments:

367

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

**Sample Name:** SRC-2010-2-Comp **Lab Code:** K1006356-002

**Service Request:** K1006356 **Date Collected:** 6/ 9/10 0800 **Date Received:** 6/18/10

 Units:
 ng/Kg

 Basis:
 Dry

 Percent Solids:
 46.7

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 12.223g

Data File Name: P109695 ICAL Date: 09/11/09 Date Analyzed: 7/12/10 1459
Date Extracted: 6/25/10
Instrument Name: E-HRMS-03

GC Column: DB-5
Blank File Name: P208554
Cal Ver. File Name: P109689

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	ND	U	0.215	1.75			1	
1,2,3,7,8-PeCDD	ND	U	0.129	4.38			1	
1,2,3,4,7,8-HxCDD	ND	U	0.0785	4.38			1	
1,2,3,6,7,8-HxCDD	0.295	J	0.0705	4.38	1.23	1.000	1	
1,2,3,7,8,9-HxCDD	0.181	JK	0.0745	4.38	1.45	1.008	1	
1,2,3,4,6,7,8-HpCDD	5.59	В	0.132	4.38	1.01	1.000	1	
OCDD	42.0	В	0.203	8.76	0.89	1.000	1	
2,3,7,8-TCDF	ND	U	0.292	1.75			1	
1,2,3,7,8-PeCDF	ND	U	0.107	4.38			1	
2,3,4,7,8-PeCDF	ND	U	0.106	4.38			1	
1,2,3,4,7,8-HxCDF	ND	U	0.0899	4.38			1	
1,2,3,6,7,8-HxCDF	ND	U	0.0850	4.38			1	
1,2,3,7,8,9-HxCDF	ND	U	0.115	4.38			1	
2,3,4,6,7,8-HxCDF	ND	U	0.0976	4.38			1	
1,2,3,4,6,7,8-HpCDF	1.12	J	0.0840	4.38	0.96	1.000	1	
1,2,3,4,7,8,9-HpCDF	ND	U	0.117	4.38			1	
OCDF	3.06	BJ	0.138	8.76	0.88	1.004	1	
Total Tetra-Dioxins	0.398	J	0.215	1.75	0.79		1	
Total Penta-Dioxins	ND	U	0.129	4.38			1	
Total Hexa-Dioxins	2.68	J	0.0705	4.38	1.22		1	
Total Hepta-Dioxins	14.6		0.132	4.38	1.01		1	
Total Tetra-Furans	ND	U	0.292	1.75			1	
Total Penta-Furans	ND	U	0.106	4.38			1	
Total Hexa-Furans	1.25	J	0.0850	4.38	1.36		1	
Total Hepta-Furans	2.90	J	0.0840	4.38	0.96		1	

Common	
Comment	S.

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

**Sample Name:** SRC-2010-2-Comp **Lab Code:** K1006356-002

**Service Request:** K1006356 **Date Collected:** 6/ 9/10 0800 **Date Received:** 6/18/10

Units: PercentBasis: DryPercent Solids: 46.7

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 12.223g

Data File Name: P109695 ICAL Date: 09/11/09 Date Analyzed: 7/12/10 1459
Date Extracted: 6/25/10
Instrument Name: E-HRMS-03
GC Column: DB-5

Blank File Name: P208554
Cal Ver. File Name: P109689

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	738.462	74	40-135	0.79	1.009
3C-1,2,3,7,8-PeCDD	1000	970.054	97	40-135	1.59	1.181
3C-1,2,3,6,7,8-HxCDD	2500	1494.499	60	40-135	1.27	0.992
3C-1,2,3,4,6,7,8-HpCDD	2500	1528.746	61	40-135	1.07	1.068
3C-OCDD	5000	2358.270	47	40-135	0.91	1.146
,3,7,8-TCDF	1000	643.378	64	40-135	0.76	0.979
-1,2,3,7,8-PeCDF	1000	962.320	96	40-135	1.60	1.141
C-1,2,3,4,7,8-HxCDF	2500	1210.406	48	40-135	0.53	0.970
C-1,2,3,4,6,7,8-HpCDF	2500	1429.311	57	40-135	0.45	1.044
Cl-2,3,7,8-TCDD	800	812.202	102	40-135	NA	1.010

Comments:
Comments.

Analytical Report

Pacific EcoRisk Laboratories Service Request: K1006356 **Client:** USACE San Rafael Channel/16087 **Date Collected:** 6/9/10 0800 **Project: Date Received:** 6/18/10

Sediment **Sample Matrix:** 

SRC-2010-2-Comp Sample Name: Units: ng/Kg K1006356-002 Lab Code: Basis: Dry

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method

			Dilution		TEF - Adjusted	
Analyte Name	Result	DL	Factor	TEF	Concentration	
2,3,7,8-TCDD	ND	0.215	1	1		
1,2,3,7,8-PeCDD	ND	0.129	1	1		
1,2,3,4,7,8-HxCDD	ND	0.0785	1	0.1		
1,2,3,6,7,8-HxCDD	0.295	0.0705	1	0.1	0.0295	
1,2,3,7,8,9-HxCDD	0.181	0.0745	1	0.1	0.0181	
1,2,3,4,6,7,8-HpCDD	5.59	0.132	1	0.01	0.0559	
OCDD	42.0	0.203	1	0.0003	0.0126	
2,3,7,8-TCDF	ND	0.292	1	0.1		
1,2,3,7,8-PeCDF	ND	0.107	1	0.03		
2,3,4,7,8-PeCDF	ND	0.106	1	0.3		
1,2,3,4,7,8-HxCDF	ND	0.0899	1	0.1		
1,2,3,6,7,8-HxCDF	ND	0.0850	1	0.1		
1,2,3,7,8,9-HxCDF	ND	0.115	1	0.1		
2,3,4,6,7,8-HxCDF	ND	0.0976	1	0.1		
1,2,3,4,6,7,8-HpCDF	1.12	0.0840	1	0.01	0.0112	
1,2,3,4,7,8,9-HpCDF	ND	0.117	1	0.01		
OCDF	3.06	0.138	1	0.0003	0.000918	

Total TEQ 0.128

2005 WHO TEFs, ND = 0

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: SRC-2010-3-Comp Lab Code: K1006356-003 
 Service Request:
 K1006356

 Date Collected:
 6/9/10 1105

 Date Received:
 6/18/10

Units: ng/Kg Basis: Dry Percent Solids: 48.3

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:8290Prep Method:MethodSample Amount:13.215g

Data File Name: P208555 ICAL Date: 08/01/08 Date Analyzed: 7/12/10 1909
Date Extracted: 6/25/10
Instrument Name: E-HRMS-04
GC Column: DB-5

Blank File Name: P208554
Cal Ver. File Name: P208552

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	ND	U	0.0735	1.57			1	
1,2,3,7,8-PeCDD	ND	U	0.0746	3.92			1	
1,2,3,4,7,8-HxCDD	ND	U	0.0742	3.92			1	
1,2,3,6,7,8-HxCDD	0.0844	JK	0.0527	3.92	1.48	1.000	1	
1,2,3,7,8,9-HxCDD	ND	U	0.0597	3.92			1	
1,2,3,4,6,7,8-HpCDD	1.43	BJ	0.0353	3.92	1.09	1.000	1	
OCDD	9.87	В	0.0864	7.83	0.88	1.000	1	
2,3,7,8-TCDF	0.212	CJ	0.0729	1.57	0.82	1.001	1	
1,2,3,7,8-PeCDF	ND	U	0.0632	3.92			1	
2,3,4,7,8-PeCDF	ND	U	0.0612	3.92			1	
1,2,3,4,7,8-HxCDF	ND	U	0.0698	3.92			1	
1,2,3,6,7,8-HxCDF	ND	U	0.0597	3.92			1	
1,2,3,7,8,9-HxCDF	ND	U	0.0804	3.92			1	
2,3,4,6,7,8-HxCDF	ND	U	0.0669	3.92			1	
1,2,3,4,6,7,8-HpCDF	0.291	JK	0.0652	3.92	1.23	1.000	1	
1,2,3,4,7,8,9-HpCDF	ND	U	0.0829	3.92			1	
OCDF	0.785	BJ	0.0552	7.83	0.95	1.004	1	
Total Tetra-Dioxins	ND	U	0.0735	1.57			1	
Total Penta-Dioxins	ND	U	0.0746	3.92			1	
Total Hexa-Dioxins	0.624	J	0.0527	3.92	1.21		1	
Total Hepta-Dioxins	4.06		0.0353	3.92	0.99		1	
Total Tetra-Furans	0.212	J	0.0729	1.57	0.82		1	
Total Penta-Furans	0.174	J	0.0612	3.92	1.67		1	
Total Hexa-Furans	0.131	J	0.0597	3.92	1.15		1	
Total Hepta-Furans	0.488	J	0.0652	3.92	0.90		1	

Commond	
Comment	S:

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: SRC-2010-3-Comp Lab Code: K1006356-003 
 Service Request:
 K1006356

 Date Collected:
 6/ 9/10 1105

 Date Received:
 6/18/10

Units: PercentBasis: DryPercent Solids: 48.3

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 13.215g

Data File Name: P208555 ICAL Date: 08/01/08 Date Analyzed: 7/12/10 1909
Date Extracted: 6/25/10
Instrument Name: E-HRMS-04
GC Column: DB-5

Blank File Name: P208554
Cal Ver. File Name: P208552

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	673.466	67	40-135	0.78	1.009
13C-1,2,3,7,8-PeCDD	1000	653.510	65	40-135	1.59	1.168
3C-1,2,3,6,7,8-HxCDD	2500	1795.303	72	40-135	1.25	0.992
3C-1,2,3,4,6,7,8-HpCDD	2500	1583.374	63	40-135	1.05	1.068
BC-OCDD	5000	2462.669	49	40-135	0.90	1.149
2,3,7,8-TCDF	1000	655.224	66	40-135	0.78	0.982
-1,2,3,7,8-PeCDF	1000	736.508	74	40-135	1.59	1.131
C-1,2,3,4,7,8-HxCDF	2500	1679.023	67	40-135	0.53	0.971
3C-1,2,3,4,6,7,8-HpCDF	2500	1516.631	61	40-135	0.45	1.044
21-2,3,7,8-TCDD	800	725.768	91	40-135	NA	1.010

Commontes	
Comments:	

Analytical Report

Pacific EcoRisk Laboratories Service Request: K1006356 **Client:** USACE San Rafael Channel/16087 **Project:** Sediment **Sample Matrix:** 

**Date Collected:** 6/9/10 1105 **Date Received:** 6/18/10

SRC-2010-3-Comp Sample Name: K1006356-003 Lab Code:

Units: ng/Kg Basis: Dry

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method

			Dilution		TEF - Adjusted
Analyte Name	Result	DL	Factor	TEF	Concentration
2,3,7,8-TCDD	ND	0.0735	1	1	
1,2,3,7,8-PeCDD	ND	0.0746	1	1	
1,2,3,4,7,8-HxCDD	ND	0.0742	1	0.1	
1,2,3,6,7,8-HxCDD	0.0844	0.0527	1	0.1	0.00844
1,2,3,7,8,9-HxCDD	ND	0.0597	1	0.1	
1,2,3,4,6,7,8-HpCDD	1.43	0.0353	1	0.01	0.0143
OCDD	9.87	0.0864	1	0.0003	0.00296
2,3,7,8-TCDF	ND	0.0848	1	0.1	
1,2,3,7,8-PeCDF	ND	0.0632	1	0.03	
2,3,4,7,8-PeCDF	ND	0.0612	1	0.3	
1,2,3,4,7,8-HxCDF	ND	0.0698	1	0.1	
1,2,3,6,7,8-HxCDF	ND	0.0597	1	0.1	
1,2,3,7,8,9-HxCDF	ND	0.0804	1	0.1	
2,3,4,6,7,8-HxCDF	ND	0.0669	1	0.1	
1,2,3,4,6,7,8-HpCDF	0.291	0.0652	1	0.01	0.00291
1,2,3,4,7,8,9-HpCDF	ND	0.0829	1	0.01	
OCDF	0.785	0.0552	1	0.0003	0.000236
OCDI	0.703	0.0332	1	0.0003	0.000230

Total TEQ 0.0288

2005 WHO TEFs, ND = 0

Analytical Report

Pacific EcoRisk Laboratories **Client: Project:** USACE San Rafael Channel/16087

Sediment **Sample Matrix:** 

SRC-2010-3-Comp Sample Name: Lab Code: K1006356-003 Run Type: Reanalysis

**Date Collected:** 6/9/10 1105 **Date Received:** 6/18/10

Service Request: K1006356

Units: ng/Kg Basis: Dry Percent Solids: 48.3

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method **Sample Amount:** 

13.215g

**Data File Name:** U137046 12/17/07 **ICAL Date:** 

**Date Analyzed:** 7/13/10 1545 **Date Extracted:** 6/25/10 **Instrument Name:** E-HRMS-01

GC Column: DB-225 Blank File Name: U137039 Cal Ver. File Name: U137038

Ion **Dilution** Result Q **EDL** MRL Ratio RRT **Analyte Name Factor** 

2,3,7,8-TCDF ND U 0.0848 1.57

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDF	1000	684.749	68	40-135	0.79	1.060	
37Cl-2,3,7,8-TCDD	800	732.829	92	40-135	NA	0.988	

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: SRC-2010-4-Comp Lab Code: K1006356-004 **Service Request:** K1006356 **Date Collected:** 6/11/10 0840 **Date Received:** 6/18/10

Units: ng/KgBasis: DryPercent Solids: 47.2

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:8290Prep Method:MethodSample Amount:10.784g

Data File Name: P208556 ICAL Date: 08/01/08 Date Analyzed: 7/12/10 1957
Date Extracted: 6/25/10
Instrument Name: E-HRMS-04
GC Column: DB-5

Blank File Name: P208554
Cal Ver. File Name: P208552

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	ND	U	0.115	1.96			1	
1,2,3,7,8-PeCDD	ND	U	0.114	4.91			1	
1,2,3,4,7,8-HxCDD	0.104	JK	0.0967	4.91	0.66	0.999	1	
1,2,3,6,7,8-HxCDD	0.450	J	0.0686	4.91	1.23	1.000	1	
1,2,3,7,8,9-HxCDD	0.363	J	0.0780	4.91	1.10	1.009	1	
1,2,3,4,6,7,8-HpCDD	7.72	В	0.0798	4.91	1.06	1.000	1	
OCDD	52.1	В	0.102	9.82	0.90	1.000	1	
2,3,7,8-TCDF	0.398	CJK	0.151	1.96	0.57	1.001	1	
1,2,3,7,8-PeCDF	ND	U	0.121	4.91			1	
2,3,4,7,8-PeCDF	ND	U	0.117	4.91			1	
1,2,3,4,7,8-HxCDF	0.258	JK	0.109	4.91	1.69	1.001	1	
1,2,3,6,7,8-HxCDF	ND	U	0.0930	4.91			1	
1,2,3,7,8,9-HxCDF	ND	U	0.126	4.91			1	
2,3,4,6,7,8-HxCDF	ND	U	0.105	4.91			1	
1,2,3,4,6,7,8-HpCDF	1.75	J	0.106	4.91	0.90	1.000	1	
1,2,3,4,7,8,9-HpCDF	ND	U	0.135	4.91			1	
OCDF	3.96	BJ	0.0896	9.82	0.81	1.004	1	
Total Tetra-Dioxins	ND	U	0.115	1.96			1	
Total Penta-Dioxins	0.318	J	0.114	4.91	1.46		1	
Total Hexa-Dioxins	2.48	J	0.0686	4.91	1.40		1	
Total Hepta-Dioxins	18.9		0.0798	4.91	1.00		1	
Total Tetra-Furans	ND	U	0.151	1.96			1	
Total Penta-Furans	1.37	J	0.117	4.91	1.76		1	
Total Hexa-Furans	1.98	J	0.0930	4.91	1.24		1	
Total Hepta-Furans	4.82	J	0.106	4.91	0.90		1	

Comme	nts:

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: SRC-2010-4-Comp Lab Code: K1006356-004 
 Service Request:
 K1006356

 Date Collected:
 6/11/10 0840

 Date Received:
 6/18/10

Units: Percent
Basis: Dry

Percent Solids: 47.2

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analytical Method:** 8290 **Prep Method:** Method **Sample Amount:** 10.784g

Data File Name: P208556 ICAL Date: 08/01/08 Date Analyzed: 7/12/10 1957
Date Extracted: 6/25/10
Instrument Name: E-HRMS-04
GC Column: DB-5

Blank File Name: P208554 Cal Ver. File Name: P208552

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	599.958	60	40-135	0.77	1.009
13C-1,2,3,7,8-PeCDD	1000	627.663	63	40-135	1.61	1.168
13C-1,2,3,6,7,8-HxCDD	2500	1765.519	71	40-135	1.28	0.992
3C-1,2,3,4,6,7,8-HpCDD	2500	1630.026	65	40-135	1.06	1.068
BC-OCDD	5000	2556.393	51	40-135	0.91	1.149
-2,3,7,8-TCDF	1000	529.219	53	40-135	0.78	0.982
C-1,2,3,7,8-PeCDF	1000	704.419	70	40-135	1.56	1.131
C-1,2,3,4,7,8-HxCDF	2500	1659.234	66	40-135	0.52	0.971
3C-1,2,3,4,6,7,8-HpCDF	2500	1558.486	62	40-135	0.44	1.044
Cl-2,3,7,8-TCDD	800	621.241	78	40-135	NA	1.010

Comments:
Comments.

Analytical Report

Pacific EcoRisk Laboratories **Client:** Service Request: K1006356 USACE San Rafael Channel/16087 **Date Collected:** 6/11/10 0840 **Project: Date Received:** 6/18/10

Sediment **Sample Matrix:** 

SRC-2010-4-Comp Sample Name: Units: ng/Kg K1006356-004 Lab Code: Basis: Dry

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method

			Dilution		TEF - Adjusted	
Analyte Name	Result	DL	Factor	TEF	Concentration	
2,3,7,8-TCDD	ND	0.115	1	1		
1,2,3,7,8-PeCDD	ND	0.114	1	1		
1,2,3,4,7,8-HxCDD	0.104	0.0967	1	0.1	0.0104	
1,2,3,6,7,8-HxCDD	0.450	0.0686	1	0.1	0.0450	
1,2,3,7,8,9-HxCDD	0.363	0.0780	1	0.1	0.0363	
1,2,3,4,6,7,8-HpCDD	7.72	0.0798	1	0.01	0.0772	
OCDD	52.1	0.102	1	0.0003	0.0156	
2,3,7,8-TCDF	0.522	0.126	1	0.1	0.0522	
1,2,3,7,8-PeCDF	ND	0.121	1	0.03		
2,3,4,7,8-PeCDF	ND	0.117	1	0.3		
1,2,3,4,7,8-HxCDF	0.258	0.109	1	0.1	0.0258	
1,2,3,6,7,8-HxCDF	ND	0.0930	1	0.1		
1,2,3,7,8,9-HxCDF	ND	0.126	1	0.1		
2,3,4,6,7,8-HxCDF	ND	0.105	1	0.1		
1,2,3,4,6,7,8-HpCDF	1.75	0.106	1	0.01	0.0175	
1,2,3,4,7,8,9-HpCDF	ND	0.135	1	0.01		
OCDF	3.96	0.0896	1	0.0003	0.00119	

Total TEQ 0.281

2005 WHO TEFs, ND = 0

Analytical Report

Pacific EcoRisk Laboratories **Client: Project:** USACE San Rafael Channel/16087

Sediment **Sample Matrix:** 

SRC-2010-4-Comp Sample Name: K1006356-004 Lab Code: Run Type: Reanalysis

Service Request: K1006356 **Date Collected:** 6/11/10 0840 **Date Received:** 6/18/10

Units: ng/Kg Basis: Dry Percent Solids: 47.2

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method **Sample Amount:** 

10.784g

**Data File Name:** U137047 12/17/07 **ICAL Date:** 

**Date Analyzed:** 7/13/10 1611 **Date Extracted:** 6/25/10 **Instrument Name:** E-HRMS-01

GC Column: DB-225 Blank File Name: U137039 Cal Ver. File Name: U137038

Ion **Dilution** Result Q **EDL** MRL Ratio RRT **Analyte Name Factor** 2,3,7,8-TCDF 0.522 J 1.96 1 0.126 0.68 1.001

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDF	1000	573.327	57	40-135	0.79	1.060
37Cl-2,3,7,8-TCDD	800	630.480	79	40-135	NA	0.989

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: SRC-2010-5-Comp Lab Code: K1006356-005 Service Request: K1006356

Date Collected: 6/8/10 1335

Date Received: 6/18/10

Units: ng/Kg Basis: Dry Percent Solids: 44.2

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analytical Method:** 8290 **Prep Method:** Method **Sample Amount:** 11.657g

Data File Name: P109593 ICAL Date: 09/11/09 Date Analyzed: 7/6/10 1301
Date Extracted: 6/28/10
Instrument Name: E-HRMS-03
GC Column: DB-5

Blank File Name: P109648
Cal Ver. File Name: P109590

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	ND	U	0.315	1.94			1	
1,2,3,7,8-PeCDD	ND	U	0.227	4.85			1	
1,2,3,4,7,8-HxCDD	0.240	JK	0.184	4.85	0.96	0.999	1	
1,2,3,6,7,8-HxCDD	0.731	J	0.165	4.85	1.13	1.000	1	
1,2,3,7,8,9-HxCDD	0.606	J	0.174	4.85	1.16	1.009	1	
1,2,3,4,6,7,8-HpCDD	11.7		0.257	4.85	1.02	1.000	1	
OCDD	85.8	В	0.250	9.70	0.90	1.000	1	
2,3,7,8-TCDF	ND	U	0.528	1.94			1	
1,2,3,7,8-PeCDF	ND	U	0.251	4.85			1	
2,3,4,7,8-PeCDF	ND	U	0.249	4.85			1	
1,2,3,4,7,8-HxCDF	ND	U	0.257	4.85			1	
1,2,3,6,7,8-HxCDF	ND	U	0.243	4.85			1	
1,2,3,7,8,9-HxCDF	ND	U	0.326	4.85			1	
2,3,4,6,7,8-HxCDF	ND	U	0.279	4.85			1	
1,2,3,4,6,7,8-HpCDF	2.77	J	0.137	4.85	0.93	1.000	1	
1,2,3,4,7,8,9-HpCDF	ND	U	0.191	4.85			1	
OCDF	7.47	J	0.359	9.70	0.81	1.004	1	
Total Tetra-Dioxins	ND	U	0.315	1.94			1	
Total Penta-Dioxins	ND	U	0.227	4.85			1	
Total Hexa-Dioxins	6.25		0.165	4.85	1.30		1	
Total Hepta-Dioxins	28.6		0.257	4.85	1.10		1	
Total Tetra-Furans	ND	U	0.528	1.94			1	
Total Penta-Furans	ND	U	0.249	4.85			1	
Total Hexa-Furans	2.98	J	0.243	4.85	1.29		1	
Total Hepta-Furans	2.77	J	0.137	4.85	0.93		1	

Common	
Comment	S.

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: SRC-2010-5-Comp Lab Code: K1006356-005 **Service Request:** K1006356 **Date Collected:** 6/8/10 1335 **Date Received:** 6/18/10

Units: Percent Basis: Dry Percent Solids: 44.2

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analytical Method:** 8290 **Prep Method:** Method **Sample Amount:** 11.657g

Data File Name: P109593 ICAL Date: 09/11/09 Date Analyzed: 7/6/10 1301
Date Extracted: 6/28/10
Instrument Name: E-HRMS-03

GC Column: DB-5
Blank File Name: P109648
Cal Ver. File Name: P109590

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
C-2,3,7,8-TCDD	1000	737.013	74	40-135	0.79	1.009
C-1,2,3,7,8-PeCDD	1000	882.099	88	40-135	1.63	1.182
C-1,2,3,6,7,8-HxCDD	2500	1555.926	62	40-135	1.29	0.991
C-1,2,3,4,6,7,8-HpCDD	2500	1498.224	60	40-135	1.05	1.068
C-OCDD	5000	2132.518	43	40-135	0.91	1.146
3,7,8-TCDF	1000	633.351	63	40-135	0.80	0.979
1,2,3,7,8-PeCDF	1000	884.704	88	40-135	1.60	1.142
-1,2,3,4,7,8-HxCDF	2500	1433.996	57	40-135	0.53	0.970
C-1,2,3,4,6,7,8-HpCDF	2500	1421.512	57	40-135	0.45	1.045
-2,3,7,8-TCDD	800	788.626	99	40-135	NA	1.010

Comments:
Comments:

380

Analytical Report

Client:Pacific EcoRisk LaboratoriesService Request:K1006356Project:USACE San Rafael Channel/16087Date Collected:6/8/10 1335Sample Matrix:SedimentDate Received:6/18/10

 Sample Name:
 SRC-2010-5-Comp
 Units:
 ng/Kg

 Lab Code:
 K1006356-005
 Basis:
 Dry

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analytical Method:** 8290 **Prep Method:** Method

			Dilution		TEF - Adjusted
Analyte Name	Result	DL	Factor	TEF	Concentration
2,3,7,8-TCDD	ND	0.315	1	1	
1,2,3,7,8-PeCDD	ND	0.227	1	1	
1,2,3,4,7,8-HxCDD	0.240	0.184	1	0.1	0.0240
1,2,3,6,7,8-HxCDD	0.731	0.165	1	0.1	0.0731
1,2,3,7,8,9-HxCDD	0.606	0.174	1	0.1	0.0606
1,2,3,4,6,7,8-HpCDD	11.7	0.257	1	0.01	0.117
OCDD	85.8	0.250	1	0.0003	0.0257
2,3,7,8-TCDF	ND	0.528	1	0.1	
1,2,3,7,8-PeCDF	ND	0.251	1	0.03	
2,3,4,7,8-PeCDF	ND	0.249	1	0.3	
1,2,3,4,7,8-HxCDF	ND	0.257	1	0.1	
1,2,3,6,7,8-HxCDF	ND	0.243	1	0.1	
1,2,3,7,8,9-HxCDF	ND	0.326	1	0.1	
2,3,4,6,7,8-HxCDF	ND	0.279	1	0.1	
1,2,3,4,6,7,8-HpCDF	2.77	0.137	1	0.01	0.0277
1,2,3,4,7,8,9-HpCDF	ND	0.191	1	0.01	
OCDF	7.47	0.359	1	0.0003	0.00224

Total TEQ 0.330

2005 WHO TEFs, ND = 0

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: SRC-2010-6-Comp Lab Code: K1006356-006 **Service Request:** K1006356 **Date Collected:** 6/ 9/10 1530 **Date Received:** 6/18/10

Units: ng/Kg
Basis: Dry

**Percent Solids: 40.9** 

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analytical Method:** 8290 **Prep Method:** Method **Sample Amount:** 11.638g

Data File Name: P109594 ICAL Date: 09/11/09

Date Analyzed: 7/6/10 1348
Date Extracted: 6/28/10
Instrument Name: E-HRMS-03

GC Column: DB-5
Blank File Name: P109648
Cal Ver. File Name: P109590

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	ND	U	0.404	2.10			1	
1,2,3,7,8-PeCDD	0.682	JK	0.209	5.25	1.12	1.001	1	
1,2,3,4,7,8-HxCDD	1.15	J	0.210	5.25	1.26	0.999	1	
1,2,3,6,7,8-HxCDD	2.98	J	0.189	5.25	1.10	1.000	1	
1,2,3,7,8,9-HxCDD	2.73	J	0.199	5.25	1.27	1.009	1	
1,2,3,4,6,7,8-HpCDD	50.2		0.374	5.25	1.05	1.000	1	
OCDD	829	В	0.392	10.5	0.89	1.000	1	
2,3,7,8-TCDF	ND	U	0.500	2.10			1	
1,2,3,7,8-PeCDF	ND	U	0.290	5.25			1	
2,3,4,7,8-PeCDF	ND	U	0.287	5.25			1	
1,2,3,4,7,8-HxCDF	0.697	JK	0.190	5.25	1.04	1.000	1	
1,2,3,6,7,8-HxCDF	0.431	JK	0.180	5.25	1.66	1.003	1	
1,2,3,7,8,9-HxCDF	ND	U	0.241	5.25			1	
2,3,4,6,7,8-HxCDF	0.347	J	0.206	5.25	1.14	1.018	1	
1,2,3,4,6,7,8-HpCDF	11.6		0.178	5.25	1.03	1.000	1	
1,2,3,4,7,8,9-HpCDF	0.756	J	0.247	5.25	1.02	1.034	1	
OCDF	41.5		0.460	10.5	0.89	1.004	1	
Total Tetra-Dioxins	ND	U	0.404	2.10			1	
Total Penta-Dioxins	1.16	J	0.209	5.25	1.47		1	
Total Hexa-Dioxins	22.6		0.189	5.25	1.32		1	
Total Hepta-Dioxins	111		0.374	5.25	1.04		1	
Total Tetra-Furans	ND	U	0.500	2.10			1	
Total Penta-Furans	5.58		0.287	5.25	1.51		1	
Total Hexa-Furans	14.9		0.180	5.25	1.25		1	
Total Hepta-Furans	39.3		0.178	5.25	1.03		1	

Comme	nts:

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

**Sample Name:** SRC-2010-6-Comp **Lab Code:** K1006356-006

**Service Request:** K1006356 **Date Collected:** 6/ 9/10 1530 **Date Received:** 6/18/10

 Units:
 Percent

 Basis:
 Dry

 Percent Solids:
 40.9

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 11.638g

Data File Name: P109594 ICAL Date: 09/11/09

Date Analyzed: 7/6/10 1348
Date Extracted: 6/28/10
Instrument Name: E-HRMS-03
GC Column: DB-5

Blank File Name: P109648
Cal Ver. File Name: P109590

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	791.012	79	40-135	0.78	1.009
13C-1,2,3,7,8-PeCDD	1000	919.917	92	40-135	1.58	1.182
13C-1,2,3,6,7,8-HxCDD	2500	1622.559	65	40-135	1.27	0.991
13C-1,2,3,4,6,7,8-HpCDD	2500	1510.815	60	40-135	1.06	1.068
3C-OCDD	5000	2073.164	41	40-135	0.91	1.146
-2,3,7,8-TCDF	1000	685.959	69	40-135	0.78	0.979
C-1,2,3,7,8-PeCDF	1000	915.368	92	40-135	1.61	1.142
C-1,2,3,4,7,8-HxCDF	2500	1517.508	61	40-135	0.52	0.970
3C-1,2,3,4,6,7,8-HpCDF	2500	1424.694	57	40-135	0.44	1.045
Cl-2,3,7,8-TCDD	800	815.966	102	40-135	NA	1.010

Commontes	
Comments:	

Analytical Report

Pacific EcoRisk Laboratories Service Request: K1006356 **Client:** USACE San Rafael Channel/16087 **Date Collected:** 6/9/10 1530 **Project: Date Received:** 6/18/10

Sediment **Sample Matrix:** 

SRC-2010-6-Comp Sample Name: Units: ng/Kg K1006356-006 Lab Code: Basis: Dry

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method

			Dilution		TEF - Adjusted	
Analyte Name	Result	DL	Factor	TEF	Concentration	
2,3,7,8-TCDD	ND	0.404	1	1		_
1,2,3,7,8-PeCDD	0.682	0.209	1	1	0.682	
1,2,3,4,7,8-HxCDD	1.15	0.210	1	0.1	0.115	
1,2,3,6,7,8-HxCDD	2.98	0.189	1	0.1	0.298	
1,2,3,7,8,9-HxCDD	2.73	0.199	1	0.1	0.273	
1,2,3,4,6,7,8-HpCDD	50.2	0.374	1	0.01	0.502	
OCDD	829	0.392	1	0.0003	0.249	
2,3,7,8-TCDF	ND	0.500	1	0.1		
1,2,3,7,8-PeCDF	ND	0.290	1	0.03		
2,3,4,7,8-PeCDF	ND	0.287	1	0.3		
1,2,3,4,7,8-HxCDF	0.697	0.190	1	0.1	0.0697	
1,2,3,6,7,8-HxCDF	0.431	0.180	1	0.1	0.0431	
1,2,3,7,8,9-HxCDF	ND	0.241	1	0.1		
2,3,4,6,7,8-HxCDF	0.347	0.206	1	0.1	0.0347	
1,2,3,4,6,7,8-HpCDF	11.6	0.178	1	0.01	0.116	
1,2,3,4,7,8,9-HpCDF	0.756	0.247	1	0.01	0.00756	
OCDF	41.5	0.460	1	0.0003	0.0125	_

Total TEQ 2.40

2005 WHO TEFs, ND = 0

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: SRC-2010-7-Comp Lab Code: K1006356-007 **Service Request:** K1006356 **Date Collected:** 6/10/10 0900 **Date Received:** 6/18/10

Units: ng/Kg Basis: Dry Percent Solids: 42.0

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analytical Method:** 8290 **Prep Method:** Method **Sample Amount:** 10.387g

Data File Name: P109595 ICAL Date: 09/11/09 Date Analyzed:7/6/10 1436Date Extracted:6/28/10Instrument Name:E-HRMS-03GC Column:DB-5

Blank File Name: P109648
Cal Ver. File Name: P109590

Analyte Name	Result	0	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
							1	
2,3,7,8-TCDD	ND		0.263	2.29	1 41	1 000	1	
1,2,3,7,8-PeCDD	1.59		0.184	5.73	1.41	1.000	1	
1,2,3,4,7,8-HxCDD	1.86		0.204	5.73	1.42	0.999	1	
1,2,3,6,7,8-HxCDD	5.48		0.183	5.73	1.28	1.000	1	
1,2,3,7,8,9-HxCDD	5.03	J	0.194	5.73	1.14	1.009	1	
1,2,3,4,6,7,8-HpCDD	103		0.273	5.73	1.07	1.000	1	
OCDD	903	В	0.273	11.5	0.89	1.000	1	
2,3,7,8-TCDF	1.08	CJ	0.419	2.29	0.76	1.000	1	
1,2,3,7,8-PeCDF	ND	U	0.329	5.73			1	
2,3,4,7,8-PeCDF	0.534	J	0.326	5.73	1.65	1.026	1	
1,2,3,4,7,8-HxCDF	1.47	JK	0.223	5.73	1.02	1.000	1	
1,2,3,6,7,8-HxCDF	1.04	JK	0.211	5.73	1.00	1.004	1	
1,2,3,7,8,9-HxCDF	ND	U	0.284	5.73			1	
2,3,4,6,7,8-HxCDF	1.34	J	0.243	5.73	1.29	1.017	1	
1,2,3,4,6,7,8-HpCDF	19.8		0.121	5.73	1.04	1.000	1	
1,2,3,4,7,8,9-HpCDF	1.45	J	0.168	5.73	1.15	1.034	1	
OCDF	66.2		0.366	11.5	0.89	1.004	1	
Total Tetra-Dioxins	ND	U	0.263	2.29			1	
Total Penta-Dioxins	3.91	J	0.184	5.73	1.52		1	
Total Hexa-Dioxins	37.1		0.183	5.73	1.30		1	
Total Hepta-Dioxins	226		0.273	5.73	1.02		1	
Total Tetra-Furans	6.80		0.419	2.29	0.77		1	
Total Penta-Furans	24.7		0.326	5.73	1.55		1	
Total Hexa-Furans	34.8		0.211	5.73	1.23		1	
Total Hepta-Furans	64.0		0.121	5.73	1.04		1	

Comments:

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

**Sample Name:** SRC-2010-7-Comp **Lab Code:** K1006356-007

**Service Request:** K1006356 **Date Collected:** 6/10/10 0900 **Date Received:** 6/18/10

Units: Percent
Basis: Dry
Percent Solids: 42.0

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.387g

Data File Name: P109595 ICAL Date: 09/11/09 Date Analyzed: 7/6/10 1436
Date Extracted: 6/28/10
Instrument Name: E-HRMS-03
GC Column: DB-5

Blank File Name: P109648
Cal Ver. File Name: P109590

<b>Labeled Compounds</b>	Spike Conc.(pg)	Conc. Found (pg)	%Rec	Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	747.162	75		40-135	0.79	1.009
13C-1,2,3,7,8-PeCDD	1000	849.674	85		40-135	1.58	1.182
13C-1,2,3,6,7,8-HxCDD	2500	1412.841	57		40-135	1.28	0.991
13C-1,2,3,4,6,7,8-HpCDD	2500	1279.349	51		40-135	1.06	1.068
3C-OCDD	5000	1757.199	35	Y	40-135	0.91	1.146
2-2,3,7,8-TCDF	1000	625.471	63		40-135	0.80	0.979
C-1,2,3,7,8-PeCDF	1000	852.858	85		40-135	1.63	1.142
3C-1,2,3,4,7,8-HxCDF	2500	1334.134	53		40-135	0.52	0.970
3C-1,2,3,4,6,7,8-HpCDF	2500	1258.329	50		40-135	0.45	1.045
Cl-2,3,7,8-TCDD	800	800.378	100		40-135	NA	1.010

Analytical Report

Pacific EcoRisk Laboratories **Client:** Service Request: K1006356 USACE San Rafael Channel/16087 **Date Collected:** 6/10/10 0900 **Project: Date Received:** 6/18/10

Sediment **Sample Matrix:** 

SRC-2010-7-Comp Sample Name: Units: ng/Kg K1006356-007 Lab Code: Basis: Dry

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method

			Dilution		TEF - Adjusted	
Analyte Name	Result	DL	Factor	TEF	Concentration	
2,3,7,8-TCDD	ND	0.263	1	1		
1,2,3,7,8-PeCDD	1.59	0.184	1	1	1.59	
1,2,3,4,7,8-HxCDD	1.86	0.204	1	0.1	0.186	
1,2,3,6,7,8-HxCDD	5.48	0.183	1	0.1	0.548	
1,2,3,7,8,9-HxCDD	5.03	0.194	1	0.1	0.503	
1,2,3,4,6,7,8-HpCDD	103	0.273	1	0.01	1.03	
OCDD	903	0.273	1	0.0003	0.271	
2,3,7,8-TCDF	0.922	0.230	1	0.1	0.0922	
1,2,3,7,8-PeCDF	ND	0.329	1	0.03		
2,3,4,7,8-PeCDF	0.534	0.326	1	0.3	0.160	
1,2,3,4,7,8-HxCDF	1.47	0.223	1	0.1	0.147	
1,2,3,6,7,8-HxCDF	1.04	0.211	1	0.1	0.104	
1,2,3,7,8,9-HxCDF	ND	0.284	1	0.1		
2,3,4,6,7,8-HxCDF	1.34	0.243	1	0.1	0.134	
1,2,3,4,6,7,8-HpCDF	19.8	0.121	1	0.01	0.198	
1,2,3,4,7,8,9-HpCDF	1.45	0.168	1	0.01	0.0145	
OCDF	66.2	0.366	1	0.0003	0.0199	

Total TEQ 5.00

2005 WHO TEFs, ND = 0

Analytical Report

Pacific EcoRisk Laboratories **Client: Project:** USACE San Rafael Channel/16087

Sediment **Sample Matrix:** 

SRC-2010-7-Comp Sample Name: Lab Code: K1006356-007 Run Type: Reanalysis

Service Request: K1006356 **Date Collected:** 6/10/10 0900 **Date Received:** 6/18/10

Units: ng/Kg Basis: Dry Percent Solids: 42.0

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method **Sample Amount:** 10.387g

**ICAL Date:** 

**Data File Name:** U137000 12/17/07

**Date Analyzed:** 7/6/10 1635 **Date Extracted:** 6/28/10 **Instrument Name:** E-HRMS-01

GC Column: DB-225 Blank File Name: U136992 Cal Ver. File Name: U136991

Ion **Dilution** Result Q **EDL** MRL Ratio RRT **Analyte Name Factor** 2,3,7,8-TCDF 0.922 J 1 0.230 2.29 0.80 1.001

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDF	1000	667.096	67	40-135	0.79	1.060
37Cl-2,3,7,8-TCDD	800	734.359	92	40-135	NA	0.988

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: SRC-2010-7-Z-Comp Lab Code: K1006356-008 
 Service Request:
 K1006356

 Date Collected:
 6/10/10 1155

 Date Received:
 6/18/10

Units: ng/Kg
Basis: Dry

Percent Solids: 47.5

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analytical Method:** 8290 **Prep Method:** Method **Sample Amount:** 10.475g

Data File Name: P109596 ICAL Date: 09/11/09 Date Analyzed:7/6/10 1524Date Extracted:6/28/10Instrument Name:E-HRMS-03

GC Column: DB-5
Blank File Name: P109648
Cal Ver. File Name: P109590

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	ND	U	0.298	2.01			1	
1,2,3,7,8-PeCDD	1.24	J	0.298	5.02	1.65	1.000	1	
1,2,3,4,7,8-HxCDD	1.60	J	0.258	5.02	1.31	0.999	1	
1,2,3,6,7,8-HxCDD	6.02		0.232	5.02	1.38	1.000	1	
1,2,3,7,8,9-HxCDD	4.61	J	0.245	5.02	1.36	1.009	1	
1,2,3,4,6,7,8-HpCDD	109		0.401	5.02	1.04	1.000	1	
OCDD	839	В	0.352	10.0	0.90	1.000	1	
2,3,7,8-TCDF	1.39	CJK	0.437	2.01	1.05	1.002	1	
1,2,3,7,8-PeCDF	ND	U	0.810	5.02			1	
2,3,4,7,8-PeCDF	0.972	JK	0.804	5.02	1.79	1.025	1	
1,2,3,4,7,8-HxCDF	2.16	JK	0.483	5.02	1.47	1.000	1	
1,2,3,6,7,8-HxCDF	1.78	J	0.457	5.02	1.16	1.004	1	
1,2,3,7,8,9-HxCDF	ND	U	0.614	5.02			1	
2,3,4,6,7,8-HxCDF	2.03	J	0.525	5.02	1.28	1.018	1	
1,2,3,4,6,7,8-HpCDF	24.8		0.343	5.02	1.00	1.000	1	
1,2,3,4,7,8,9-HpCDF	1.16	JK	0.476	5.02	0.72	1.034	1	
OCDF	82.2		0.339	10.0	0.88	1.004	1	
Total Tetra-Dioxins	ND	U	0.298	2.01			1	
Total Penta-Dioxins	2.44	J	0.298	5.02	1.36		1	
Total Hexa-Dioxins	41.1		0.232	5.02	1.23		1	
Total Hepta-Dioxins	244		0.401	5.02	1.04		1	
Total Tetra-Furans	19.2		0.437	2.01	0.87		1	
Total Penta-Furans	52.2		0.804	5.02	1.55		1	
Total Hexa-Furans	55.9		0.457	5.02	1.25		1	
Total Hepta-Furans	88.4		0.343	5.02	1.00		1	

389

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: SRC-2010-7-Z-Comp Lab Code: K1006356-008 **Service Request:** K1006356 **Date Collected:** 6/10/10 1155 **Date Received:** 6/18/10

Units: Percent
Basis: Dry
Percent Solids: 47.5

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analytical Method:** 8290 **Prep Method:** Method **Sample Amount:** 10.475g

 Data File Name:
 P109596

 ICAL Date:
 09/11/09

Date Analyzed: 7/6/10 1524
Date Extracted: 6/28/10
Instrument Name: E-HRMS-03

GC Column: DB-5
Blank File Name: P109648
Cal Ver. File Name: P109590

<b>Labeled Compounds</b>	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	732.311	73	40-135	0.79	1.010
3C-1,2,3,7,8-PeCDD	1000	869.515	87	40-135	1.59	1.183
3C-1,2,3,6,7,8-HxCDD	2500	1461.255	58	40-135	1.28	0.991
3C-1,2,3,4,6,7,8-HpCDD	2500	1421.937	57	40-135	1.07	1.068
3C-OCDD	5000	2072.453	41	40-135	0.91	1.146
-2,3,7,8-TCDF	1000	608.847	61	40-135	0.80	0.979
C-1,2,3,7,8-PeCDF	1000	878.825	88	40-135	1.63	1.142
C-1,2,3,4,7,8-HxCDF	2500	1373.681	55	40-135	0.53	0.970
3C-1,2,3,4,6,7,8-HpCDF	2500	1358.049	54	40-135	0.45	1.044
Cl-2,3,7,8-TCDD	800	750.959	94	40-135	NA	1.011

Comments:
Comments.

Analytical Report

Pacific EcoRisk Laboratories Service Request: K1006356 **Client:** USACE San Rafael Channel/16087 **Date Collected:** 6/10/10 1155 **Project: Date Received:** 6/18/10

Sediment **Sample Matrix:** 

SRC-2010-7-Z-Comp Sample Name: Units: ng/Kg K1006356-008 Lab Code: Basis: Dry

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method

			Dilution		TEF - Adjusted	
Analyte Name	Result	DL	Factor	TEF	Concentration	
2,3,7,8-TCDD	ND	0.298	1	1		
1,2,3,7,8-PeCDD	1.24	0.298	1	1	1.24	
1,2,3,4,7,8-HxCDD	1.60	0.258	1	0.1	0.160	
1,2,3,6,7,8-HxCDD	6.02	0.232	1	0.1	0.602	
1,2,3,7,8,9-HxCDD	4.61	0.245	1	0.1	0.461	
1,2,3,4,6,7,8-HpCDD	109	0.401	1	0.01	1.09	
OCDD	839	0.352	1	0.0003	0.252	
2,3,7,8-TCDF	1.41	0.225	1	0.1	0.141	
1,2,3,7,8-PeCDF	ND	0.810	1	0.03		
2,3,4,7,8-PeCDF	0.972	0.804	1	0.3	0.292	
1,2,3,4,7,8-HxCDF	2.16	0.483	1	0.1	0.216	
1,2,3,6,7,8-HxCDF	1.78	0.457	1	0.1	0.178	
1,2,3,7,8,9-HxCDF	ND	0.614	1	0.1		
2,3,4,6,7,8-HxCDF	2.03	0.525	1	0.1	0.203	
1,2,3,4,6,7,8-HpCDF	24.8	0.343	1	0.01	0.248	
1,2,3,4,7,8,9-HpCDF	1.16	0.476	1	0.01	0.0116	
OCDF	82.2	0.339	1	0.0003	0.0247	

Total TEQ 5.12

2005 WHO TEFs, ND = 0

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: SRC-2010-7-Z-Comp Lab Code: K1006356-008

Run Type: Reanalysis

**Service Request:** K1006356 **Date Collected:** 6/10/10 1155

**Date Received:** 6/18/10

Units: ng/Kg
Basis: Dry
Percent Solids: 47.5

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analytical Method:** 8290 **Prep Method:** Method **Sample Amount:** 10.475g

Amount. 10.175g

Data File Name: U137001 ICAL Date: 12/17/07

Date Analyzed: 7/6/10 1700
Date Extracted: 6/28/10
Instrument Name: E-HRMS-01

GC Column: DB-225 Blank File Name: U136992 Cal Ver. File Name: U136991

 Analyte Name
 Result Q
 EDL
 MRL
 Ratio
 RRT
 Factor

 2,3,7,8-TCDF
 1.41 J
 0.225
 2.01
 0.79
 1.000
 1

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDF	1000	654.774	65	40-135	0.80	1.061	
37Cl-2,3,7,8-TCDD	800	694.682	87	40-135	NA	0.989	

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: SRC-2010-8-Z-Comp Lab Code: K1006356-021 **Service Request:** K1006356 **Date Collected:** 6/10/10 1155 **Date Received:** 6/23/10

Units: ng/Kg Basis: Dry Percent Solids: 44.0

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 13.336g

Data File Name: P208659 ICAL Date: 08/01/08 **Date Analyzed:** 7/16/10 1851 **Date Extracted:** 7/8/10 **Instrument Name:** E-HRMS-04

GC Column: DB-5
Blank File Name: P208658
Cal Ver. File Name: P208656

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	0.558	JK	0.0812	1.70	0.52	1.001	1	
1,2,3,7,8-PeCDD	2.90	J	0.112	4.26	1.41	1.000	1	
1,2,3,4,7,8-HxCDD	2.66	JK	0.130	4.26	1.48	0.998	1	
1,2,3,6,7,8-HxCDD	11.0		0.123	4.26	1.21	1.000	1	
1,2,3,7,8,9-HxCDD	7.56		0.129	4.26	1.25	1.008	1	
1,2,3,4,6,7,8-HpCDD	185	В	0.291	4.26	1.02	1.000	1	
OCDD	1260	В	0.115	8.52	0.90	1.000	1	
2,3,7,8-TCDF	1.56	CJ	0.0875	1.70	0.66	1.001	1	
1,2,3,7,8-PeCDF	0.882	J	0.335	4.26	1.44	1.001	1	
2,3,4,7,8-PeCDF	1.61	J	0.322	4.26	1.46	1.024	1	
1,2,3,4,7,8-HxCDF	4.45		0.198	4.26	1.12	1.000	1	
1,2,3,6,7,8-HxCDF	3.72	J	0.190	4.26	1.16	1.003	1	
1,2,3,7,8,9-HxCDF	ND	U	0.241	4.26			1	
2,3,4,6,7,8-HxCDF	4.13	J	0.204	4.26	1.14	1.016	1	
1,2,3,4,6,7,8-HpCDF	45.3		0.224	4.26	1.01	1.000	1	
1,2,3,4,7,8,9-HpCDF	2.93	J	0.295	4.26	0.88	1.034	1	
OCDF	137		0.0968	8.52	0.84	1.004	1	
Total Tetra-Dioxins	1.37	J	0.0812	1.70	0.77		1	
Total Penta-Dioxins	11.3		0.112	4.26	1.48		1	
Total Hexa-Dioxins	56.3		0.123	4.26	1.21		1	
Total Hepta-Dioxins	354		0.291	4.26	1.02		1	
Total Tetra-Furans	33.7		0.0875	1.70	0.67		1	
Total Penta-Furans	142		0.322	4.26	1.48		1	
Total Hexa-Furans	76.0		0.190	4.26	1.16		1	
Total Hepta-Furans	159		0.224	4.26	1.01		1	

Common	
Comment	S.

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: SRC-2010-8-Z-Comp Lab Code: K1006356-021 
 Service Request:
 K1006356

 Date Collected:
 6/10/10 1155

 Date Received:
 6/23/10

Units: Percent
Basis: Dry
Percent Solids: 44.0

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 13.336g

**Data File Name:** P208659 **ICAL Date:** 08/01/08

Date Analyzed: 7/16/10 1851
Date Extracted: 7/8/10
Instrument Name: E-HRMS-04
GC Column: DB-5

Blank File Name: P208658
Cal Ver. File Name: P208656

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec	Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	678.485	68		40-135	0.76	1.008
13C-1,2,3,7,8-PeCDD	1000	557.005	56		40-135	1.57	1.167
13C-1,2,3,6,7,8-HxCDD	2500	1307.612	52		40-135	1.25	0.992
13C-1,2,3,4,6,7,8-HpCDD	2500	1206.370	48		40-135	1.05	1.068
13C-OCDD	5000	1704.957	34	Y	40-135	0.91	1.148
13C-2,3,7,8-TCDF	1000	546.751	55		40-135	0.78	0.980
13C-1,2,3,7,8-PeCDF	1000	641.748	64		40-135	1.56	1.129
13C-1,2,3,4,7,8-HxCDF	2500	1287.482	51		40-135	0.52	0.971
13C-1,2,3,4,6,7,8-HpCDF	2500	1146.931	46		40-135	0.43	1.044
37C1-2,3,7,8-TCDD	800	663.036	83		40-135	NA	1.009

Analytical Report

Pacific EcoRisk Laboratories Service Request: K1006356 **Client:** USACE San Rafael Channel/16087 **Date Collected:** 6/10/10 1155 **Project:** Sediment **Date Received:** 6/23/10

**Sample Matrix:** 

SRC-2010-8-Z-Comp Sample Name: Units: ng/Kg K1006356-021 Lab Code: Basis: Dry

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method

			Dilution		TEF - Adjusted	
Analyte Name	Result	DL	Factor	TEF	Concentration	
2,3,7,8-TCDD	0.558	0.0812	1	1	0.558	
1,2,3,7,8-PeCDD	2.90	0.112	1	1	2.90	
1,2,3,4,7,8-HxCDD	2.66	0.130	1	0.1	0.266	
1,2,3,6,7,8-HxCDD	11.0	0.123	1	0.1	1.10	
1,2,3,7,8,9-HxCDD	7.56	0.129	1	0.1	0.756	
1,2,3,4,6,7,8-HpCDD	185	0.291	1	0.01	1.85	
OCDD	1260	0.115	1	0.0003	0.378	
2,3,7,8-TCDF	1.31	0.136	1	0.1	0.131	
1,2,3,7,8-PeCDF	0.882	0.335	1	0.03	0.0265	
2,3,4,7,8-PeCDF	1.61	0.322	1	0.3	0.483	
1,2,3,4,7,8-HxCDF	4.45	0.198	1	0.1	0.445	
1,2,3,6,7,8-HxCDF	3.72	0.190	1	0.1	0.372	
1,2,3,7,8,9-HxCDF	ND	0.241	1	0.1		
2,3,4,6,7,8-HxCDF	4.13	0.204	1	0.1	0.413	
1,2,3,4,6,7,8-HpCDF	45.3	0.224	1	0.01	0.453	
1,2,3,4,7,8,9-HpCDF	2.93	0.295	1	0.01	0.0293	
OCDF	137	0.0968	1	0.0003	0.0411	

Total TEQ 10.2

2005 WHO TEFs, ND = 0

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: SRC-2010-8-Z-Comp Lab Code: K1006356-021

Run Type: Reanalysis

**Service Request:** K1006356 **Date Collected:** 6/10/10 1155 **Date Received:** 6/23/10

Units: ng/Kg
Basis: Dry

Percent Solids: 44.0

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 13.336g

Data File Name: U137165 ICAL Date: 12/17/07

 Date Analyzed:
 7/17/10 1646

 nod
 Date Extracted:
 7/8/10

 B6g
 Instrument Name:
 E-HRMS-01

 GC Column:
 DB-225

Blank File Name: U137156 Cal Ver. File Name: U137155

Ion **Dilution** Result Q **EDL** MRL Ratio RRT **Analyte Name Factor** 2,3,7,8-TCDF **1.31** J 1.70 0.75 1 0.136 1.001

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDF	1000	607.158	61	40-135	0.80	1.059	
37Cl-2,3,7,8-TCDD	800	707.817	88	40-135	NA	0.989	

Comments:

396

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

**Sample Name:** Method Blank **Lab Code:** EQ1000320-01

Service Request: K1006356

Date Collected: NA

Date Received: NA

Units: ng/Kg
Basis: Dry

# Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.000g

Data File Name: P208554 ICAL Date: 08/01/08

Date Analyzed: 7/12/10 1822
Date Extracted: 6/25/10
Instrument Name: E-HRMS-04
GC Column: DB-5

Blank File Name: P208554
Cal Ver. File Name: P208552

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	ND	U	0.0312	1.00			1	
1,2,3,7,8-PeCDD	ND	U	0.0441	2.50			1	
1,2,3,4,7,8-HxCDD	ND	U	0.0369	2.50			1	
1,2,3,6,7,8-HxCDD	ND	U	0.0263	2.50			1	
1,2,3,7,8,9-HxCDD	ND	U	0.0297	2.50			1	
1,2,3,4,6,7,8-HpCDD	0.180	J	0.0263	2.50	1.05	1.000	1	
OCDD	0.713	J	0.0462	5.00	0.84	1.000	1	
2,3,7,8-TCDF	ND	U	0.0318	1.00			1	
1,2,3,7,8-PeCDF	ND	U	0.0216	2.50			1	
2,3,4,7,8-PeCDF	ND	U	0.0209	2.50			1	
1,2,3,4,7,8-HxCDF	ND	U	0.0296	2.50			1	
1,2,3,6,7,8-HxCDF	ND	U	0.0254	2.50			1	
1,2,3,7,8,9-HxCDF	ND	U	0.0342	2.50			1	
2,3,4,6,7,8-HxCDF	ND	U	0.0283	2.50			1	
1,2,3,4,6,7,8-HpCDF	ND	U	0.0327	2.50			1	
1,2,3,4,7,8,9-HpCDF	ND	U	0.0417	2.50			1	
OCDF	0.153	J	0.0453	5.00	1.00	1.004	1	
Total Tetra-Dioxins	ND	U	0.0312	1.00			1	
Total Penta-Dioxins	ND	U	0.0441	2.50			1	
Total Hexa-Dioxins	ND	U	0.0263	2.50			1	
Total Hepta-Dioxins	0.378	J	0.0263	2.50	1.03		1	
Total Tetra-Furans	0.0789	J	0.0318	1.00	0.81		1	
Total Penta-Furans	ND	U	0.0209	2.50			1	
Total Hexa-Furans	ND	U	0.0254	2.50			1	
Total Hepta-Furans	ND	U	0.0327	2.50			1	

Commons	٠
Comment	S:

397

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: Method Blank Lab Code: EQ1000320-01 Service Request: K1006356

Date Collected: NA

Date Received: NA

Units: Percent
Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.000g

Data File Name: P208554 ICAL Date: 08/01/08 Date Analyzed: 7/12/10 1822
Date Extracted: 6/25/10
Instrument Name: E-HRMS-04
GC Column: DB-5

Blank File Name: P208554 Cal Ver. File Name: P208552

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	698.513	70	40-135	0.79	1.009
13C-1,2,3,7,8-PeCDD	1000	701.371	70	40-135	1.60	1.167
3C-1,2,3,6,7,8-HxCDD	2500	1824.690	73	40-135	1.26	0.992
3C-1,2,3,4,6,7,8-HpCDD	2500	1626.315	65	40-135	1.05	1.068
3C-OCDD	5000	2440.681	49	40-135	0.91	1.148
-2,3,7,8-TCDF	1000	706.482	71	40-135	0.78	0.980
C-1,2,3,7,8-PeCDF	1000	772.353	77	40-135	1.61	1.130
C-1,2,3,4,7,8-HxCDF	2500	1773.867	71	40-135	0.52	0.971
3C-1,2,3,4,6,7,8-HpCDF	2500	1573.747	63	40-135	0.44	1.044
Cl-2,3,7,8-TCDD	800	739.712	92	40-135	NA	1.009

Comments:
Comments.

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

09/11/09

Sample Matrix: Sediment

**Sample Name:** Method Blank **Lab Code:** EQ1000323-01

Service Request: K1006356

Date Collected: NA

Date Received: NA

Units: ng/Kg
Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analytical Method:** 8290 **Prep Method:** Method **Sample Amount:** 10.000g

Data File Name: P109648

**ICAL Date:** 

Date Analyzed: 7/9/10 1122
Date Extracted: 6/28/10
Instrument Name: E-HRMS-03
GC Column: DB-5

Blank File Name: P109648
Cal Ver. File Name: P109647

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	ND	U	0.115	1.00			1	
1,2,3,7,8-PeCDD	ND	U	0.108	2.50			1	
1,2,3,4,7,8-HxCDD	ND	U	0.0886	2.50			1	
1,2,3,6,7,8-HxCDD	ND	U	0.0646	2.50			1	
1,2,3,7,8,9-HxCDD	ND	U	0.0729	2.50			1	
1,2,3,4,6,7,8-HpCDD	ND	U	0.150	2.50			1	
OCDD	0.578	JK	0.289	5.00	1.27	1.000	1	
2,3,7,8-TCDF	ND	U	0.156	1.00			1	
1,2,3,7,8-PeCDF	ND	U	0.0673	2.50			1	
2,3,4,7,8-PeCDF	ND	U	0.0655	2.50			1	
1,2,3,4,7,8-HxCDF	ND	U	0.0727	2.50			1	
1,2,3,6,7,8-HxCDF	ND	U	0.0649	2.50			1	
1,2,3,7,8,9-HxCDF	ND	U	0.0755	2.50			1	
2,3,4,6,7,8-HxCDF	ND	U	0.0688	2.50			1	
1,2,3,4,6,7,8-HpCDF	ND	U	0.0738	2.50			1	
1,2,3,4,7,8,9-HpCDF	ND	U	0.0959	2.50			1	
OCDF	ND	U	0.194	5.00			1	
Total Tetra-Dioxins	ND	U	0.115	1.00			1	
Total Penta-Dioxins	ND	U	0.108	2.50			1	
Total Hexa-Dioxins	ND	U	0.0646	2.50			1	
Total Hepta-Dioxins	ND	U	0.150	2.50			1	
Total Tetra-Furans	ND	U	0.156	1.00			1	
Total Penta-Furans	ND	U	0.0655	2.50			1	
Total Hexa-Furans	ND	U	0.0649	2.50			1	
Total Hepta-Furans	ND	U	0.0738	2.50			1	

Common	
Comment	S.

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

**Sample Name:** Method Blank **Lab Code:** EQ1000323-01

Service Request: K1006356

Date Collected: NA

Date Received: NA

Units: Percent
Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.000g

Data File Name: P109648 ICAL Date: 09/11/09

Date Analyzed: 7/9/10 1122
Date Extracted: 6/28/10
Instrument Name: E-HRMS-03
GC Column: DB-5

Blank File Name: P109648
Cal Ver. File Name: P109647

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	781.989	78	40-135	0.77	1.009
13C-1,2,3,7,8-PeCDD	1000	769.122	77	40-135	1.64	1.183
13C-1,2,3,6,7,8-HxCDD	2500	1960.155	78	40-135	1.28	0.991
13C-1,2,3,4,6,7,8-HpCDD	2500	1607.613	64	40-135	1.06	1.068
3C-OCDD	5000	2363.506	47	40-135	0.91	1.146
-2,3,7,8-TCDF	1000	716.740	72	40-135	0.80	0.979
C-1,2,3,7,8-PeCDF	1000	795.002	80	40-135	1.61	1.142
C-1,2,3,4,7,8-HxCDF	2500	1740.121	70	40-135	0.52	0.970
3C-1,2,3,4,6,7,8-HpCDF	2500	1495.805	60	40-135	0.45	1.045
C1-2,3,7,8-TCDD	800	814.462	102	40-135	NA	1.010

Comments:
Comments.

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: Method Blank Lab Code: EQ1000340-01 Service Request: K1006356

Date Collected: NA

Date Received: NA

Units: ng/Kg
Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.000g

 Data File Name:
 P208658

 ICAL Date:
 08/01/08

Date Analyzed: 7/16/10 1803
Date Extracted: 7/8/10
Instrument Name: E-HRMS-04

GC Column: DB-5
Blank File Name: P208658
Cal Ver. File Name: P208656

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	ND	U	0.0535	1.00			1	
1,2,3,7,8-PeCDD	ND	U	0.0504	2.50			1	
1,2,3,4,7,8-HxCDD	ND	U	0.0256	2.50			1	
1,2,3,6,7,8-HxCDD	ND	U	0.0242	2.50			1	
1,2,3,7,8,9-HxCDD	ND	U	0.0255	2.50			1	
1,2,3,4,6,7,8-HpCDD	0.0926	JK	0.0302	2.50	1.57	1.001	1	
OCDD	0.375	J	0.0597	5.00	0.77	1.000	1	
2,3,7,8-TCDF	ND	U	0.0388	1.00			1	
1,2,3,7,8-PeCDF	ND	U	0.0312	2.50			1	
2,3,4,7,8-PeCDF	ND	U	0.0300	2.50			1	
1,2,3,4,7,8-HxCDF	ND	U	0.0229	2.50			1	
1,2,3,6,7,8-HxCDF	ND	U	0.0220	2.50			1	
1,2,3,7,8,9-HxCDF	ND	U	0.0279	2.50			1	
2,3,4,6,7,8-HxCDF	ND	U	0.0237	2.50			1	
1,2,3,4,6,7,8-HpCDF	ND	U	0.0238	2.50			1	
1,2,3,4,7,8,9-HpCDF	ND	U	0.0313	2.50			1	
OCDF	ND	U	0.0474	5.00			1	
Total Tetra-Dioxins	ND	U	0.0535	1.00			1	
Total Penta-Dioxins	ND	U	0.0504	2.50			1	
Total Hexa-Dioxins	ND	U	0.0242	2.50			1	
Total Hepta-Dioxins	ND	U	0.0302	2.50			1	
Total Tetra-Furans	ND	U	0.0388	1.00			1	
Total Penta-Furans	ND	U	0.0300	2.50			1	
Total Hexa-Furans	ND	U	0.0220	2.50			1	
Total Hepta-Furans	ND	U	0.0238	2.50			1	

Comments:
Comments.

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: Method Blank Lab Code: EQ1000340-01 Service Request: K1006356

Date Collected: NA

Date Received: NA

Units: Percent Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.000g

 Data File Name:
 P208658

 ICAL Date:
 08/01/08

Date Analyzed: 7/16/10 1803
Date Extracted: 7/8/10
Instrument Name: E-HRMS-04
GC Column: DB-5

Blank File Name: P208658 Cal Ver. File Name: P208656

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec	Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	672.048	67		40-135	0.77	1.009
13C-1,2,3,7,8-PeCDD	1000	686.581	69		40-135	1.56	1.168
13C-1,2,3,6,7,8-HxCDD	2500	1647.296	66		40-135	1.26	0.992
13C-1,2,3,4,6,7,8-HpCDD	2500	1396.904	56		40-135	1.05	1.068
3C-OCDD	5000	1744.035	35	Y	40-135	0.91	1.148
C-2,3,7,8-TCDF	1000	608.785	61		40-135	0.77	0.980
C-1,2,3,7,8-PeCDF	1000	739.405	74		40-135	1.58	1.130
C-1,2,3,4,7,8-HxCDF	2500	1616.719	65		40-135	0.53	0.971
3C-1,2,3,4,6,7,8-HpCDF	2500	1382.723	55		40-135	0.44	1.044
Cl-2,3,7,8-TCDD	800	636.934	80		40-135	NA	1.009

Commontes	
Comments:	



# **Accuracy and Precision**

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

An Employee Owned Company

QA/QC Report

Client:Pacific EcoRisk LaboratoriesService Request:K1006356Project:USACE San Rafael Channel/16087Date Analyzed:7/13/10

Sample Matrix: Sediment

## Lab Control Sample Summary

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

 Analytical Method:
 8290
 Units:
 ng/Kg

 Prep Method:
 Method
 Basis:
 Dry

**Extraction Lot:** 113950

	Lal	b Control Sam	ple	Duplicat	e Lab Control				
	EQ1000320-02			]	EQ1000320-03	% Rec		RPD	
Analyte Name	Result	Expected	% Rec	Result	Expected	% Rec	Limits	RPD	Limit
2,3,7,8-TCDD	19.9	20.0	99	19.1	20.0	96	74 - 127	3	18
1,2,3,7,8-PeCDD	52.2	50.0	104	51.8	50.0	104	73 - 122	0	14
1,2,3,4,7,8-HxCDD	39.2	50.0	78	42.3	50.0	85	60 - 153	9	26
1,2,3,6,7,8-HxCDD	51.3	50.0	103	48.6	50.0	97	72 - 126	6	16
1,2,3,7,8,9-HxCDD	46.1	50.0	92	44.6	50.0	89	59 - 140	3	32
1,2,3,4,6,7,8-HpCDD	49.1	50.0	98	49.0	50.0	98	66 - 132	0	19
OCDD	94.8	100	95	95.0	100	95	73 - 140	0	28
2,3,7,8-TCDF	20.8	20.0	104	21.0	20.0	105	66 - 129	1	18
1,2,3,7,8-PeCDF	47.4	50.0	95	46.1	50.0	92	70 - 123	3	14
2,3,4,7,8-PeCDF	45.7	50.0	91	44.8	50.0	90	69 - 122	1	17
1,2,3,4,7,8-HxCDF	43.8	50.0	88	43.2	50.0	86	71 - 121	2	15
1,2,3,6,7,8-HxCDF	50.0	50.0	100	51.3	50.0	103	70 - 130	3	14
1,2,3,7,8,9-HxCDF	44.7	50.0	89	44.8	50.0	90	53 - 130	1	28
2,3,4,6,7,8-HxCDF	45.8	50.0	92	46.4	50.0	93	66 - 126	1	22
1,2,3,4,6,7,8-HpCDF	47.1	50.0	94	46.8	50.0	94	66 - 122	0	17
1,2,3,4,7,8,9-HpCDF	52.5	50.0	105	52.9	50.0	106	69 - 136	1	21
OCDF	104	100	104	105	100	105	66 - 146	1	24

**Comments:** 

QA/QC Report

Client:Pacific EcoRisk LaboratoriesService Request:K1006356Project:USACE San Rafael Channel/16087Date Analyzed:7/12/10

Sample Matrix: Sediment

# Lab Control Sample Summary Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:8290Units:ng/KgPrep Method:MethodBasis:Dry

**Extraction Lot:** 114258

	<b>Lab Control Sample</b> EQ1000323-02				te Lab Contro EQ1000323-03	% Rec	RPD		
Analyte Name	Result	Expected	% Rec	Result	Expected	% Rec	76 Rec	RPD	Limit
2,3,7,8-TCDD	19.5	20.0	98	19.8	20.0	99	74 - 127	1	18
1,2,3,7,8-PeCDD	52.4	50.0	105	52.6	50.0	105	73 - 122	0	14
1,2,3,4,7,8-HxCDD	44.9	50.0	90	44.6	50.0	89	60 - 153	1	26
1,2,3,6,7,8-HxCDD	45.4	50.0	91	46.8	50.0	94	72 - 126	3	16
1,2,3,7,8,9-HxCDD	43.6	50.0	87	42.9	50.0	86	59 - 140	1	32
1,2,3,4,6,7,8-HpCDD	49.2	50.0	98	48.7	50.0	97	66 - 132	1	19
OCDD	94.7	100	95	94.7	100	95	73 - 140	0	28
2,3,7,8-TCDF	20.9	20.0	105	21.0	20.0	105	66 - 129	0	18
1,2,3,7,8-PeCDF	47.3	50.0	95	47.8	50.0	96	70 - 123	1	14
2,3,4,7,8-PeCDF	49.1	50.0	98	49.7	50.0	99	69 - 122	1	17
1,2,3,4,7,8-HxCDF	48.0	50.0	96	47.5	50.0	95	71 - 121	1	15
1,2,3,6,7,8-HxCDF	50.2	50.0	100	51.5	50.0	103	70 - 130	3	14
1,2,3,7,8,9-HxCDF	49.5	50.0	99	47.2	50.0	94	53 - 130	5	28
2,3,4,6,7,8-HxCDF	49.5	50.0	99	49.1	50.0	98	66 - 126	1	22
1,2,3,4,6,7,8-HpCDF	48.7	50.0	97	48.4	50.0	97	66 - 122	0	17
1,2,3,4,7,8,9-HpCDF	51.3	50.0	103	50.5	50.0	101	69 - 136	2	21
OCDF	97.7	100	98	93.0	100	93	66 - 146	5	24

**Comments:** 

QA/QC Report

Client:Pacific EcoRisk LaboratoriesService Request:K1006356Project:USACE San Rafael Channel/16087Date Analyzed:7/17/10

Sample Matrix: Sediment

### Lab Control Sample Summary

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

 Analytical Method:
 8290
 Units:
 ng/Kg

 Prep Method:
 Method
 Basis:
 Dry

**Extraction Lot:** 114850

	La	b Control Sam	ple	Duplicat	te Lab Contro	l Sample			
		EQ1000340-02	2	]	EQ1000340-03	3	% Rec		RPD
Analyte Name	Result	Expected	% Rec	Result	Expected	% Rec	Limits	RPD	Limit
2,3,7,8-TCDD	19.6	20.0	98	18.5	20.0	93	74 - 127	5	18
1,2,3,7,8-PeCDD	52.3	50.0	105	51.1	50.0	102	73 - 122	3	14
1,2,3,4,7,8-HxCDD	47.1	50.0	94	42.1	50.0	84	60 - 153	11	26
1,2,3,6,7,8-HxCDD	49.5	50.0	99	49.2	50.0	98	72 - 126	1	16
1,2,3,7,8,9-HxCDD	44.9	50.0	90	41.7	50.0	83	59 - 140	8	32
1,2,3,4,6,7,8-HpCDD	50.0	50.0	100	48.9	50.0	98	66 - 132	2	19
OCDD	95.7	100	96	92.6	100	93	73 - 140	3	28
2,3,7,8-TCDF	20.2	20.0	101	19.9	20.0	100	66 - 129	1	18
1,2,3,7,8-PeCDF	46.7	50.0	93	45.5	50.0	91	70 - 123	2	14
2,3,4,7,8-PeCDF	45.5	50.0	91	44.9	50.0	90	69 - 122	1	17
1,2,3,4,7,8-HxCDF	47.9	50.0	96	46.4	50.0	93	71 - 121	3	15
1,2,3,6,7,8-HxCDF	52.7	50.0	105	50.4	50.0	101	70 - 130	4	14
1,2,3,7,8,9-HxCDF	51.7	50.0	103	53.1	50.0	106	53 - 130	3	28
2,3,4,6,7,8-HxCDF	50.3	50.0	101	51.1	50.0	102	66 - 126	1	22
1,2,3,4,6,7,8-HpCDF	47.7	50.0	95	46.6	50.0	93	66 - 122	2	17
1,2,3,4,7,8,9-HpCDF	52.6	50.0	105	53.2	50.0	106	69 - 136	1	21
OCDF	110	100	110	111	100	111	66 - 146	1	24

**Comments:** 

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

**Sample Name:** Lab Control Sample **Lab Code:** EQ1000320-02

Service Request: K1006356

Date Collected: NA

Date Received: NA

Units: ng/Kg
Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analytical Method:** 8290 **Prep Method:** Method **Sample Amount:** 10.000g

Data File Name: P208563 ICAL Date: 08/01/08 Date Analyzed: 7/13/10 0136
Date Extracted: 6/25/10
Instrument Name: E-HRMS-04
GC Column: DB-5

Blank File Name: P208554
Cal Ver. File Name: P208552

Analyte Name	Result Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	19.9	0.0444	1.00	0.76	1.000	1	
1,2,3,7,8-PeCDD	52.2	0.0575	2.50	1.60	1.000	1	
1,2,3,4,7,8-HxCDD	39.2	0.0423	2.50	1.26	0.999	1	
1,2,3,6,7,8-HxCDD	51.3	0.0300	2.50	1.27	1.000	1	
1,2,3,7,8,9-HxCDD	46.1	0.0342	2.50	1.18	1.009	1	
1,2,3,4,6,7,8-HpCDD	49.1	0.0370	2.50	1.04	1.000	1	
OCDD	94.8	0.0395	5.00	0.87	1.000	1	
2,3,7,8-TCDF	20.8	0.0579	1.00	0.74	1.000	1	
1,2,3,7,8-PeCDF	47.4	0.0421	2.50	1.51	1.001	1	
2,3,4,7,8-PeCDF	45.7	0.0408	2.50	1.52	1.024	1	
1,2,3,4,7,8-HxCDF	43.8	0.0191	2.50	1.15	1.000	1	
1,2,3,6,7,8-HxCDF	50.0	0.0164	2.50	1.17	1.004	1	
1,2,3,7,8,9-HxCDF	44.7	0.0221	2.50	1.15	1.038	1	
2,3,4,6,7,8-HxCDF	45.8	0.0183	2.50	1.15	1.017	1	
1,2,3,4,6,7,8-HpCDF	47.1	0.0661	2.50	0.97	1.000	1	
1,2,3,4,7,8,9-HpCDF	52.5	0.0842	2.50	0.96	1.036	1	
OCDF	104	0.0384	5.00	0.87	1.004	1	
Total Tetra-Dioxins	19.9	0.0444	1.00	0.76		1	
Total Penta-Dioxins	52.2	0.0575	2.50	1.60		1	
Total Hexa-Dioxins	137	0.0300	2.50	1.26		1	
Total Hepta-Dioxins	49.5	0.0370	2.50	1.02		1	
Total Tetra-Furans	20.8	0.0579	1.00	0.74		1	
Total Penta-Furans	93.0	0.0408	2.50	1.51		1	
Total Hexa-Furans	184	0.0164	2.50	1.15		1	
Total Hepta-Furans	99.6	0.0661	2.50	0.97		1	

Commond	
Comment	S:

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: Lab Control Sample Lab Code: EQ1000320-02

Service Request: K1006356

Date Collected: NA

Date Received: NA

Units: Percent Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.000g

Data File Name: P208563 ICAL Date: 08/01/08 Date Analyzed: 7/13/10 0136
Date Extracted: 6/25/10
Instrument Name: E-HRMS-04
GC Column: DB-5

Blank File Name: P208554
Cal Ver. File Name: P208552

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	667.498	67	40-135	0.75	1.009
13C-1,2,3,7,8-PeCDD	1000	628.897	63	40-135	1.61	1.168
3C-1,2,3,6,7,8-HxCDD	2500	1647.546	66	40-135	1.26	0.992
3C-1,2,3,4,6,7,8-HpCDD	2500	1596.181	64	40-135	1.06	1.068
BC-OCDD	5000	2612.044	52	40-135	0.91	1.148
-2,3,7,8-TCDF	1000	612.520	61	40-135	0.78	0.983
C-1,2,3,7,8-PeCDF	1000	719.136	72	40-135	1.59	1.130
C-1,2,3,4,7,8-HxCDF	2500	1603.537	64	40-135	0.51	0.971
3C-1,2,3,4,6,7,8-HpCDF	2500	1501.240	60	40-135	0.43	1.044
Cl-2,3,7,8-TCDD	800	704.465	88	40-135	NA	1.009

Comments:
Comments.

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: Lab Control Sample Lab Code: EQ1000323-02

Service Request: K1006356
Date Collected: NA
Date Received: NA

Units: ng/Kg
Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analytical Method:** 8290 **Prep Method:** Method **Sample Amount:** 10.000g

Data File Name: P109683 ICAL Date: 09/11/09

 Date Analyzed:
 7/12/10 0350

 Date Extracted:
 6/28/10

 Instrument Name:
 E-HRMS-03

 GC Column:
 DB-5

Blank File Name: P109648
Cal Ver. File Name: P109672

Analyte Name	Result Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	19.5	0.124	1.00	0.77	1.001	1	
1,2,3,7,8-PeCDD	52.4	0.0975	2.50	1.57	1.000	1	
1,2,3,4,7,8-HxCDD	44.9	0.0684	2.50	1.24	0.999	1	
1,2,3,6,7,8-HxCDD	45.4	0.0531	2.50	1.26	1.000	1	
1,2,3,7,8,9-HxCDD	43.6	0.0588	2.50	1.30	1.009	1	
1,2,3,4,6,7,8-HpCDD	49.2	0.0991	2.50	1.06	1.000	1	
OCDD	94.7	0.128	5.00	0.89	1.000	1	
2,3,7,8-TCDF	20.9	0.145	1.00	0.79	1.001	1	
1,2,3,7,8-PeCDF	47.3	0.0818	2.50	1.56	1.000	1	
2,3,4,7,8-PeCDF	49.1	0.0790	2.50	1.55	1.025	1	
1,2,3,4,7,8-HxCDF	48.0	0.0633	2.50	1.23	1.000	1	
1,2,3,6,7,8-HxCDF	50.2	0.0574	2.50	1.25	1.004	1	
1,2,3,7,8,9-HxCDF	49.5	0.0701	2.50	1.23	1.038	1	
2,3,4,6,7,8-HxCDF	49.5	0.0626	2.50	1.22	1.018	1	
1,2,3,4,6,7,8-HpCDF	48.7	0.0833	2.50	1.03	1.000	1	
1,2,3,4,7,8,9-HpCDF	51.3	0.103	2.50	1.04	1.034	1	
OCDF	97.7	0.135	5.00	0.90	1.004	1	
Total Tetra-Dioxins	19.5	0.124	1.00	0.77		1	
Total Penta-Dioxins	52.4	0.0975	2.50	1.57		1	
Total Hexa-Dioxins	134	0.0531	2.50	1.24		1	
Total Hepta-Dioxins	49.2	0.0991	2.50	1.06		1	
Total Tetra-Furans	21.3	0.145	1.00	0.83		1	
Total Penta-Furans	98.6	0.0790	2.50	1.37		1	
Total Hexa-Furans	197	0.0574	2.50	1.23		1	
Total Hepta-Furans	100	0.0833	2.50	1.03		1	

Commond	
Comment	S:

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

**Sample Name:** Lab Control Sample **Lab Code:** EQ1000323-02

Service Request: K1006356

Date Collected: NA

Date Received: NA

Units: Percent Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.000g

Data File Name: P109683 ICAL Date: 09/11/09 Date Analyzed: 7/12/10 0350
Date Extracted: 6/28/10
Instrument Name: E-HRMS-03
GC Column: DB-5

Blank File Name: P109648
Cal Ver. File Name: P109672

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	830.666	83	40-135	0.80	1.009
3C-1,2,3,7,8-PeCDD	1000	788.093	79	40-135	1.57	1.181
C-1,2,3,6,7,8-HxCDD	2500	1821.713	73	40-135	1.26	0.992
C-1,2,3,4,6,7,8-HpCDD	2500	1481.397	59	40-135	1.05	1.068
C-OCDD	5000	2281.328	46	40-135	0.90	1.146
3,7,8-TCDF	1000	712.560	71	40-135	0.79	0.979
1,2,3,7,8-PeCDF	1000	792.777	79	40-135	1.59	1.141
-1,2,3,4,7,8-HxCDF	2500	1532.975	61	40-135	0.53	0.970
C-1,2,3,4,6,7,8-HpCDF	2500	1362.127	54	40-135	0.45	1.045
Cl-2,3,7,8-TCDD	800	816.249	102	40-135	NA	1.010

Comments:
Comments.

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

**Sample Name:** Lab Control Sample **Lab Code:** EQ1000340-02

Service Request: K1006356

Date Collected: NA

Date Received: NA

Units: ng/Kg
Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analytical Method:** 8290 **Prep Method:** Method **Sample Amount:** 10.000g

**Data File Name:** P208667 **ICAL Date:** 08/01/08

Date Analyzed: 7/17/10 0120
Date Extracted: 7/8/10
Instrument Name: E-HRMS-04

GC Column: DB-5 Blank File Name: P208658 Cal Ver. File Name: P208656

Analyte Name	Result Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	19.6	0.0439	1.00	0.78	1.001	1	
1,2,3,7,8-PeCDD	52.3	0.0477	2.50	1.54	1.000	1	
1,2,3,4,7,8-HxCDD	47.1	0.0326	2.50	1.25	0.999	1	
1,2,3,6,7,8-HxCDD	49.5	0.0312	2.50	1.26	1.000	1	
1,2,3,7,8,9-HxCDD	44.9	0.0325	2.50	1.25	1.008	1	
1,2,3,4,6,7,8-HpCDD	50.0	0.0310	2.50	1.04	1.000	1	
OCDD	95.7	0.0517	5.00	0.90	1.000	1	
2,3,7,8-TCDF	20.2	0.0402	1.00	0.80	1.001	1	
1,2,3,7,8-PeCDF	46.7	0.0324	2.50	1.51	1.001	1	
2,3,4,7,8-PeCDF	45.5	0.0312	2.50	1.52	1.024	1	
1,2,3,4,7,8-HxCDF	47.9	0.0184	2.50	1.19	1.000	1	
1,2,3,6,7,8-HxCDF	52.7	0.0177	2.50	1.20	1.003	1	
1,2,3,7,8,9-HxCDF	51.7	0.0226	2.50	1.18	1.036	1	
2,3,4,6,7,8-HxCDF	50.3	0.0191	2.50	1.17	1.017	1	
1,2,3,4,6,7,8-HpCDF	47.7	0.0620	2.50	0.99	1.000	1	
1,2,3,4,7,8,9-HpCDF	52.6	0.0816	2.50	0.99	1.034	1	
OCDF	110	0.0664	5.00	0.87	1.004	1	
Total Tetra-Dioxins	19.6	0.0439	1.00	0.80		1	
Total Penta-Dioxins	52.3	0.0477	2.50	1.54		1	
Total Hexa-Dioxins	141	0.0312	2.50	1.25		1	
Total Hepta-Dioxins	50.5	0.0310	2.50	1.15		1	
Total Tetra-Furans	20.2	0.0402	1.00	0.80		1	
Total Penta-Furans	94.1	0.0312	2.50	1.69		1	
Total Hexa-Furans	203	0.0177	2.50	1.19		1	
Total Hepta-Furans	100	0.0620	2.50	0.99		1	

Common	
Comment	S.

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: Lab Control Sample Lab Code: EQ1000340-02

Service Request: K1006356

Date Collected: NA

Date Received: NA

Units: Percent Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.000g

Data File Name: P208667 ICAL Date: 08/01/08

Date Analyzed: 7/17/10 0120
Date Extracted: 7/8/10
Instrument Name: E-HRMS-04
GC Column: DB-5

Blank File Name: P208658 Cal Ver. File Name: P208656

<b>Labeled Compounds</b>	Spike Conc.(pg)	Conc. Found (pg)	%Rec	Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	743.420	74		40-135	0.79	1.009
13C-1,2,3,7,8-PeCDD	1000	658.775	66		40-135	1.56	1.168
3C-1,2,3,6,7,8-HxCDD	2500	1764.231	71		40-135	1.28	0.992
3C-1,2,3,4,6,7,8-HpCDD	2500	1506.198	60		40-135	1.05	1.068
3C-OCDD	5000	1909.832	38	Y	40-135	0.91	1.148
2,3,7,8-TCDF	1000	652.828	65		40-135	0.78	0.981
C-1,2,3,7,8-PeCDF	1000	729.057	73		40-135	1.53	1.130
C-1,2,3,4,7,8-HxCDF	2500	1643.241	66		40-135	0.53	0.971
3C-1,2,3,4,6,7,8-HpCDF	2500	1512.814	61		40-135	0.44	1.044
Cl-2,3,7,8-TCDD	800	703.620	88		40-135	NA	1.009

Comments:
Comments.

Analytical Report

Pacific EcoRisk Laboratories **Client:** USACE San Rafael Channel/16087 **Project:** 

Sediment **Sample Matrix:** 

Duplicate Lab Control Sample Sample Name:

EQ1000320-03 Lab Code:

Date Collected: NA Date Received: NA Units: ng/Kg

Service Request: K1006356

Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method **Sample Amount:** 

10.000g

**Data File Name:** P208564 08/01/08 **ICAL Date:** 

**Date Analyzed:** 7/13/10 0225 **Date Extracted:** 6/25/10 **Instrument Name:** E-HRMS-04

GC Column: DB-5 Blank File Name: P208554 Cal Ver. File Name: P208552

Analyte Name	Result Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	19.1	0.0429	1.00	0.76	1.001	1	
1,2,3,7,8-PeCDD	51.8	0.0474	2.50	1.56	1.000	1	
1,2,3,4,7,8-HxCDD	42.3	0.0384	2.50	1.25	0.999	1	
1,2,3,6,7,8-HxCDD	48.6	0.0273	2.50	1.28	1.000	1	
1,2,3,7,8,9-HxCDD	44.6	0.0310	2.50	1.28	1.009	1	
1,2,3,4,6,7,8-HpCDD	49.0	0.0310	2.50	1.04	1.000	1	
OCDD	95.0	0.0395	5.00	0.89	1.000	1	
2,3,7,8-TCDF	21.0	0.0540	1.00	0.71	1.001	1	
1,2,3,7,8-PeCDF	46.1	0.0660	2.50	1.49	1.000	1	
2,3,4,7,8-PeCDF	44.8	0.0640	2.50	1.51	1.024	1	
1,2,3,4,7,8-HxCDF	43.2	0.0196	2.50	1.19	1.000	1	
1,2,3,6,7,8-HxCDF	51.3	0.0168	2.50	1.16	1.004	1	
1,2,3,7,8,9-HxCDF	44.8	0.0226	2.50	1.20	1.038	1	
2,3,4,6,7,8-HxCDF	46.4	0.0187	2.50	1.18	1.017	1	
1,2,3,4,6,7,8-HpCDF	46.8	0.140	2.50	0.97	1.000	1	
1,2,3,4,7,8,9-HpCDF	52.9	0.179	2.50	0.97	1.036	1	
OCDF	105	0.0463	5.00	0.87	1.004	1	
Total Tetra-Dioxins	19.1	0.0429	1.00	0.76		1	
Total Penta-Dioxins	51.8	0.0474	2.50	1.56		1	
Total Hexa-Dioxins	135	0.0273	2.50	1.25		1	
Total Hepta-Dioxins	49.0	0.0310	2.50	1.04		1	
Total Tetra-Furans	21.0	0.0540	1.00	0.71		1	
Total Penta-Furans	90.9	0.0640	2.50	1.49		1	
Total Hexa-Furans	186	0.0168	2.50	1.19		1	
Total Hepta-Furans	99.7	0.140	2.50	0.97		1	

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: Duplicate Lab Control Sample

08/01/08

**Lab Code:** EQ1000320-03

Service Request: K1006356

Date Collected: NA

Date Received: NA
Units: Percent

Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.000g

Data File Name: P208564

**ICAL Date:** 

Date Analyzed: 7/13/10 0225 Date Extracted: 6/25/10 Instrument Name: E-HRMS-04

GC Column: DB-5
Blank File Name: P208554
Cal Ver. File Name: P208552

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	689.083	69	40-135	0.76	1.009
13C-1,2,3,7,8-PeCDD	1000	636.103	64	40-135	1.61	1.168
13C-1,2,3,6,7,8-HxCDD	2500	1749.978	70	40-135	1.25	0.991
3C-1,2,3,4,6,7,8-HpCDD	2500	1646.908	66	40-135	1.06	1.067
3C-OCDD	5000	2683.773	54	40-135	0.91	1.148
2-2,3,7,8-TCDF	1000	622.839	62	40-135	0.76	0.983
C-1,2,3,7,8-PeCDF	1000	736.914	74	40-135	1.56	1.131
C-1,2,3,4,7,8-HxCDF	2500	1662.848	67	40-135	0.52	0.971
3C-1,2,3,4,6,7,8-HpCDF	2500	1557.765	62	40-135	0.44	1.043
Cl-2,3,7,8-TCDD	800	739.094	92	40-135	NA	1.010

Comments:
Comments.

Analytical Report

Pacific EcoRisk Laboratories **Client:** USACE San Rafael Channel/16087 **Project:** 

Sediment **Sample Matrix:** 

Duplicate Lab Control Sample Sample Name:

EQ1000323-03 Lab Code:

Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method **Sample Amount:** 10.000g

P109684 **Data File Name: ICAL Date:** 09/11/09

**Date Analyzed:** 7/12/10 0438 **Date Extracted:** 6/28/10 **Instrument Name:** E-HRMS-03

Service Request: K1006356

Units: ng/Kg

Date Collected: NA

Date Received: NA

GC Column: DB-5 Blank File Name: P109648 Cal Ver. File Name: P109672

Analyte Name	Result Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	19.8	0.143	1.00	0.77	1.000	1	
1,2,3,7,8-PeCDD	52.6	0.0901	2.50	1.56	1.000	1	
1,2,3,4,7,8-HxCDD	44.6	0.0702	2.50	1.25	0.999	1	
1,2,3,6,7,8-HxCDD	46.8	0.0546	2.50	1.27	1.000	1	
1,2,3,7,8,9-HxCDD	42.9	0.0605	2.50	1.24	1.009	1	
1,2,3,4,6,7,8-HpCDD	48.7	0.0535	2.50	1.05	1.000	1	
OCDD	94.7	0.110	5.00	0.89	1.000	1	
2,3,7,8-TCDF	21.0	0.156	1.00	0.73	1.001	1	
1,2,3,7,8-PeCDF	47.8	0.0740	2.50	1.56	1.000	1	
2,3,4,7,8-PeCDF	49.7	0.0714	2.50	1.55	1.025	1	
1,2,3,4,7,8-HxCDF	47.5	0.0584	2.50	1.24	1.000	1	
1,2,3,6,7,8-HxCDF	51.5	0.0529	2.50	1.22	1.004	1	
1,2,3,7,8,9-HxCDF	47.2	0.0646	2.50	1.27	1.038	1	
2,3,4,6,7,8-HxCDF	49.1	0.0577	2.50	1.21	1.018	1	
1,2,3,4,6,7,8-HpCDF	48.4	0.0967	2.50	1.05	1.000	1	
1,2,3,4,7,8,9-HpCDF	50.5	0.119	2.50	1.04	1.034	1	
OCDF	93.0	0.0993	5.00	0.91	1.004	1	
Total Tetra-Dioxins	19.8	0.143	1.00	0.77		1	
Total Penta-Dioxins	52.6	0.0901	2.50	1.56		1	
Total Hexa-Dioxins	134	0.0546	2.50	1.25		1	
Total Hepta-Dioxins	48.7	0.0535	2.50	1.05		1	
Total Tetra-Furans	21.2	0.156	1.00	0.73		1	
Total Penta-Furans	99.8	0.0714	2.50	1.44		1	
Total Hexa-Furans	195	0.0529	2.50	1.24		1	
Total Hepta-Furans	98.9	0.0967	2.50	1.05		1	

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: Duplicate Lab Control Sample

**Lab Code:** EQ1000323-03

**Service Request:** K1006356 **Date Collected:** NA

Date Received: NA
Units: Percent

Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.000g

74mount. 10.000g

**Data File Name:** P109684 **ICAL Date:** 09/11/09

 Date Analyzed:
 7/12/10 0438

 Date Extracted:
 6/28/10

 Instrument Name:
 E-HRMS-03

GC Column: DB-5
Blank File Name: P109648
Cal Ver. File Name: P109672

<b>Labeled Compounds</b>	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	680.175	68	40-135	0.79	1.010
13C-1,2,3,7,8-PeCDD	1000	773.573	77	40-135	1.58	1.182
13C-1,2,3,6,7,8-HxCDD	2500	1724.141	69	40-135	1.25	0.991
13C-1,2,3,4,6,7,8-HpCDD	2500	1455.050	58	40-135	1.06	1.068
3C-OCDD	5000	2212.451	44	40-135	0.90	1.146
-2,3,7,8-TCDF	1000	587.220	59	40-135	0.77	0.979
C-1,2,3,7,8-PeCDF	1000	746.946	75	40-135	1.55	1.141
C-1,2,3,4,7,8-HxCDF	2500	1502.243	60	40-135	0.53	0.970
3C-1,2,3,4,6,7,8-HpCDF	2500	1308.275	52	40-135	0.45	1.044
Cl-2,3,7,8-TCDD	800	677.372	85	40-135	NA	1.010

**Comments:** 

Analytical Report

Pacific EcoRisk Laboratories **Client:** USACE San Rafael Channel/16087 **Project:** 

Sediment **Sample Matrix:** 

Duplicate Lab Control Sample Sample Name:

EQ1000340-03 Lab Code:

Service Request: K1006356 Date Collected: NA Date Received: NA

> Units: ng/Kg Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method **Sample Amount:** 10.000g

P208668 **Data File Name:** 08/01/08 **ICAL Date:** 

**Date Analyzed:** 7/17/10 0209 **Date Extracted:** 7/8/10 **Instrument Name:** E-HRMS-04 GC Column: DB-5

Blank File Name: P208658 Cal Ver. File Name: P208656

Analyte Name	Result Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	18.5	0.0398	1.00	0.77	1.001	1	
1,2,3,7,8-PeCDD	51.1	0.0488	2.50	1.54	1.001	1	
1,2,3,4,7,8-HxCDD	42.1	0.0224	2.50	1.40	0.998	1	
1,2,3,6,7,8-HxCDD	49.2	0.0213	2.50	1.14	1.000	1	
1,2,3,7,8,9-HxCDD	41.7	0.0223	2.50	1.21	1.008	1	
1,2,3,4,6,7,8-HpCDD	48.9	0.0286	2.50	1.05	1.000	1	
OCDD	92.6	0.0589	5.00	0.89	1.000	1	
2,3,7,8-TCDF	19.9	0.0517	1.00	0.75	1.001	1	
1,2,3,7,8-PeCDF	45.5	0.0266	2.50	1.49	1.000	1	
2,3,4,7,8-PeCDF	44.9	0.0255	2.50	1.51	1.023	1	
1,2,3,4,7,8-HxCDF	46.4	0.0244	2.50	1.21	1.000	1	
1,2,3,6,7,8-HxCDF	50.4	0.0235	2.50	1.19	1.003	1	
1,2,3,7,8,9-HxCDF	53.1	0.0297	2.50	1.18	1.036	1	
2,3,4,6,7,8-HxCDF	51.1	0.0252	2.50	1.19	1.017	1	
1,2,3,4,6,7,8-HpCDF	46.6	0.0476	2.50	0.99	1.000	1	
1,2,3,4,7,8,9-HpCDF	53.2	0.0626	2.50	0.98	1.034	1	
OCDF	111	0.0703	5.00	0.87	1.004	1	
Total Tetra-Dioxins	18.6	0.0398	1.00	0.77		1	
Total Penta-Dioxins	51.3	0.0488	2.50	1.54		1	
Total Hexa-Dioxins	133	0.0213	2.50	1.40		1	
Total Hepta-Dioxins	49.3	0.0286	2.50	1.06		1	
Total Tetra-Furans	20.0	0.0517	1.00	0.88		1	
Total Penta-Furans	92.1	0.0255	2.50	1.49		1	
Total Hexa-Furans	201	0.0235	2.50	1.21		1	
Total Hepta-Furans	99.8	0.0476	2.50	0.99		1	

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: USACE San Rafael Channel/16087

Sample Matrix: Sediment

Sample Name: Duplicate Lab Control Sample

**Lab Code:** EQ1000340-03

Service Request: K1006356

Date Collected: NA

Date Received: NA

Units: Percent

Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.000g

File Name: P208668

**Data File Name:** P208668 **ICAL Date:** 08/01/08

Date Analyzed: 7/17/10 0209
Date Extracted: 7/8/10
Instrument Name: E-HRMS-04

GC Column: DB-5 Blank File Name: P208658 Cal Ver. File Name: P208656

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec	Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	757.168	76		40-135	0.79	1.008
13C-1,2,3,7,8-PeCDD	1000	679.783	68		40-135	1.57	1.167
13C-1,2,3,6,7,8-HxCDD	2500	1822.545	73		40-135	1.25	0.992
13C-1,2,3,4,6,7,8-HpCDD	2500	1416.448	57		40-135	1.06	1.068
13C-OCDD	5000	1707.522	34	Y	40-135	0.90	1.148
13C-2,3,7,8-TCDF	1000	664.112	66		40-135	0.75	0.980
13C-1,2,3,7,8-PeCDF	1000	738.431	74		40-135	1.56	1.130
13C-1,2,3,4,7,8-HxCDF	2500	1618.962	65		40-135	0.52	0.972
13C-1,2,3,4,6,7,8-HpCDF	2500	1407.768	56		40-135	0.44	1.044
37Cl-2,3,7,8-TCDD	800	695.624	87		40-135	NA	1.009

**Comments:** 



# **Chain of Custody**

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

An Employee Owned Company

# Intra-Network Chain of Custody 1317 South 13th Avenue • Kelso, WA 98626 • 1-360-577-7222 • FAX 1-360-636-1079

Project Namo:

USACE San Rafael Channel

**Project Number:** 

Project Manager:

Jeffrey Cotsifas

Company:

Pacific EcoRisk Laboratories

CDD PCDF 8290

				Samp	le	Date		PG
Lab Code	Client Sample ID	# of Cont.	Matrix	Date	Time	Received	Send To	
K1006356-021	SRC-2010-8-Z-Comp	S. Andrews	Sediment	6/10/10	1155	6/23/10	HOUSTON	П

**Test Comments** 

PCDD PCDF - 8290

K1006356-001,2,3,4,5,6,7,8,21

Analyte list attached

**Folder Comments:** 

WATCH HOLD TIMES! Samples received Frozen

Special Instructions/Comments	Turnaround Requirements	Report Requirements	Invoice Information
Please provide the electronic (PDF and EDD) report to the following e-mail address: kelso_data@caslab.com	RUSH (Surcharges Apply)	I. Results Only II. Results + QC Summaries	
	PLEASE CIRCLE WORK DAYS		PO#
	1 2 3 4 5	III. Results + QC and Calibration Summaries	K1006356
	<b>√</b> STANDARD	IV. Data Validation Report with Raw Data	
	Requested FAX Date:	PQL/MDL/J (Y)	Bill to
	Requested Report Date: 07/06/10	EDD	

Received By

CAS Contact: Pradeep Divvela

# Intra-Network Chain of Custody

1317 South 13th Avenue • Kelso, WA 98626 • 1-360-577-7222 • FAX 1-360-636-1079

Project Name:

USACE San Rafael Channel

**Project Number:** 

16087

Project Manager:

Jeffrey Cotsifas

Project Manager: Company:	Jeffrey Cotsitas  Pacific EcoRisk Laboratories							CDF
Lab Code	Client Sample ID	# of Cont.	Matrix	Sam Date	ple Time	Date Received	Send To	PCDD PCDF 8290
K1006356-001	SRC-2010-1-Comp		Sediment	6/8/10	0920	6/18/10	HOUSTON	v
K1006356-002	SRC-2010-2-Comp		Sediment	6/9/10	0800	6/18/10	HOUSTON	v
K1006356-003	SRC-2010-3-Comp		Sediment	6/9/10	1105	6/18/10	HOUSTON	V
K1006356-004	SRC-2010-4-Comp		Sediment	6/11/10	0840	6/18/10	HOUSTON	V
K1006356-005	SRC-2010-5-Comp		Sediment	6/8/10	1335	6/18/10	HOUSTON	V
K1006356-006	SRC-2010-6-Comp		Sediment	6/9/10	1530	6/18/10	HOUSTON	v
K1006356-007	SRC-2010-7-Comp		Sediment	6/10/10	0900	6/18/10	HOUSTON	v
K1006356-008	SRC-2010-8-Z-Comp		Sediment	6/10/10	1155	6/18/10	HOUSTON	V

**Test Comments** 

PCDD PCDF - 8290

K1006356-001,2,3,4,5,6,7,8

Analyte list attached

**Folder Comments:** 

**WATCH HOLD TIMES!** 

Special Instructions/Comments  Please provide the electronic (PDF and EDD) report to the following e-mail address: kelso_data@caslab.com	Turnaround RequirementsRUSH (Surcharges Apply)	Report Requirements I. Results Only II. Results + QC Summaries	Invoice Information
	PLEASE CIRCLE WORK DAYS  1 2 3 4 5  STANDARD	III. Results + QC and Calibration Summaries IV. Data Validation Report with Raw Data	PO# K1006356
	Requested FAX Date:  Requested Report Date: 07/05/10	PQL/MDL/J <u>Y</u> EDD	Bill to

BLUB ICE/B, WRAP

TK# 129736590148682656

Airbill Number:

CAS Contact: Pradeep Divvela

# Columbia Analytical Services, Inc. Cooler Receipt Form

Client	/Project: Pacific EcoF	tisk Laboratories/ U	SACE San Rafa	el Service Req	uest:	K1006356
Receiv	ved: 6/23/10; 1007	Opened (Date/Tin	ne): <u>6/23/10;</u>	1029 By:	С	D for EB
1.	Samples were receive	ed via?   US M	1ail ∏Fedex	<b>✓</b> UPS	]DHL []Courie	er Hand Delivered
2.	Samples were receive	ed in: (circle)	]Cooler	x		$\square$ NA
3.	Were <u>custody seals</u> p	resent on coolers?	✓Y		ow many and when	
	If present, were custo	dy seals intact?	✓Y □N	If present, were	they signed and da	ted?
4.	Is shipper's air-bill fi	led? NA	□Y ✓N	If not, record air	bill number:	1Z9736590148682656
	••					
5.	Temperature of coole	er(s) upon receipt (°	C): 0			
6.	If applicable, list Cha					
7.	Were custody papers					□NA ☑Y □N
8.	Packing material used				et Ice Sleeves	
9.	Were the correct type		-		_	N
	Did all bottles arrive				cate in the table be	
	Sample ID	Bottle Count	Bottle Type	Out of Temp	Broken	Initials
	•		71		П	
				<u> </u>		
				<u> </u>		
10.	Were all bottle labels	complete (i.e. anal-	ysis, ID, etc.)?			<b>▽</b> Y □N
	Did all bottle labels a			Indicate in the to	able below.	ŬY □N
Sar	nple ID on Bottle	Sample ID or			D on Bottle	Sample ID on COC
	r	T T		1		<b>F</b>
11.	Additional notes, disc	erenancies and resc	dutions:			
11.	Additional notes, disc	reparieres, and reso	riutions.			
						· · · · · · · · · · · · · · · · · · ·

## Columbia Analytical Services, Inc. Cooler Receipt Form

Client/	Project: Pacific EcoR	tisk Laboratories/ US	SACE San Rafa	Service Red	quest:	K1006356-021
Receive	ed: 7/3/10; 1000	Opened (Date/Tin	ne): <u>7/3/10;</u>	1000 By:_	C	D for JB
1.	Samples were receive	ed via? $\square US M$	Iail □Fedex	x <b>√</b> UPS [	DHL Couri	er Hand Delivered
2.	Samples were received					<del></del>
3.	Were <u>custody seals</u> p	·	<b>✓</b> Y		how many and whe	<del></del>
	If present, were custo		✓Y □N		they signed and da	
	Is shipper's air-bill fi			•		1Z9736594446764848
4.	is sinpper's an-oni in	iled?INA	I VIN	II liot, record ar	ii oiii iiuiiioei	129730394440704040
5.	Temperature of cools	er(s) unon receipt (°				
	If applicable, list Cha					
7.	Were custody papers					NA
			`		Tat Iaa Slamas	Other
8.	Packing material use		-		ei icesieeves	
9.	Were the correct type					✓Y □N
	Did all bottles arrive		•			
	Sample ID	Bottle Count	Bottle Type	Out of Temp	Broken	Initials
				$+$ $\dashv$		
10.	Were all bottle labels	s complete (i.e. analy	ysis, ID, etc.)?			✓Y □N
	Did all bottle labels a	and tags agree with o	custody papers?	Indicate in the t	able below.	✓Y □N
Sam	ple ID on Bottle	Sample ID or	n COC	Sample	ID on Bottle	Sample ID on COC
						ı
11.	Additional notes, dis	crepancies, and reso	olutions:			

## Sample Acceptance Policy

#### Custody Seals (desirable, mandatory if specified in SAP):

- ✓ On outside of cooler
- ✓ Seals intact, signed and dated

#### **Chain-of-Custody documentation (mandatory):**

- ✓ Properly filled out in ink & signed by the client
- ✓ Sign and date the coc for CAS/HOU upon cooler receipt
- ✓ Coc must list method number
- ✓ If no coc was submitted with the samples, complete a CAS/HOU coc for the client

#### Sample Integrity (mandatory):

- ✓ Sample containers must arrive in good condition (not broken or leaking)
- ✓ Sample IDs on the bottles must match the sample IDs on the coc
- ✓ The correct type of sample bottle must be used for the method requested
- ✓ The correct number of sample containers received must agree with the documentation on the coc
- ✓ The correct sample matrix must appear on the coc
- ✓ An appropriate sample volume or weight must be received.

#### Temperature Preservatives (varies by sample matrix):

- √ Aqueous and Non-aqueous samples must be shipped and stored cold, at 0 to 6°C
- ✓ Tissue samples must be shipped and stored frozen, at -20 to -10°C
- ✓ Air samples can be shipped and stored at ambient temperature, ~23°C
- ✓ The sample temperature must be recorded on the coc
- ✓ Notify a Project Chemist if any samples are outside the acceptance temperature or have compromised sample integrity the client must decide re: replacement sample submittal or continue with the analysis

#### **Cooler Receipt Form, CRF (mandatory):**

- ✓ Cooler receipt forms must be completed for each coc & SR#
- ✓ Sample integrity issues must be documented on the CRF
- ✓ A scan of the carrier and the airbill number must be recorded in CAS LIMS

#### Sample Integrity Issues/Resolutions (mandatory):

- ✓ Sample integrity issues are documented on the CRF and given to the Project Chemist for resolution with the client
- ✓ Client resolution is documented in writing (typically email or on the CRF) and filed in the project folder(s)

## **Service Request Summary**

Folder #: K1006356

Client Name: Pacific EcoRisk Laboratories
Project Name: USACE San Rafael Channel

Project Number: 16087

**Report To:** Jeffrey Cotsifas

Pacific EcoRisk Laboratories

2250 Cordelia Road Fairfield, CA 94534

Phone Number: 707-207-7760

Cell Number:

Fax Number: 707-207-7916

E-mail: cotsifas@pacificecorisk.com

Project Chemist: Darren Biles Originating Lab: KELSO

Logged By: FADAIR

Date Received: 6/18 - 6/23/10

Internal Due Date: 7/6/10

QAP: LAB QAP

Qualifier Set: CAS Standard Formset: CAS Standard

Merged?: N,Y

Report to MDL?:  $\ \ Y$ 

P.O. Number:

EDD: BASIC_WQC

37 _ 16 oz-Glass Jar WM CLEAR Teflon Liner Unpreserved

16 _ 1 each-Plastic Bag Ziplock Unpreserved

14 _ 2 oz-Glass Jar WM CLEAR Teflon Liner 4-deg C

**Location:** K-Delilah-51, K-PETUNIA-10,

E-WIC02-Box106, E-WIC-02-Box168

**RUSH** 

					KELSO				KELSO	)			KELSO	
CAS Samp No	Client Samp No.	Matrix	Collected	9060M/ TOC	PSEP PS/ PSEP PartSizeCB	Subsample/ Sub Sample	6010B/ Metals T	6020/ Metals T	6020/ Sb Ag T	7471A/ Hg	7742/ Se T	8015B/ DRO_RRO	8081A/ PEST_OC_LL	8082/ PCB_LL
K1006356-001	SRC-2010-1-Comp	Sediment	6/8/10 0920	V	V	V	V	V	V	V	V	V	V	V
K1006356-002	SRC-2010-2-Comp	Sediment	6/9/10 0800	V	V	V	V	V	V	V	V	V	V	V
K1006356-003	SRC-2010-3-Comp	Sediment	6/9/10 1105	V	V	V	V	V	V	V	V	V	V	V
K1006356-004	SRC-2010-4-Comp	Sediment	6/11/10 0840		V	V	V	V	V	V	V	V	V	V
K1006356-005	SRC-2010-5-Comp	Sediment	6/8/10 1335	V	V	V	V	V	V	V	V	V	V	V
K1006356-006	SRC-2010-6-Comp	Sediment	6/9/10 1530	V	V	V	V	V	V	V	V	V	V	V
K1006356-007	SRC-2010-7-Comp	Sediment	6/10/10 0900	V	V	V	V	V	V	V	V	V	V	V
K1006356-008	SRC-2010-7-Z-Comp	Sediment	6/10/10 1155	V	V	V	V	V	V	V	V	V	V	V
K1006356-009	SRC-2010-1-B-Comp	Sediment	6/8/10 0920	V	V			v	V	V	V	1	v	V
K1006356-010	SRC-2010-2-B-Comp	Sediment	6/9/10 0800	V	V		1	v	V	V	V		v	V
K1006356-011	SRC-2010-3-B-Comp	Sediment	6/9/10 1105	V	V		1	V	V	V	V		V	V
K1006356-012	SRC-2010-4-B-Comp	Sediment	6/11/10 0840	V	V		1	v	V	V	V		v	v
K1006356-013	SRC-2010-5-B-Comp	Sediment	6/8/10 1335	V	V		1	v	v	V	V		v	v
K1006356-014	SRC-2010-6-B-Comp	Sediment	6/9/10 1530	V	V		1	V	V	V	V		V	V
K1006356-015	SRC-2010-7-B-Comp	Sediment	6/10/10 0900	V	V		1	v	V	V	V		v	v
K1006356-016	SRC-2010-7-1	Sediment	6/10/10 0900	V	V		v	v	v	V	V	v	v	v
K1006356-017	SRC-2010-7-2	Sediment	6/10/10 0940	V	v		v	v	v	V	V	v	v	v
K1006356-018	SRC-2010-7-3	Sediment	6/10/10 1010	V	V		v	v	V	V	V	v	v	v
K1006356-019	SRC-2010-7-4	Sediment	6/10/10 1035	V	v		v	v	V	V	V	v	· · · · · · · · · · · · · · · · · · ·	v
K1006356-020	SRC-2010-7-5	Sediment	6/10/10 1100	v	v		v	v	v	V	V	v	v	v
K1006356-021	SRC-2010-8-Z-Comp	Sediment	6/10/10 1155	V	v	v	v	v	· · · · · · · · · · · · · · · · · · ·	V	· · · · · · · · · · · · · · · · · · ·	·····v	· · · · · · · · · · · · · · · · · · ·	v

					KELSO	K	ELSO	KE	LSO	KELSO	KELSO	SVM
CAS Samp No.	Client Samp No.	Matrix	Collected	8151A/ HERB	Butyltins/ BUTYLTINS	8270C SIM/ PAH_SIM	8270C/ SVO_LL	Archive/ Archive -20C	Archive/ Archive 4C	TS-MET/ Total Solids	8015B/ VOC_GRO	8290/ PCDD PCDF
K1006356-001	SRC-2010-1-Comp	Sediment	6/8/10 0920	V	V	V	V	V	V	V	V	II
K1006356-002	SRC-2010-2-Comp	Sediment	6/9/10 0800	V	V	V	V	V	V	V	V	II
K1006356-003	SRC-2010-3-Comp	Sediment	6/9/10 1105	V	V	V	V	V	V	V	V	II
K1006356-004	SRC-2010-4-Comp	Sediment	6/11/10 0840	V	V	V	V	V	V	V	V	II
K1006356-005	SRC-2010-5-Comp	Sediment	6/8/10 1335	V	V	V	V	V	V	V	V	II
K1006356-006	SRC-2010-6-Comp	Sediment	6/9/10 1530	V	V	V	V	V	V	V	V	II
K1006356-007	SRC-2010-7-Comp	Sediment	6/10/10 0900	V	V	V	V	V	V	V	V	II
K1006356-008	SRC-2010-7-Z-Comp	Sediment	6/10/10 1155	V	V	V	V	V	V	V	V	II
K1006356-009	SRC-2010-1-B-Comp	Sediment	6/8/10 0920		V	V		V	V	V		1
K1006356-010	SRC-2010-2-B-Comp	Sediment	6/9/10 0800		V	V		V	V	V		
K1006356-011	SRC-2010-3-B-Comp	Sediment	6/9/10 1105		V	V		V	V	V		1
K1006356-012	SRC-2010-4-B-Comp	Sediment	6/11/10 0840		V	V		V	V	V		1
K1006356-013	SRC-2010-5-B-Comp	Sediment	6/8/10 1335		<b>V</b>	V		V	V	V		
K1006356-014	SRC-2010-6-B-Comp	Sediment	6/9/10 1530		V	V		V	V	V		1
K1006356-015	SRC-2010-7-B-Comp	Sediment	6/10/10 0900		V	v		V	V	V		1
K1006356-016	SRC-2010-7-1	Sediment	6/10/10 0900	v	V	v	· · · · · · · · · · · · · · · · · · ·	v	v	V	<b>V</b>	1
K1006356-017	SRC-2010-7-2	Sediment	6/10/10 0940	v	V	v	· · · · · · · · · · · · · · · · · · ·	V	v	V	<b>v</b>	
K1006356-018	SRC-2010-7-3	Sediment	6/10/10 1010	V	V	v	· · · · · · · · · · · · · · · · · · ·	V	V	V	v	
K1006356-019	SRC-2010-7-4	Sediment	6/10/10 1035	v	V	v	· · · · · · · · · · · · · · · · · · ·	v	v	V	<b>V</b>	
K1006356-020	SRC-2010-7-5	Sediment	6/10/10 1100	v	V	v	· · · · · · · · · · · · · · · · · · ·	V	v	V	<b>v</b>	
K1006356-021	SRC-2010-8-Z-Comp	Sediment	6/10/10 1155	V	v	V	· · · · · · · · · · · · · · · · · · ·	v	V	V	v	II

### **Service Request Summary**

Folder #: K1006356 Project Chemist: Darren Biles Client Name: Pacific EcoRisk Laboratories Originating Lab: KELSO Project Name: USACE San Rafael Channel Logged By: FADAIR Project Number: 16087 Date Received: 6/18 - 6/23/10 Internal Due Date: 7/6/10 Report To: Jeffrey Cotsifas QAP: LAB QAP Pacific EcoRisk Laboratories Qualifier Set: CAS Standard 2250 Cordelia Road Formset: CAS Standard Fairfield, CA 94534 Merged?: N,Y Phone Number: 707-207-7760 Report to MDL?: Y Cell Number: P.O. Number: Fax Number: 707-207-7916 EDD: BASIC_WQC E-mail: cotsifas@pacificecorisk.com

 $_{\hbox{\scriptsize -}}$  16 oz-Glass Jar WM CLEAR Teflon Liner Unpreserved

16 _ 1 each-Plastic Bag Ziplock Unpreserved

14 _ 2 oz-Glass Jar WM CLEAR Teflon Liner 4-deg C

**Location:** K-Delilah-51, K-PETUNIA-10,

E-WIC02-Box106, E-WIC-02-Box168

**RUSH** 

#### **Folder Comments:**

WATCH HOLD TIMES! Samples received Frozen

#### **Test Comments:**

Group	Test/Method	Samples	Comments
GenChem	PSEP PartSizeCB/PSEP PS	16-20	Grainsize comes out of the 16 oz jar for this sample
Metals	Metals T/6010B	1-8, 16-21	В
Metals	Metals T/6020	9-15	As,Cd,Cr,Cu,Pb,Ni,Zn
Metals	Metals T/6020	1-8, 16-21	As,Cd,Cr,Cu,Pb,Ni,Zn,Ba,Be,Co,Mn,V
Metals	Sb Ag T/6020	1-21	Ag
Semivoa GC	HERB/8151A	1-8, 16-21	Dichlorprop, MCPA and MCPP
Semivoa GCMS	PCDD PCDF/8290	1-8, 21	Analyte list attached
Semivoa GCMS	SVO_LL/8270C	1-8, 16-21	Phenol and Pentachlorophenol only

Prep Run#:113950Prep WorkFlow:OrgExtDioxS(30)Status:Prepped

Team: Semivoa GCMS/AKODUR Prep Method: Method Prep Date/Time: 6/25/10 12:20 PM

#	Lab Code	Client ID	B#	Method /Test	рН	Matrix	Amt. Ext.	Sample Description
1	E1000707-001	1006300-01	.01	8290/PCDD PCDF		Soil	11.932g	brown, wet soil
2	E1000707-002	1006300-02	.01	8290/PCDD PCDF		Soil	12.990g	black wet soil
3	EQ1000320-01	MB		8290/PCDD PCDF		Solid	10.000g	
4	EQ1000320-02	LCS		8290/PCDD PCDF		Solid	10.000g	
5	EQ1000320-03	DLCS		8290/PCDD PCDF		Solid	10.000g	
6	K1006190-015	S04-20-05	.10	8290/PCDD PCDF		Soil	10.888g	brown sand
7	K1006190-016	S04-20-15	.01	8290/PCDD PCDF		Soil	11.646g	brown sand
8	K1006190-017	S04-21-00	.01	8290/PCDD PCDF		Soil	10.386g	brown sand
9	K1006190-018	S04-21-02	.01	8290/PCDD PCDF		Soil	10.966g	brown clay
10	K1006190-019	S04-21-05	.01	8290/PCDD PCDF		Soil	12.027g	brown sand
11	K1006190-020	S04-21-15	.01	8290/PCDD PCDF		Soil	12.861g	brown sand
12	K1006356-001	SRC-2010-1-Comp	.04	8290/PCDD PCDF		Sediment	11.341g	dark brown wet soil
13	K1006356-002	SRC-2010-2-Comp	.01	8290/PCDD PCDF		Sediment	12.223g	dark brown wet soil
14	K1006356-003	SRC-2010-3-Comp	.04	8290/PCDD PCDF		Sediment	13.215g	dark brown wet soil
15	K1006356-004	SRC-2010-4-Comp	.04	8290/PCDD PCDF		Sediment	10.784g	dark brown wet soil

### **Spiking Solutions**

Name: 8290	Matrix Working St	andard		Inventory ID 17186	Logbook Ref: D11-21-5A		Expires On: 04/16/2011
EQ1000320-02	100.00μL	EQ1000320-03	100.00µL				
Name: 8290	Internal Working S	Standard		Inventory ID 19025	Logbook Ref: D11-41-1A		Expires On: 06/24/2011
E1000707-001 K1006190-016 K1006356-002	100.00μL 100.00μL 100.00μL	E1000707-002 K1006190-017 K1006356-003	100.00μL 100.00μL 100.00μL	EQ1000320-01 100.00μ K1006190-018 100.00μ K1006356-004 100.00μ	L K1006190-019 100.00μL	EQ1000320-03 100.00μL K1006190-020 100.00μL	K1006190-015 100.00μL K1006356-001 100.00μL
Name: 8290	/1613B Cleanup Wo	orking Standard		Inventory ID 19026	Logbook Ref: D11-41-2A/B		Expires On: 06/24/2011
E1000707-001 K1006190-016 K1006356-002	100.00μL 100.00μL 100.00μL	E1000707-002 K1006190-017 K1006356-003	100.00μL 100.00μL 100.00μL	EQ1000320-01 100.00μ K1006190-018 100.00μ K1006356-004 100.00μ	L K1006190-019 100.00μL	EQ1000320-03 100.00μL K1006190-020 100.00μL	K1006190-015 100.00μL K1006356-001 100.00μL

Prep WorkFlow: OrgExtDioxS(30) 113950 Prep Run#: Status: Prepped Semivoa GCMS/AKODUR **Prep Date/Time:** 6/25/10 12:20 PM Team: Prep Method: Method **Preparation Materials** Carbon, High Purity C2-32-005 (13986) Ethyl Acetate 99.9% Minimum C2-33-2 (14437) Extraction Thimbles 43 x123 (1577)EtOAc Glass Wool C2-13-005 (7198) Sulfuric Acid Reagent Grade C2-34-6 (15542) Dichloromethane (Methylene C2-34-1 (15540) H2SO4 Chloride) 99.9% MeCl2 Sodium Chloride Reagent Grade C1-104-2 (3306) Sodium Hydroxide Reagent C2-24-002 (9463) Sodium Sulfate Anhydrous C2-36-004 (16226) NaCl Grade NaOH Reagent Grade Na2SO4 Tridecane (n-Tridecane) C2-34-3 (15537) Hexane (n-Hexane) 98.5% C2-36-002 (16224) Nonane (n-Nonane) 99% C2-33-001 (13944) Minimum Silica Gel Reagent Grade Toluene 99.9% Minimum C2-31-005 (13988) C2-36-003 (16225) **Preparation Steps** Acid Clean Final Volume Step: Extraction Step: Step: Silica Gel Clean Step: Started: 6/25/10 12:20 Started: 6/29/10 09:00 Started: 6/29/10 12:15 Started: 6/30/10 06:45 Finished: 6/26/10 08:20 Finished: 6/29/10 10:15 Finished: 6/29/10 15:10 Finished: 6/30/10 10:15 CDONOVAN CDONOVAN CDONOVAN CDONOVAN By: By: By: By: Comments: CD 6/30/2010 Reviewed By: Date: Chain of Custody Relinquished By: Date: Extracts Examined

Yes

No

Date:

Received By:

Prep Run#: 114258 Prep WorkFlow: OrgExtDioxS(30) Status: Prepped

Team: Semivoa GCMS/AKODUR Prep Method: Method Prep Date/Time: 6/28/10 10:55 AM

#	Lab Code	Client ID	B#	Method /Test	рН	Matrix	Amt. Ext.	Sample Description
1	E1000591-016	K6IW01-01	.01	8290/PCDD PCDF		Soil	10.014g	brown soil
2	E1000591-017	K6IW01- 02.5	.01	8290/PCDD PCDF		Soil	10.494g	grey soil
3	E1000591-018	K6IW01- 04.5	.01	8290/PCDD PCDF		Soil	10.714g	orange-brown soil
4	E1000622-001RE	Dx-1 (0-6)	.01	8290/PCDD PCDF		Soil	4.842g	dark brown soil with roots
5	E1000648-001	O8IW01-01	.01	8290/PCDD PCDF		Soil	11.075g	grey soil with rock and debris
6	E1000648-002	O8IW02-02.5	.01	8290/PCDD PCDF		Soil	10.506g	grey soil with rock and debris
7	E1000648-003	O8IW02-04.5	.01	8290/PCDD PCDF		Soil	10.130g	grey clay
8	E1000669-009	Q7IW01-0.5	.01	8290/PCDD PCDF		Soil	10.650g	orange-brown clay
9	E1000669-010	Q7IW01-02.5	.01	8290/PCDD PCDF		Soil	10.095g	grey clay
10	E1000669-011	Q7IW01-04.5	.01	8290/PCDD PCDF		Soil	10.087g	orange-brown clay
11	EQ1000323-01	MB		8290/PCDD PCDF		Solid	10.000g	
12	EQ1000323-02	LCS		8290/PCDD PCDF		Solid	10.000g	
13	EQ1000323-03	DLCS		8290/PCDD PCDF		Solid	10.000g	
14	K1005734-001	95302807-F010724	.06	8290/PCDD PCDF		Paperboard	4.793g	white/brown cardboard strips
15	K1006356-005	SRC-2010-5-Comp	.04	8290/PCDD PCDF		Sediment	11.657g	grey sludge
16	K1006356-006	SRC-2010-6-Comp	.04	8290/PCDD PCDF		Sediment	11.638g	grey sludge
17	K1006356-007	SRC-2010-7-Comp	.04	8290/PCDD PCDF		Sediment	10.387g	grey sludge
18	K1006356-008	SRC-2010-7-Z-Comp	.04	8290/PCDD PCDF		Sediment	10.475g	grey sludge

#### **Spiking Solutions**

Name: 8290	Matrix Working S	Standard	I	nventory ID 171	.86	Logbook Ref:	D11-21-5A			Expires On: 04	/16/2011
EQ1000323-02	100.00µL	EQ1000323-03	100.00μL								
Name: 8290	Internal Working	Standard	I	nventory ID 190	)25	Logbook Ref:	D11-41-1A			Expires On: 06	5/24/2011
E1000591-016 E1000648-003 EQ1000323-03	100.00μL 100.00μL 100.00μL	E1000591-017 E1000669-009 K1005734-001	100.00μL 100.00μL 100.00μL	E1000591-018 E1000669-010 K1006356-005	100.00μL 100.00μL 100.00μL	E1000622-001 E1000669-011 K1006356-006	100.00μL 100.00μL 100.00μL	E1000648-001 EQ1000323-01 K1006356-007	100.00μL 100.00μL 100.00μL	E1000648-002 EQ1000323-02 K1006356-008	100.00μL 100.00μL 100.00μL
Name: 8290	/1613B Cleanup W	Vorking Standard	I	nventory ID 190	)26	Logbook Ref:	D11-41-2A/B			Expires On: 06	5/24/2011
E1000591-016 E1000648-003 EQ1000323-03	100.00μL 100.00μL 100.00μL	E1000591-017 E1000669-009 K1005734-001	100.00μL 100.00μL 100.00μL	E1000591-018 E1000669-010 K1006356-005	100.00μL 100.00μL 100.00μL	E1000622-001 E1000669-011 K1006356-006	100.00μL 100.00μL 100.00μL	E1000648-001 EQ1000323-01 K1006356-007	100.00μL 100.00μL 100.00μL	E1000648-002 EQ1000323-02 K1006356-008	100.00μL 100.00μL 100.00μL

Prep WorkFlow: OrgExtDioxS(30) Prep Run#: 114258 Status: Prepped Semivoa GCMS/AKODUR **Prep Date/Time:** 6/28/10 10:55 AM Team: Prep Method: Method **Preparation Materials** Carbon, High Purity C2-32-005 (13986) Ethyl Acetate 99.9% Minimum C2-33-2 (14437) Extraction Thimbles 43 x123 (1577)EtOAc Glass Wool C2-13-005 (7198) Sulfuric Acid Reagent Grade C2-34-6 (15542) Dichloromethane (Methylene C2-34-1 (15540) H2SO4 Chloride) 99.9% MeCl2 Sodium Chloride Reagent Grade C1-104-2 (3306) Sodium Hydroxide Reagent C2-24-002 (9463) Sodium Sulfate Anhydrous C2-36-004 (16226) NaCl Grade NaOH Reagent Grade Na2SO4 Tridecane (n-Tridecane) C2-34-3 (15537) Hexane (n-Hexane) 98.5% C2-36-002 (16224) Nonane (n-Nonane) 99% C2-33-001 (13944) Minimum Silica Gel Reagent Grade Toluene 99.9% Minimum C2-31-005 (13988) C2-36-003 (16225) **Preparation Steps** Acid Clean Final Volume Step: Extraction Step: Step: Silica Gel Clean Step: Started: 6/28/10 10:55 Started: 6/30/10 09:45 Started: 6/30/10 12:40 Started: 7/1/10 07:30 Finished: 6/29/10 07:50 Finished: 6/30/10 11:00 Finished: 6/30/10 15:00 Finished: 7/1/10 09:25 CDONOVAN CDONOVAN CDONOVAN CDONOVAN By: By: By: By: Comments: 7/1/2010 CD Reviewed By: Date: Chain of Custody Relinquished By: Date: Extracts Examined

Yes

No

Date:

Received By:

Prep Run#: 114850 Prep WorkFlow: OrgExtDioxS(30) Status: Prepped

Team: Semivoa GCMS/AKODUR Prep Method: Method Prep Date/Time: 7/8/10 12:55 PM

#	Lab Code	Client ID	B#	Method /Test	рН	Matrix	Amt. Ext.	Sample Description
1	E1000731-001	10068313-1	.01	8290/PCDD PCDF		Paper	5.217g	white paper squares
2	E1000740-001	10068632-1	.01	8290/PCDD PCDF		Paper	5.142g	white cardboard
3	EQ1000340-01	MB		8290/PCDD PCDF		Solid	10.000g	
4	EQ1000340-02	LCS		8290/PCDD PCDF		Solid	10.000g	
5	EQ1000340-03	DLCS		8290/PCDD PCDF		Solid	10.000g	
6	K1006356-021	SRC-2010-8-Z-Comp	.04	8290/PCDD PCDF		Sediment	13.336g	dark brown wet soil
7	K1006559-001	SF 10	.04	8290/PCDD PCDF		Sediment	11.860g	dark brown wet soil
8	K1006559-002	SF 11	.04	8290/PCDD PCDF		Sediment	11.958g	dark brown wet soil
9	K1006816-001	OUTSIDE-CB2-062910	.03	8290/PCDD PCDF		Soil	10.990g	brown soil
10	K1006816-002	OUTSIDE-CB3-062910	.03	8290/PCDD PCDF		Soil	10.870g	brown soil
11	K1006816-003	OUTSIDE-CB5-062910	.03	8290/PCDD PCDF		Soil	10.318g	brown soil
12	K1006816-004	DALLAS AVE-062910	.03	8290/PCDD PCDF		Soil	13.406g	brown soil

#### **Spiking Solutions**

Name: 8290 Mar	trix Working Standard		Inventory ID 17186	Logbook Ref: D11-21-5A		Expires On: 04/16/2011
EQ1000340-02 10	00.00μL EQ1000	0340-03 100.00μL				
Name: 8290 Inte	ernal Working Standard		Inventory ID 19025	Logbook Ref: D11-41-1A		Expires On: 06/24/2011
	00.00μL E10007 00.00μL K10065	100.00μΕ	EQ1000340-01 100.00μL K1006816-001 100.00μL	EQ1000340-02 100.00μL K1006816-002 100.00μL	EQ1000340-03 100.00μL K1006816-003 100.00μL	K1006356-021 100.00μL K1006816-004 100.00μL
Name: 8290/161	3B Cleanup Working Star	ndard	Inventory ID 19198	Logbook Ref: D11-42-2A/B		Expires On: 07/01/2011
	00.00μL E10007 00.00μL K10065	100.00μΕ	EQ1000340-01 100.00μL K1006816-001 100.00μL	EQ1000340-02 100.00μL K1006816-002 100.00μL	EQ1000340-03 100.00μL K1006816-003 100.00μL	K1006356-021 100.00μL K1006816-004 100.00μL
<b>Preparation Mater</b>	ials					
Carbon, High Purity	C2-40-1 (1911	9)	Ethyl Acetate 99.9% Minimum EtOAc	C2-41-3 (19127)	Extraction Thimbles 43 x123 mm	(1577)
Glass Wool	C2-37-2 (1913	32)	Sulfuric Acid Reagent Grade H2SO4	C2-40-2 (19147)	Dichloromethane (Methylene Chloride) 99.9% MeCl2	C2-41-2 (19145)
Sodium Chloride Reagen NaCl	tt Grade C2-38-1 (1913	37)	Sodium Hydroxide Reagent Grade NaOH	C2-40-5 (19149)	Sodium Sulfate Anhydrous Reagent Grade Na2SO4	C2-36-004 (16226)
Tridecane (n-Tridecane)	C2-40-3 (1913	35)	Hexane (n-Hexane) 98.5% Minimum	C2-40-6 (19125)	Nonane (n-Nonane) 99%	C2-33-001 (13944)
Silica Gel Reagent Grade	C2-38-6 (1914	10)	Toluene 99.9% Minimum	C2-41-1 (19142)		

Prep Run#: 114850 Prep WorkFlow: OrgExtDioxS(30) Status: Prepped

Team: Semivoa GCMS/AKODUR Prep Method: Method Prep Date/Time: 7/8/10 12:55 PM

**Preparation Steps** 

Step:	Extraction	Step:	Acid Clean	Step:	Silica Gel Clean	Step:	Final Volume
Started:	7/8/10 12:55	Started:	7/12/10 09:58	Started:	7/12/10 12:00	Started:	7/13/10 06:30
Finished:	7/9/10 07:10	Finished:	7/12/10 11:21	Finished:	7/12/10 14:00	Finished:	7/13/10 10:00
By:	CDONOVAN	By:	CDONOVAN	By:	CDONOVAN	By:	CDONOVAN



July 20, 2010

Analytical Report for Service Request No: K1006477

Jeffrey Cotsifas Pacific EcoRisk Laboratories 2250 Cordelia Road Fairfield, CA 94534

**RE:** ACOE San Rafael Channel/16087

Dear Jeffrey:

Enclosed is the revised report for the rush samples submitted to our laboratory on June 23, 2010. For your reference, these analyses have been assigned our service request number K1006477.

Report is resubmitted to include results for Pesticides by EPA Method 8081A.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Divvela Project Chemist

PD/cb

Page 1 of 6

REVISED

5:36 pm, Jul 20, 2010

#### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

#### Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value that was detected outside the quantitation range.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

  DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to bistorical data.
- D The reported result is from a dilution:
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

# Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-







**Case Narrative** 

Client: **Project:**  Pacific EcoRisk Laboratories ACOE San Rafael Channel

Service Request No.:

K1006477 06/23/10

Sample Matrix:

Sediment

Date Received:

#### CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

#### Sample Receipt

One sediment sample was received for analysis at Columbia Analytical Services on 06/23/10. The sample was received in good condition and consistent with the accompanying chain of custody form. The sample was stored in a refrigerator at 4°C upon receipt at the laboratory.

#### **General Chemistry Parameters**

No anomalies associated with the analysis of these samples were observed.

#### **Total Metals**

#### **Matrix Spike Recovery Exceptions:**

The control criteria for matrix spike recovery of Lead for sample SRC-2010-8-B-Comp were not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

No other anomalies associated with the analysis of these samples were observed.

#### **Organotin Compounds**

#### **Calibration Verification Exceptions:**

The analysis of Butyltins requires the use of dual column confirmation. When the Continuing Calibration Verification (CCV) criterion is met for both columns, the higher of the two sample results is generally reported. The primary evaluation criteria were not met on the confirmation column for Di-n-butyltin. The results were reported from the column with an acceptable CCV. The data quality was not affected. No further corrective action was necessary.

#### **Elevated Detection Limits:**

Sample SRC-2010-8-B-Comp required dilution due to the presence of elevated levels of target analyte. The reporting limits were adjusted to reflect the dilution.

#### Sample Confirmation Notes:

The confirmation comparison criteria of 40% difference for Tetra-n-butyltin was exceeded in sample SRC-2010-8-B-Comp. The higher of the two values was reported because no evidence of a matrix interference was observed. Date 07/2010

Approved by

REVISED

No other anomalies associated with the analysis of these samples were observed.

#### Organochlorine Pesticides by EPA Method 8081A

#### **Sample Confirmation Notes:**

The confirmation comparison criteria of 40% difference for at least one analyte was exceeded in sample SRC-2010-8-B-Comp. The higher of the two values was reported when no evidence of a matrix interference was observed, or the lower of the two values was reported when there was an apparent interference on the alternate column that produced the higher value.

#### **Elevated Detection Limits:**

The detection limit was elevated for a few analytes in sample SRC-2010-8-B-Comp. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compounds at the normal limit. The results were flagged to indicate the matrix interference.

Sample SRC-2010-8-B-Comp required dilution due to the presence of elevated levels of target analyte. The reporting limits were adjusted to reflect the dilution.

#### PCB Aroclors by EPA Method 8082

#### Sample Notes and Discussion:

Three Aroclors were identified in sample SRC-2010-8-B-Comp: Aroclor 1248, Aroclor 1254, and Aroclor 1260. When mixtures of PCB Aroclors are present in a sample, correct identification and quantitative analysis of the individual Aroclors can be subjective. In particular, when mixtures are present, differentiating Aroclor 1242 from Aroclor 1248 can be difficult.

A review of the sample chromatograms indicated the presence of PCB patterns that spanned the entire elution range from Aroclor 1242 through the end of Aroclor 1260. Based on individual PCB peaks in the early portion of the chromatogram, Aroclor 1248 was identified and quantitated. Aroclor 1260 was identified based on the presence of late eluting PCB peaks in the chromatogram. The remainder of the PCB pattern was identified as Aroclor 1254 because PCB peak height in the middle of the chromatogram was larger than could be attributed to either Aroclor Aroclor 1248 or Aroclor 1260.

When Aroclor mixtures are present in a sample, care is taken to minimize the possibility of double-counting PCBs. Analytical peaks are selected based on the best resolution possible for that particular sample. However, when a mixture of Aroclors 1248, 1254, and 1260 are present in a sample, the potential exists for a high bias from contribution of one Aroclor to another due to common peaks or peaks that cannot be completely resolved.

No other anomalies associated with the analysis of these samples were observed.

#### Polynuclear Aromatic Hydrocarbons by EPA Method 8270C

No other anomalies associated with the analysis of these samples were observed.

Date_OHW D

Approved by_

**Chain of Custody** 



# CAS CHAIN-OF-CUSTODY RECORD

# 005

	Client Name:	Pacific Ecol	Risk							RE	QUES	TED A	NALY	SIS		 
	Client Address:	2250 Corde Fairfield, CA														
	Sampled By:	Mike McElro					-									
	Phone:	(707) 207-7											:			
	FAX:	(707) 207-7	916				ᅴ 붙									
	Project Manager:	Jeff Cotsifa	S				of Work	Grain Size Analyis								
	Project Name:	ACOE (San	Rafael Cha	nnel)			o e	Ans								
	PO Number:	16087					Scope	ize								
		Sample	Sample	Sample		ontainer		i.E								
	Client Sample ID	Date	Time	Matrix*	Number	Туре	. See	Gra								
1	SRC-2010-8-B-Comp	6/10/10	11:55	Sed	2	8oz glass	T x							<u> </u>	<u> </u>	
2	SRC-2010-8-B-Comp	6/10/10	11:55	Sed	1	1 poly bag		х								
3																
4 5																 
6			***************************************									<b></b>	<del>                                     </del>			
7					+											
8																
9																
10																
	Correct Containers:	Yes	No					RE	LIQUI	NSHE	D BY		_			
	Sample Temperature:	Ambient	Cold	Warm	Signature	20	2_			Signa	ture:		*			
	Sample Preservative: Turnaround Time:	Yes STD	No Specify:							Oigila						 ·
	Comments:				Print:	M. M.E	har			Print:						
	* Analyze for all of the constitue SAP. Analyte list to follow via em	nts in Table nail.	1 of the AC	OE Master		ion; 2 12				Orgar	nizatio	n:				
	•				DATE: 6	122/10	TIME	: 140	70	DATE	:				TIME	
							$\bigcap$	l	RECE	IVED I	BY					
	Signature: 04/00					! Utwl	y			Signa	ture:					
		Print:								Print:						
					Organizat	ion; CAS			2	Orgar	nizatio	n:				
					DATE: 🕡	17×10	TIME: DATE:					TIME				

# Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

PC-Prudeo 12
--------------

Page_1_of____

Cli	Tient / Project: PUL FEDRISM				Ser	vice Request I	(10 <u>0</u>	0417	***************************************	
Re	eceived: 6 (2) Ope	ened: 6/24	3/10_		Ву:		-			
1.	Samples were received via? Mail	Fed Ex	UPS	DF	II.	PBX Court	er H	and Delivered		
2.		Cooler	Box		elope	Other			NA	1
3.		NA Y	(N)		-	ow many and w	here?			
	If present, were custody seals intact?	Y	Й		If pr	esent, were they	signed a	nd dated?	Y	N
		ometer	Cooler/0	COC						
	Temp °C Blank °C I	0 10 9	D	N	A	7087849	Trackii Q7U9	ng Number 201	NA	Filed
	1.0 5.4 33	13				79361017	557	8 F		
-					-	e e e e e e e e e e e e e e e e e e e				
7.	Packing material used. <i>Inserts Ba</i>	ggies Bubble	a Wran	Gel Pa	e Chr.	Wet Ice Sleev	as Oth	Or		L
7. 8.		and the same of th	THE REAL PROPERTY AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PE	Geili		WELLE SIEE	es Oin		IA (X	<u></u> и
9.		. ,	-	in the t	able b	elow.			IA A	) N
10.		•							IA Y	Уи
11.	Did all sample labels and tags agree v	vith custody par	pers? Ind	dicate n	najor a	liscrepancies in	the table	on page 2. N	IA Y	) N
12.	2. Were appropriate bottles/containers a	nd volumes reco	eived for	the tes	ts indic	cated?		N	IA Y	N
13.	Were the pH-preserved bottles (see SA	10 GEN SOP) re	ceived at	t the ap	propria	ate pH? Indicate	e in the to	able below 🤇	A Y	Ν
	Were VOA vials received without he	adspace? Indica	ate in the	table b	elow.			Ŕ	A Y	N
15.	6. Was C12/Res negative?		· · · · · · · · · · · · · · · · · · ·	o, , o toto tri i i i		· · · · · · · · · · · · · · · · · · ·		0	<b>A</b> Y	N
	Sample ID on Bottle	Sa	mple ID c	n cor				Identified by:		
	Sample in on bottle	Ja	mpie iD c	nr 606				identified by:		222127222222222
					·····					
	Bott	le Count Out	of Head-				Volume	Reagent Lot		
	Sample ID Bot	tle Type Tem	np space	Broke	рН	Reagent	added	Number	Initials	Time
Not	otes, Discrepancies, & Resolutions:									
		···	70770							

**Total Solids** 

Analytical Results

Client: Pacific EcoRisk Laboratories Service Request: K1006477

**Project**: ACOE San Rafael Chan/16087

Sample Matrix: Sediment

**Total Solids** 

Prep Method: NONE Units: PERCENT

Analysis Method: 160.3M Basis: Wet

Test Notes:

Sample Name Lab Code Collected Received Analyzed Result Notes

SRC-2010-8-B-Comp K1006477-001 06/10/2010 06/23/2010 06/26/2010 51.0

 $\begin{array}{lll} Printed: & 06/29/2010 & 05:06 \\ u:\Stealth\Crystal.rpt\Solids.rpt \\ \end{array}$ 

SuperSet Reference: W1006191

Page

I of I

Superset Reference: W100

12

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE San Rafael Chan/16087

Sample Matrix:

Sediment

Service Request: K1006477 **Date Collected**: 06/10/2010

**Date Received:** 06/23/2010 **Date Analyzed:** 06/26/2010

**Duplicate Sample Summary Total Solids** 

Prep Method:

**NONE** 

Analysis Method:

160.3M

Units: PERCENT

Basis: Wet

Test Notes:

Relative Duplicate Sample Percent Sample Result Difference Result Result Notes Average Lab Code Sample Name 50.3 50.7 1 SRC-2010-8-B-Comp K1006477-001 51.0

Printed: 06/29/2010 05:06  $u:\Stealth\Crystal.rpt\Solids.rpt$ 

SuperSet Reference: W1006191

Page

1 of 1

**General Chemistry Parameters** 

Analytical Report

Client:

Pacific EcoRisk Laboratories

Project Name:

ACOE San Rafael Channel

Project Number: 16087

Sample Matrix: SEDIMENT Service Request: K1006477

**Date Collected:** 06/10/10

Date Received: 06/23/10

Carbon, Total Organic (TOC)

Prep Method:

Method

Units: Percent

Analysis Method: Test Notes:

ASTM D4129-82M

Basis: Dry

Sample Name	Lab Code	MRL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Result	Result Notes
SRC-2010-8-B-Comp Method Blank	K1006477-001 K1006477-MB	0.050 0.050	0.020 0.020	1	6/24/2010 NA	07/10/10 07/10/10	4.33 ND	

QA/QC Report

Client: Pacific EcoRisk Laboratories
Project Name: ACOE San Rafael Channel

Project Number: 16087

Sample Matrix: SEDIMENT

Service Request: K1006477

**Date Collected:** 6/10/2010 **Date Received:** 6/23/2010

**Date Prepared:** 06/24/10 **Date Analyzed:** 07/10/10

Duplicate Summary Inorganic Parameters

Sample Name : Lab Code : SRC-2010-8-B-Comp

K1006477-001DUP

Test Notes:

Units: Percent

Basis: Dry

					Duplicate		Relative	
	Prep	Analysis		Sample	Sample		Percent	Result
Analyte	Method	Method	MRL	Result	Result	Average	Difference	Notes
Carbon, Total Organic (TOC)	Method	ASTM D4129-82M	0.050	4.33	3.56	3.95	19	

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project Name:

ACOE San Rafael Channel

Project Number: 16087 Sample Matrix:

**SEDIMENT** 

Service Request: K1006477

**Date Collected:** 6/10/2010 **Date Received:** 6/23/2010

**Date Prepared:** 06/24/10 Date Analyzed: 07/10/10

Matrix Spike/Duplicate Matrix Spike Summary

Sample Name: Lab Code:

SRC-2010-8-B-Comp

K1006477-001MS

K1006477-001DMS

Units: Percent

Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	Rec	oike overy DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Carbon, Total Organic (TOC)	Method	ASTM D4129-82M	0.050	12.0	10.8	4.33	14.8	15.5	87	103	77-155	17	

Printed: 7/14/2010 12:02:22PM

17

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project Name:

ACOE San Rafael Channel

**Project Number:** Sample Matrix:

16087 SOIL

Service Request: K1006477

Date Collected: NA

Date Received: NA Date Prepared: NA

Date Analyzed: 07/10/10

Laboratory Control Sample Summary Inorganic Parameters

Sample Name:

Lab Control Sample

Lab Code:

K1006477-LCS

Units: Percent

Basis: Dry

Test Notes:

						CAS	
						Percent	
						Recovery	
Analyte	Prep Method	Analysis Method	Two Value	Dogult	Percent	Acceptance Limits	Result Notes
Analyte	Method	Method	True Value	Resuit	Recovery	Limits	Notes
Carbon, Total Organic (TOC)	Method	ASTM D4129-82M	0.550	0.476	87	82-119	

Printed: 7/14/2010 12:02:22PM

QA/QC Report

Client: Pacific EcoRisk Laboratories
Project: ACOE San Rafael Channel

Service Request: K1006477

Date Collected: NA
Date Received: NA

Carbon, Total Organic (TOC) ASTM D4129-82M Units: Percent

# **CONTINUING CALIBRATION VERIFICATION (CCV)**

	Date Analyzed	True Value	Measured Value	Percent Recovery
CCV1 Result	7/10/2010	20.0	19.1	96
CCV2 Result	7/10/2010	20.0	19.6	98
CCV3 Result	7/10/2010	20.0	19.7	99

Printed: 7/14/2010 12:02:41PM

QA/QC Report

Client: Pacific EcoRisk Laboratories Service Request: K1006477

Project: ACOE San Rafael Channel

Date Collected: NA

Date Received: NA

Carbon, Total Organic (TOC) ASTM D4129-82M Units: Percent

# **CONTINUING CALIBRATION BLANK (CCB)**

	Date		Blank
	Analyzed	MRL	Value
CCB1 Result	7/10/2010	0.050	ND
CCB2 Result	7/10/2010	0.050	ND
CCB3 Result	7/10/2010	0.050	ND

Printed: 7/14/2010 12:02:41PM

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix: Sediment

**Service Request:** 

K1006477

**Date Collected: Date Received:**  6/10/2010 6/23/2010

Date Analyzed:

7/1/2010

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-8-B-Comp

Lab Code:

K1006477-001

Sand Fraction: Dry Weight (Grams)

18,9066

Sand Fraction: Weight Recovered (Grams)

18.5533

Sand Fraction: Percent Recovery

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	4.2857	11.8
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	1.4921	4.12
Sand, Coarse (0.50	0 to 1 Ø	0.7409	2.05
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	2.2051	6.09
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	5.2460	14.5
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	2.1797	6.02
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	10.3400	28.6
Clay (< 0.0039 mm)	> 8 Ø	6.3050	17.4
	Total	32.7945	90.6

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE (San Rafael Channel)

Sample Matrix: Sediment

**Service Request:** 

K1006477

**Date Collected:** Date Received: NA NA

Date Analyzed:

7/1/2010

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: Batch QC

Lab Code:

K1006639-001

Sand Fraction: Dry Weight (Grams) 15.3109 Sand Fraction: Weight Recovered (Grams) 14.7400

Sand Fraction: Percent Recovery

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	1.0266	2.91
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	0.7347	2.08
Sand, Coarse (0.50	0 to 1 Ø	1.6235	4.60
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	1.9505	5.53
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	1.0719	3.04
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	3.0650	8.68
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	17.4750	49.5
Clay (< 0.0039 mm)	> 8 Ø	7.4100	21.0
	Total	34.3572	97.3

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

**Project:** 

ACOE (San Rafael Channel)

Sample Matrix: Sediment

Service Request:

K1006477

**Date Collected:** 

NA

Date Received: Date Analyzed:

NA 7/1/2010

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: Batch QC

Lab Code:

K1006639-001DUP

Sand Fraction: Dry Weight (Grams)

13.1066

Sand Fraction: Weight Recovered (Grams)

12.7392

Sand Fraction: Percent Recovery

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	2.1883	6.95
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	1.0291	3.27
Sand, Coarse (0.50	0 to 1 Ø	2.4145	7.67
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	1.6424	5.22
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	0.8600	2.73
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	2.0133	6.40
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	13.6350	43.3
Clay (< 0.0039 mm)	> 8 Ø	7.6500	24.3
	Total	31.4326	100

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE (San Rafael Channel)

Sample Matrix: Sediment

Service Request: K1006477

**Date Collected:** 

NA

**Date Received:** Date Analyzed:

NA 7/1/2010

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name:

Batch QC

Lab Code:

K1006639-001TRP

Sand Fraction: Dry Weight (Grams)

14.6145

Sand Fraction: Weight Recovered (Grams)

14.2727

Sand Fraction: Percent Recovery

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	0.4513	1.27
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	1.3773	3.88
Sand, Coarse (0.50	0 to 1 Ø	2.2650	6.38
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	2.4836	7.00
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	1.7124	4.82
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	3.2969	9.29
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	16.6900	47.0
Clay (< 0.0039 mm)	> 8 Ø	8.3550	23.5
	Total	36.6315	103

# Columbia Analytical Services

# - Cover Page - INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Project Name:

ACOE San Rafael Channel

Project No.:

16087

Service Request: K1006477

Sample Name:	Lab Code:
SRC-2010-8-B-Comp	K1006477-001
SRC-2010-8-B-CompD	K1006477-001D
SRC-2010-8-B-CompS	K1006477-001S
Method Blank	K1006477-MB
Batch QC1D	K1006480-001D
Batch QC1S	K1006480-001S
Batch QC2D	K1006518-001D
Batch QC2S	K1006518-001S

Cor	mm	en	ts:
-----	----	----	-----

Approved By:	CA CA	Date:	7/14/10	

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006477

Project No.:

16087

Date Collected: 06/10/10

Date Received: 06/23/10

Project Name: ACOE San Rafael Channel

Matrix:

SEDIMENT

Units: mg/Kg

Basis: DRY

Sample Name:

SRC-2010-8-B-Comp

Lab Code:

K1006477-001

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.51	0.05	5.0	07/08/10	07/12/10	11.4		
Cadmium	6020	0.020	0.004	5.0	07/08/10	07/12/10	1.190		
Chromium	6020	0.20	0.02	5.0	07/08/10	07/12/10	93.6		
Copper	6010B	2.0	0.6	2.0	07/08/10	07/09/10	117		
Lead	6020	0.051	0.006	5.0	07/08/10	07/12/10	427		
Mercury	7471A	0.018	0.002	1.0	06/30/10	07/02/10	0.845		
Nickel	6020	0.20	0.02	5.0	07/08/10	07/12/10	103		
Selenium	7742	0.10	0.03	2.0	07/08/10	07/09/10	0.34		
Silver	6020	0.020	0.008	5.0	07/08/10	07/13/10	0.710		
Zinc	6020	0.5	0.2	5.0	07/08/10	07/12/10	306		

% Solids:

51.0

Comments:

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006477

Project No.:

16087

Date Collected:

Project Name: ACOE San Rafael Channel

Date Received:

Matrix:

SEDIMENT

Units: mg/Kg

Basis: DRY

Sample Name:

Method Blank

Lab Code:

K1006477-MB

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.50	0.05	5.0	07/08/10	07/12/10	0.05	บ	
Cadmium	6020	0.020	0.004	5.0	07/08/10	07/12/10	0.004	บ	
Chromium	6020	0.20	0.02	5.0	07/08/10	07/12/10	0.08	J	
Copper	6010B	2.0	0.6	2.0	07/08/10	07/09/10	0.6	ט	
Lead	6020	0.050	0.006	5.0	07/08/10	07/12/10	0.030	J	
Mercury	7471A	0.020	0.002	1.0	06/30/10	07/02/10	0.002	บ	
Nickel	6020	0.20	0.02	5.0	07/08/10	07/12/10	0.02	U	
Selenium	7742	0.10	0.03	2.0	07/08/10	07/09/10	0.03	U	
Silver	6020	0.020	0.008	5.0	07/08/10	07/13/10	0.008	Ū	
Zinc	6020	0.5	0.2	5.0	07/08/10	07/12/10	0.2	บ	

% Solids:

100.0

Comments:

#### Metals - 5A -

#### SPIKE SAMPLE RECOVERY

Client:

Pacific EcoRisk Laboratories

Service Request: K1006477

Project No.:

16087

Units: MG/KG

Project Name: ACOE San Rafael Channel

Basis: DRY

Matrix:

SEDIMENT

% Solids:

51.0

Sample Name: SRC-2010-8-B-CompS

Lab Code: K1006477-001S

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	%R	Q	Method
Arsenic	57 - 133	114	11.4	101.60	101.0		6020
Cadmium	68 - 137	12.3	1.190	10.16	109.4	ĺ	6020
Chromium	34 - 175	136	93.6	40.64	104.3		6020
Lead		567	427	101.60	137.8		6020
Nickel	59 - 132	212	103	101.60	107.3	İ	6020
Selenium	57 - 134	2.30	0.34	2.05	95.6		7742
Zinc	37 - 162	450	306	101.60	141.7		6020

- 5A -

#### SPIKE SAMPLE RECOVERY

Client:

Pacific EcoRisk Laboratories

Service Request: K1006477

Project No.: 16087

Units: MG/KG

Project Name: ACOE San Rafael Channel

Basis: DRY

Matrix:

SEDIMENT

% Solids:

54.4

Sample Name: Batch QC1S

Lab Code: K1006480-001S

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	%R	Q	Method
Copper	24 - 173	106	52.7	50.50	105.5		6010B
Silver	62 - 131	10.6	0.152	10.10	103.4		6020

- 5A -

#### SPIKE SAMPLE RECOVERY

Client:

Pacific EcoRisk Laboratories

Service Request: K1006477

Project No.: 16087

Units:

MG/KG

Project Name: ACOE San Rafael Channel

Basis: DRY

Matrix:

SEDIMENT

% Solids:

56.6

Sample Name:

Batch QC2S

Lab Code: K1006518-001S

Analyte	Control Limit %R	Spike Result ^C	Sample Result ^C	Spike Added	%R (	) Method
Mercury	60 - 135	0.474	0.046	0.49	87.3	7471A

- 6 -

#### **DUPLICATES**

Client:

Pacific EcoRisk Laboratories

Service Request: K1006477

Project No.:

16087

Units:

MG/KG

Project Name: ACOE San Rafael Channel

Basis: DRY

Matrix:

SEDIMENT

% Solids:

51.0

Sample Name:

SRC-2010-8-B-CompD

Lab Code:

K1006477-001D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic	20	11.4		11.3		0.9		6020
Cadmium	20	1.190		1.230		3.3		6020
Chromium	20	93.6		90.1		3.8		6020
Lead	20	427		427		0.0		6020
Nickel	20	103		98.1		4.9		6020
Selenium		0.34		0.33		3.0		7742
Zinc	20	306		309		1.0		6020

- 6 -

#### **DUPLICATES**

Client:

Pacific EcoRisk Laboratories

Service Request: K1006477

Project No.:

16087

Units: MG/KG

Project Name: ACOE San Rafael Channel

Basis: DRY

Matrix:

SEDIMENT

% Solids:

54.4

Sample Name:

Batch QC1D

Lab Code:

K1006480-001D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Copper	30	52.7		63.0		17.8		6010B
Silver	20	0.152		0.152		0.0		6020

# Columbia Analytical Services

#### Metals

- 6 -

#### **DUPLICATES**

Client:

Pacific EcoRisk Laboratories

Service Request: K1006477

Project No.:

16087

Units:

1000

Project Name: ACOE San Rafael Channel

Basis: DRY

Matrix:

SEDIMENT

% Solids:

56.6

MG/KG

Sample Name:

Batch QC2D

Lab Code:

K1006518-001D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Mercury		0.046	5	0.046		0.0		7471A

- 7 -

#### LABORATORY CONTROL SAMPLE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006477

Project No.: 16087

Project Name: ACOE San Rafael Channel

Aqueous LCS Source:

Solid LCS Source: ERA D065540

Analyte	Aqueous: ug/L			Solid: mg/kg					
	True	Found	%R	True	Found C	Limits	₹R		
Arsenic		1		88.3	92.3	78	122 104.5		
Cadmium				91	100	81	119 109.9		
Chromium				144	152	80	119 105.6		
Copper				237	255	83	116 107.6		
Lead				104	121	79	121 116.3		
Mercury				6.8	6.580	71	128 96.8		
Nickel	1			200	223	81	118 111.5		
Selenium				192	191	80	120 99.5		
Silver				76.4	83.5	66	134 109.3		
Zinc				292	286	73	121 97.9		

Butyltins

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006477

**Date Collected:** 06/10/2010

**Date Received:** 06/23/2010

# **Butyltins** (as cation)

Sample Name:

SRC-2010-8-B-Comp

Lab Code:

K1006477-001

Units: ug/Kg Basis: Dry

**Extraction Method:** 

SOC-OSWT

Level: Low

**Analysis Method:** 

Krone

				Dilution	Date	Date	Extraction		
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note	
Tetra-n-butyltin	5.9 P	2.0	0.84	1	06/24/10	07/14/10	KWG1006888	· ·	
Tri-n-butyltin Cation	140	2.0	0.82	1	06/24/10	07/14/10	KWG1006888		
Di-n-butyltin Cation	<b>280</b> D	9.6	1.9	5	06/24/10	07/14/10	KWG1006888		
n-Butyltin Cation	86	2.0	0.50	1	06/24/10	07/14/10	KWG1006888	***************************************	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	95	18-95	07/14/10	Acceptable	

Comments:

Printed: 07/15/2010 16:59:57  $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w: \label{lem:limit} w: \label{lem:limit} We w: \label{lem$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006477

Date Collected: NA

Date Received: NA

**Butyltins** (as cation)

Sample Name:

Method Blank

Lab Code:

KWG1006888-4

Units: ug/Kg Basis: Dry

**Extraction Method:** 

SOC-OSWT

Level: Low

**Analysis Method:** 

Krone

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Tetra-n-butyltin	ND U	0.97	0.44	I	06/24/10	07/14/10	KWG1006888	<del></del>
Tri-n-butyltin Cation	ND U	0.97	0.43	1	06/24/10	07/14/10	KWG1006888	
Di-n-butyltin Cation	ND U	0.97	0.19	1	06/24/10	07/14/10	KWG1006888	
n-Butyltin Cation	ND U	0.97	0.26	1	06/24/10	07/14/10	KWG1006888	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	89	18-95	07/14/10	Acceptable	

Comments:

Printed: 07/15/2010 17:00:00  $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} Im \label{lem:limit} Im \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{$ 

Merged

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006477

**Surrogate Recovery Summary Butyltins** (as cation)

**Extraction Method:** 

**SOC-OSWT** 

**Analysis Method:** 

Krone

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>
SRC-2010-8-B-Comp	K1006477-001	95 D
Method Blank	KWG1006888-4	89
Batch QC	K1006486-001	60
Batch QCMS	KWG1006888-1	95
Batch QCDMS	KWG1006888-2	70
Lab Control Sample	KWG1006888-3	76

Surrogate Recovery Control Limits (%)

Surl = Tri-n-propyltin

18-95

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/15/2010 17:00:03

 $u:\Stealth\Crystal.rpt\Form2.rpt$ 

Form 2A - Organic 39

Page RR116770

1 of 1

SuperSet Reference:

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006477

Date Extracted: 06/24/2010

**Date Analyzed:** 07/14/2010

# Matrix Spike/Duplicate Matrix Spike Summary Butyltins (as cation)

Sample Name:

Batch QC

Lab Code:

K1006486-001

**Extraction Method:** 

SOC-OSWT

Analysis Method:

Krone

Units: ug/Kg
Basis: Dry

Level: Low

Extraction Lot: KWG1006888

Batch QCMS KWG1006888-1 Batch QCDMS KWG1006888-2

**Duplicate Matrix Spike** Matrix Spike Sample %Rec **RPD** Result **Analyte Name** %Rec Limits **RPD** Limit Result **Expected** Result **Expected** %Rec NDTetra-n-butyltin 57.0 56.7 101 44.6 56.4 79 10-120 24 40 Tri-n-butyltin Cation 3.3 44.9 50.3 83 34.3 50.1 62 27 10-118 40 Di-n-butyltin Cation 3.6 40.6 43.5 85 29.4 43.3 60 10-145 32 40 n-Butyltin Cation 9.4 52.8 35.4 123 47.6 35.2 109 10-126 10 40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/15/2010 17:00:06 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

Page SuperSet Reference: RR116770

1 of 1

40

QA/QC Report

Client:

Pacific EcoRisk Laboratories

**Project:** 

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006477

**Date Extracted:** 06/24/2010

**Date Analyzed:** 07/14/2010

Lab Control Spike Summary Butyltins (as cation)

**Extraction Method:** 

**SOC-OSWT** 

**Analysis Method:** 

Krone

atymins (as canon)

Units: ug/Kg
Basis: Dry

Level: Low

Extraction Lot: KWG1006888

Lab Control Sample KWG1006888-3

Lab Control Spike %Rec Limits **Analyte Name** %Rec Result Expected Tetra-n-butyltin 19.1 25.0 76 30-110 Tri-n-butyltin Cation 20.1 22.2 91 25-101 Di-n-butyltin Cation 12.6 19.2 66 35-108 n-Butyltin Cation 18.5 15.6 119 20-123

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 $\begin{array}{lll} Printed: & 07/15/2010 & 17:00:09 \\ u:\Stealth\Crystal.rpt\Form3LCS.rpt \end{array}$ 

RR116770

SuperSet Reference:

**Polychlorinated Biphenyls** 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006477

**Date Collected:** 06/10/2010

**Date Received:** 06/23/2010

# Polychlorinated Biphenyls (PCBs)

Sample Name:

SRC-2010-8-B-Comp

Lab Code:

K1006477-001

EPA 3541

**Extraction Method:** Analysis Method:

8082

Units: ug/Kg Basis: Dry

Level: Low

A walteta Nama	Popult O	MRL	MDL	Dilution	Date	Date	Extraction	Note
Analyte Name	Result Q	MINL	MIDL	Factor	Extracted	Analyzed	Lot	14016
Aroclor 1016	ND U	9.8	2.1	I	06/24/10	07/08/10	KWG1006548	
Aroclor 1221	ND U	20	2.1	1	06/24/10	07/08/10	KWG1006548	
Aroclor 1232	ND U	9.8	2.1	1	06/24/10	07/08/10	KWG1006548	
Aroclor 1242	ND U	9.8	2.1	1	06/24/10	07/08/10	KWG1006548	
Aroclor 1248	160	9.8	2.1	1	06/24/10	07/08/10	KWG1006548	
Aroclor 1254	200	9.8	2.1	I	06/24/10	07/08/10	KWG1006548	
Aroclor 1260	210	9.8	2.1	1	06/24/10	07/08/10	KWG1006548	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	83	35-133	07/08/10	Acceptable

Comments:

Printed: 07/12/2010 08:27:18 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006477

Date Collected: NA Date Received: NA

# Polychlorinated Biphenyls (PCBs)

Sample Name:

Method Blank

Units: ug/Kg Basis: Dry

Lab Code:

KWG1006548-4

Extraction Method: EPA 3541

Level: Low

_	Atlat	·I	,,,,	TATCTH	,u.	$L_1$	11	_
4	nalys	is	M	ethod	:	808	82	

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	5.0	2.1	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1221	ND U	10	2.1	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1232	ND U	5.0	2.1	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1242	ND U	5.0	2.1	1	06/24/10	07/07/10	KWG1006548	//\)
Aroclor 1248	ND U	5.0	2. I	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1254	ND U	5.0	2.1	1	06/24/10	07/07/10	KWG1006548	
Aroclor 1260	ND U	5.0	2.1	1	06/24/10	07/07/10	KWG1006548	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	87	35-133	07/07/10	Acceptable

Comments:

RR116482

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006477

Surrogate Recovery Summary Polychlorinated Biphenyls (PCBs)

Extraction Method: EPA 3541

Analysis Method:

8082

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1
Lab Control Sample	KWG1006548-3	88
SRC-2010-8-B-Comp	K1006477-001	83
Method Blank	KWG1006548-4	87
Batch QC	K1006486-001	78
Batch QCMS	KWG1006548-1	74
Batch QCDMS	KWG1006548-2	68

Surrogate Recovery Control Limits (%)

Surl = Decachlorobiphenyl

35-133

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/12/2010 08:27:27

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic 45

Page 1 of 1

SuperSet Reference: RR116482

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006477

**Date Extracted:** 06/24/2010 **Date Analyzed:** 07/08/2010

Matrix Spike/Duplicate Matrix Spike Summary Polychlorinated Biphenyls (PCBs)

Sample Name:

Batch QC

Lab Code:

K1006486-001

**Extraction Method:** Analysis Method:

EPA 3541

8082

Units: ug/Kg

Basis: Dry

Level: Low Extraction Lot: KWG1006548

Batch QCMS

KWG1006548-1

Batch QCDMS KWG1006548-2

Matrix Spike **Duplicate Matrix Spike** %Rec **RPD** Sample Limits **RPD** Limit Result Expected %Rec %Rec Analyte Name Result Expected Result 144 27-174 40 162 227 71 227 63 12 Aroclor 1016 ND Aroclor 1260 3.7 179 227 77 157 227 67 20-185 13 40

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/12/2010 08:27:30

Form 3A - Organic

46

Page RR116482

SuperSet Reference:

1 of

u:\Stealth\Crystal.rpt\Form3DMS.rpt

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006477

**Date Extracted:** 06/24/2010

**Date Analyzed:** 07/07/2010

Lab Control Spike Summary Polychlorinated Biphenyls (PCBs)

Extraction Method: EPA 3541 Analysis Method:

8082

Units: ug/Kg Basis: Dry

Level: Low Extraction Lot: KWG1006548

Lab Control Sample KWG1006548-3 Lab Control Spike

	LAU	Lab Court of Spike						
Analyte Name	Result	Expected	%Rec	Limits				
Aroclor 1016	169	200	84	48-121	***************************************		,	***************************************
Aroclor 1260	177	200	88	53-129				

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/12/2010 08:27:33 u:\Stealth\Crystal.rpt\Form3LCS.rpt

**Polynuclear Aromatic Hydrocarbons** 

Analytical Results

Client: Project: Pacific EcoRisk Laboratories
ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

**Service Request:** K1006477 **Date Collected:** 06/10/2010 **Date Received:** 06/23/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SRC-2010-8-B-Comp

Lab Code:

K1006477-001

Extraction Method:

EPA 3541

Units: ug/Kg
Basis: Dry

Level: Low

Analysis Method: 8270C SIM

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	31	4.8	0.60	1	06/24/10	07/01/10	KWG1006323	
Acenaphthylene	16	4.8	0.59	1	06/24/10	07/01/10	KWG1006323	
Acenaphthene	<b>37</b>	4.8	0.76	1	06/24/10	07/01/10	KWG1006323	
Fluorene	54	4.8	0.61	1	06/24/10	07/01/10	KWG1006323	
Phenanthrene	360	4.8	1.4	1	06/24/10	07/01/10	KWG1006323	
Anthracene	81	4.8	0.58	1	06/24/10	07/01/10	KWG1006323	
Fluoranthene	850	4.8	0,98	1	06/24/10	07/01/10	KWG1006323	
Pyrene	1300	4.8	0.76	1	06/24/10	07/01/10	KWG1006323	
Benzo(b)fluoranthene	590	4.8	0.92	1	06/24/10	07/01/10	KWG1006323	
Benzo(k)fluoranthene	190	4.8	0.87	1	06/24/10	07/01/10	KWG1006323	
Benz(a)anthracene	370	4.8	0.72	1	06/24/10	07/01/10	KWG1006323	
Chrysene	330	4.8	0,80	1	06/24/10	07/01/10	KWG1006323	
Benzo(a)pyrene	510	4.8	0,76	1	06/24/10	07/01/10	KWG1006323	
Indeno(1,2,3-cd)pyrene	550	4.8	0.87	1	06/24/10	07/01/10	KWG1006323	
Dibenz(a,h)anthracene	71	4.8	0.80	1	06/24/10	07/01/10	KWG1006323	
Benzo(g,h,i)perylene	710	4.8	0.85	1	06/24/10	07/01/10	KWG1006323	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	68	17-104	07/01/10	Acceptable
Fluoranthene-d10	79	27-106	07/01/10	Acceptable
Terphenyl-d14	79	35-109	07/01/10	Acceptable

Comments:

Analytical Results

Client: Project: Pacific EcoRisk Laboratories ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006477

Date Collected: NA Date Received: NA

# Polynuclear Aromatic Hydrocarbons

Sample Name:

Method Blank

Lab Code:

KWG1006323-5

**Extraction Method:** EPA 3541 Analysis Method:

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	<b>2.3</b> J	2.4	0.60	1	06/24/10	07/01/10	KWG1006323	
Acenaphthylene	ND U	2.4	0.59	1	06/24/10	07/01/10	KWG1006323	
Acenaphthene	ND U	2.4	0.76	1	06/24/10	07/01/10	KWG1006323	
Fluorene	ND U	2.4	0.61	1	06/24/10	07/01/10	KWG1006323	
Phenanthrene	ND U	2.4	1.4	1	06/24/10	07/01/10	KWG1006323	
Anthracene	ND U	2.4	0.58	1	06/24/10	07/01/10	KWG1006323	
Fluoranthene	ND U	2.4	0.98	1	06/24/10	07/01/10	KWG1006323	
Pyrene	ND U	2.4	0.76	1	06/24/10	07/01/10	KWG1006323	
Benzo(b)fluoranthene	ND U	2.4	0.92	1	06/24/10	07/01/10	KWG1006323	
Benzo(k)fluoranthene	ND U	2.4	0.87	1	06/24/10	07/01/10	KWG1006323	
Benz(a)anthracene	ND U	2.4	0.72	1	06/24/10	07/01/10	KWG1006323	
Chrysene	ND U	2.4	0.80	1	06/24/10	07/01/10	KWG1006323	
Benzo(a)pyrene	ND U	2.4	0.76	1	06/24/10	07/01/10	KWG1006323	
Indeno(1,2,3-cd)pyrene	ND U	2.4	0.87	1	06/24/10	07/01/10	KWG1006323	
Dibenz(a,h)anthracene	ND U	2.4	0.80	1	06/24/10	07/01/10	KWG1006323	
Benzo(g,h,i)perylene	ND U	2.4	0.85	1	06/24/10	07/01/10	KWG1006323	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	68	17-104	07/01/10	Acceptable
Fluoranthene-d10	67	27-106	07/01/10	Acceptable
Terphenyl-d14	83	35-109	07/01/10	Acceptable

Comments:

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006477

**Surrogate Recovery Summary** Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3541

Analysis Method:

8270C SIM

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
SRC-2010-8-B-Comp	K1006477-001	68	<b>7</b> 9	79
Method Blank	KWG1006323-5	68	67	83
Batch QC	K1006486-001	56	63	67
Batch QCMS	KWG1006323-1	52	63	60
Batch QCDMS	KWG1006323-2	57	65	67
Lab Control Sample	KWG1006323-3	58	59	64
Duplicate Lab Control Sample	KWG1006323-4	72	70	80

#### Surrogate Recovery Control Limits (%)

Surl =	Fluorene-d10	17-104
Sur2 =	Fluoranthene-d10	27-106
Sur3 =	Terphenyl-d14	35-109

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/07/2010 10:18:06  $u:\Stealth\Crystal.rpt\Form 2.rpt$ 

RR116330

QA/QC Report

Client: Pacific EcoRisk Laboratories ACOE San Rafael Channel/16087 Project:

Sediment Sample Matrix:

Service Request: K1006477 **Date Extracted:** 06/24/2010 **Date Analyzed:** 07/01/2010

# Matrix Spike/Duplicate Matrix Spike Summary Polynuclear Aromatic Hydrocarbons

Sample Name:

Batch QC

Lab Code:

K1006486-001

**Extraction Method:** 

EPA 3541 8270C SIM

**Analysis Method:** 

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1006323

Batch QCMS KWG1006323-1

Batch QCDMS KWG1006323-2

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	4.1	366	546	66	330	545	60	11-119	10	40
Acenaphthylene	1.3	395	546	72	356	545	65	32-106	11	40
Acenaphthene	1.1	392	546	72	361	545	66	29-110	8	40
Fluorene	3.1	413	546	75	395	545	72	29-117	4	40
Phenanthrene	13	495	546	88	448	545	80	19-128	10	40
Anthracene	2.1	414	546	75	401	545	73	31-115	3	40
Fluoranthene	38	497	546	84	454	545	76	22-138	9	40
Pyrene	50	478	546	78	477	545	78	11-148	0	40
Benzo(b)fluoranthene	30	447	546	76	432	545	74	15-136	3	40
Benzo(k)fluoranthene	10	434	546	78	420	545	75	29-126	3	40
Benz(a)anthracene	14	424	546	75	417	545	74	25-128	2	40
Chrysene	19	445	546	78	429	545	75	25-132	4	40
Benzo(a)pyrene	25	446	546	77	425	545	73	24-131	5	40
Indeno(1,2,3-cd)pyrene	32	475	546	81	464	545	79	20-136	2	40
Dibenz(a,h)anthracene	4.1	423	546	77	415	545	75	29-124	2	40
Benzo(g,h,i)perylene	41	508	546	86	500	545	84	24-127	2	40

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/07/2010 10:18:09 u:\Stealth\Crystal.rpt\Form3DMS.rpt

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006477 **Date Extracted:** 06/24/2010

**Date Analyzed:** 07/01/2010

# Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3541 Analysis Method:

8270C SIM

Units: ug/Kg Basis: Dry

Extraction Lot: KWG1006323

Level: Low

Lab Control Sample KWG1006323-3

Duplicate Lab Control Sample KWG1006323-4

	Lab Control Spike			Duplicate Lab Control Spike			_ %Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	386	500	77	402	500	80	43-99	4	40
Acenaphthylene	417	500	83	439	500	88	41-110	5	40
Acenaphthene	406	500	81	428	500	86	44-104	5	40
Fluorene	424	500	85	459	500	92	49-105	8	40
Phenanthrene	406	500	81	470	500	94	47-104	15	40
Anthracene	427	500	85	454	500	91	47-112	6	40
Fluoranthene	395	500	79	435	500	87	51-111	10	40
Pyrene	441	500	88	456	500	91	48-113	4	40
Benzo(b)fluoranthene	431	500	86	437	500	87	51-113	1	40
Benzo(k)fluoranthene	444	500	89	467	500	93	56-114	5	40
Benz(a)anthracene	416	500	83	427	500	85	51-111	2	40
Chrysene	430	500	86	449	500	90	54-111	4	40
Benzo(a)pyrene	447	500	89	461	500	92	52-118	3	40
Indeno(1,2,3-cd)pyrene	444	500	89	460	500	92	42-123	3	40
Dibenz(a,h)anthracene	444	500	89	459	500	92	44-119	3	40
Benzo(g,h,i)perylene	474	500	95	493	500	99	46-114	4	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/07/2010 10:18:12 

Analytical Results

**Client: Project:**  Pacific EcoRisk Laboratories ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006477 **Date Collected:** 06/10/2010 **Date Received:** 06/23/2010

# **Organochlorine Pesticides**

Sample Name:

SRC-2010-8-B-Comp

Lab Code:

K1006477-001

**Extraction Method:** EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Analysis	Method:	8081A

Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
alpha-BHC	ND		0.98	0.11	1	06/24/10	07/16/10	KWG1006549	11010
alpha-Chlordane	20	U	0.98	0.11	1	06/24/10	07/16/10	KWG1006549	
beta-BHC	ND	T T			1			KWG1006549	
			0.98	0.18	1	06/24/10	07/16/10		
gamma-BHC (Lindane)	0.27		0.98	0.080	1	06/24/10	07/16/10	KWG1006549	
delta-BHC	ND	Ui	0.98	0.98	1	06/24/10	07/16/10	KWG1006549	
Heptachlor	ND	Ui	0.98	0.16	1	06/24/10	07/16/10	KWG1006549	
Aldrin	1.5	P	0.98	0.16	1	06/24/10	07/16/10	KWG1006549	
gamma-Chlordane†	39		0.98	0.090	1	06/24/10	07/16/10	KWG1006549	
Heptachlor Epoxide	ND	Ui	0.98	0.98	1	06/24/10	07/16/10	KWG1006549	
Endosulfan 1	ND	Ui	3.5	3,5	1	06/24/10	07/16/10	KWG1006549	
Dieldrin	1.4	P	0.98	0.14	1	06/24/10	07/16/10	KWG1006549	
4,4'-DDE	24	P	0.98	0.11	1	06/24/10	07/16/10	KWG1006549	
Endrin	ND	Ui	2.0	2.0	1	06/24/10	07/16/10	KWG1006549	
Endosulfan 11	ND	Ui	0.98	0.98	1	06/24/10	07/16/10	KWG1006549	
4,4'-DDD	100	D	4.9	0.55	5	06/24/10	07/16/10	KWG1006549	
Endrin Aldehyde	ND	Ui	0.98	0.98	1	06/24/10	07/16/10	KWG1006549	
Endosulfan Sulfate	1.2	P	0.98	0.11	1	06/24/10	07/16/10	KWG1006549	
4,4'-DDT	15		0.98	0.17	1	06/24/10	07/16/10	KWG1006549	
Toxaphene	ND	Ui	150	150	1	06/24/10	07/16/10	KWG1006549	
Chlordane	280	D	49	9.5	5	06/24/10	07/16/10	KWG1006549	
2,4'-DDE	ND	Ui	5.1	5.1	1	06/24/10	07/16/10	KWG1006549	
2,4'-DDD	12	P	0.98	0.13	1	06/24/10	07/16/10	KWG1006549	
2,4'-DDT	8.3	P	0.98	0.058	1	06/24/10	07/16/10	KWG1006549	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	54	21-112	07/16/10	Acceptable	
Decachlorobiphenyl	56	15-130	07/16/10	Acceptable	

**REVISED** 5:35 pm, Jul 20, 2010

Comments:

Printed: 07/19/2010 17:29:03

 $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} I m \mbox{\it New.rpt}$ 

Form 1A - Organic

Page 1 of 2 SuperSet Reference: RR116889

Merged

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006477

**Date Collected:** 06/10/2010 **Date Received:** 06/23/2010

**Organochlorine Pesticides** 

Sample Name: Lab Code:

SRC-2010-8-B-Comp

K1006477-001

Units: ug/Kg Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

**REVISED** 

5:35 pm, Jul 20, 2010

**Comments:** 

Printed: 07/19/2010 17:29:03

 $u: \label{lem:limit} u: \label{lem:limit} \label{lem:limit} We will be used in the limit of th$ 

Merged

Form 1A - Organic

SuperSet Reference:

Page

2 of 2

Analytical Results

Client: Pacific EcoRisk Laboratories

**Project:** ACOE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request: K1006477

Date Collected: NA
Date Received: NA

# **Organochlorine Pesticides**

**Sample Name:** Method Blank **Lab Code:** KWG1006549-10

**Extraction Method:** EPA 3541 **Analysis Method:** 8081A

Units: ug/Kg
Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	0.50	0.11	1	06/24/10	07/16/10	KWG1006549	
alpha-Chlordane	ND U	0.50	0.10	1	06/24/10	07/16/10	KWG1006549	
beta-BHC	ND U	0.50	0.18	1	06/24/10	07/16/10	KWG1006549	
gamma-BHC (Lindane)	ND U	0.50	0.080	1	06/24/10	07/16/10	KWG1006549	
delta-BHC	ND U	0.50	0.074	1	06/24/10	07/16/10	KWG1006549	
Heptachlor	ND U	0.50	0.12	1	06/24/10	07/16/10	KWG1006549	
Aldrin	ND U	0.50	0.16	1	06/24/10	07/16/10	KWG1006549	
gamma-Chlordane†	ND U	0.50	0.090	1	06/24/10	07/16/10	KWG1006549	
Heptachlor Epoxide	ND U	0.50	0.084	1	06/24/10	07/16/10	KWG1006549	
Endosulfan I	ND U	0.50	0.063	1	06/24/10	07/16/10	KWG1006549	
Dieldrin	ND U	0.50	0.14	1	06/24/10	07/16/10	KWG1006549	
4,4'-DDE	ND U	0.50	0.11	l	06/24/10	07/16/10	KWG1006549	
Endrin	ND U	0.50	0.094	1	06/24/10	07/16/10	KWG1006549	
Endosulfan II	ND U	0.50	0.14	1	06/24/10	07/16/10	KWG1006549	
4,4'-DDD	ND U	0.50	0.11	1	06/24/10	07/16/10	KWG1006549	
Endrin Aldehyde	ND U	0.50	0.12	1	06/24/10	07/16/10	KWG1006549	
Endosulfan Sulfate	ND U	0.50	0.11	1	06/24/10	07/16/10	KWG1006549	
4,4'-DDT	ND U	0.50	0.17	1	06/24/10	07/16/10	KWG1006549	
Toxaphene	ND U	25	4.8	1	06/24/10	07/16/10	KWG1006549	
Chlordane	ND U	5.0	1.9	1	06/24/10	07/16/10	KWG1006549	
2,4'-DDE	ND U	0.50	0.16	1	06/24/10	07/16/10	KWG1006549	
2,4'-DDD	ND U	0.50	0.13	1	06/24/10	07/16/10	KWG1006549	
2,4'-DDT	ND U	0.50	0.058	1	06/24/10	07/16/10	KWG1006549	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	59	21-112	07/16/10	Acceptable	
Decachlorobiphenyl	64	15-130	07/16/10	Acceptable	

**REVISED** 5:35 pm, Jul 20, 2010

Comments:

Printed: 07/19/2010 17:29:06

Merged

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

Page 1 of 2

56

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006477

Date Collected: NA Date Received: NA

**Organochlorine Pesticides** 

Sample Name: Lab Code:

Method Blank

KWG1006549-10

Units: ug/Kg Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

**REVISED** 

5:36 pm, Jul 20, 2010

Comments:

Printed: 07/19/2010 17:29:06

Merged

 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Form 1A - Organic

Page 2 of 2

SuperSet Reference:

RR116889

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Surrogate Recovery Summary Organochlorine Pesticides

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: PERCENT

Level: Low

Service Request: K1006477

Sample Name	<b>Lab Code</b>	Sur1	Sur2
SRC-2010-8-B-Comp	K1006477-001	54	56
Method Blank	KWG1006549-10	59	64
Batch QC	K1006486-001	49	57
Batch QCMS	KWG1006549-1	51	57
Batch QCDMS	KWG1006549-2	45	54
Batch QCMS	KWG1006549-4	58	59
Batch QCDMS	KWG1006549-5	53	55
Batch QCMS	KWG1006549-7	50	57
Batch QCDMS	KWG1006549-8	51	59
Lab Control Sample	KWG1006549-3	61	71

**REVISED** 

5:36 pm, Jul 20, 2010

Surrogate Recovery Control Limits (%)

Sur1 = Tetrachloro-m-xylene Sur2 = Decachlorobiphenyl

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/19/2010 17:29:11

Form 2A - Organic

21-112

15-130

Page 1 of 1

SuperSet Reference: RR116889

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE San Rafael Channel/16087

0.26

18.8

22.7

82

18.2

22.7

79

19-154

40

Sample Matrix:

Sediment

**Service Request:** K1006477 **Date Extracted:** 06/24/2010

**Date Analyzed:** 07/17/2010

# Matrix Spike/Duplicate Matrix Spike Summary Organochlorine Pesticides

Sample Name: Lab Code: Batch QC

**Extraction Method:** 

K1006486-001

Analysis Method:

EPA 3541 8081A Units: ug/Kg Basis: Dry

Level: Low

**Extraction Lot:** KWG1006549

	Sample	KV	Batch QCMS VG1006549- Matrix Spike	1	KV	atch QCDMS VG1006549- cate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
alpha-BHC	ND	14.3	22.7	63	12.6	22.7	55	23-133	13	40
alpha-Chlordane	ND	13.0	22.7	57	12.3	22.7	54	24-132	6	40
beta-BHC	ND	12.9	22.7	57	11.6	22.7	51	22-142	11	40
gamma-BHC (Lindane)	ND	14.3	22.7	63	12.8	22.7	56	26-135	11	40
delta-BHC	ND	16.1	22.7	71	14.4	22.7	64	25-148	11	40
Heptachlor	ND	16.0	22.7	70	14.3	22.7	63	21-136	11	40
Aldrin	ND	14.2	22.7	63	12.6	22.7	55	22-135	12	40
gamma-Chlordane	ND	14.6	22.7	64	13.2	22.7	58	24-133	10	40
Heptachlor Epoxide	ND	14.5	22.7	64	13.1	22.7	58	25-129	10	40
Endosulfan I	ND	12.8	22.7	56	11.5	22.7	51	15-119	10	40
Dieldrin	ND	14.5	22.7	64	13.2	22.7	58	26-133	10	40
4,4'-DDE	ND	24.5	22.7	108	24.8	22.7	109	22-142	1	40
Endrin	ND	14.5	22.7	64	13.2	22.7	58	22-145	10	40
Endosulfan II	ND	13.0	22.7	57	11.9	22.7	52	13-129	9	40
4,4'-DDD	ND	24.4	22.7	107	23.4	22.7	103	19-143	4	40
Endrin Aldehyde	ND	13.6	22.7	60	12.4	22.7	55	10-129	9	40
Endosulfan Sulfate	ND	14.4	22.7	63	13.2	22.7	58	20-134	9	40



4,4'-DDT

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/19/2010 17:29:14 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

Page 1 of 1

QA/QC Report

Client:

Pacific EcoRisk Laboratories

ACOE San Rafael Channel/16087

Sample

Result

ND

ND

Project: Sample Matrix:

Sediment

Service Request: K1006477

**Date Extracted:** 06/24/2010 **Date Analyzed:** 07/17/2010

Matrix Spike/Duplicate Matrix Spike Summary **Organochlorine Pesticides** 

Sample Name:

**Extraction Method:** 

**Analysis Method:** 

**Analyte Name** 

Toxaphene Chlordane

Batch QC

Lab Code:

K1006486-001

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

8081A

Extraction Lot: KWG1006549

Batch QCMS

Batch QCDMS KWG1006549-5

KWG1006549-4

Matrix Spike **Duplicate Matrix Spike** %Rec **RPD** RPD Limits Limit Result **Expected** %Rec Result **Expected** %Rec 218 227 96 216 227 95 20-155 1 40 182 227 80 167 227 74 46-139 8 40



Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/19/2010 17:29:17 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

Page

1 of

SuperSet Reference: RR116889

QA/QC Report

**Client: Project:**  Pacific EcoRisk Laboratories ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006477

**Date Extracted:** 06/24/2010 **Date Analyzed:** 07/17/2010

# Matrix Spike/Duplicate Matrix Spike Summary **Organochlorine Pesticides**

Sample Name: Lab Code:

Batch QC

K1006486-001

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

**Analysis Method:** 

8081A

Extraction Lot: KWG1006549

Batch QCMS

Batch QCDMS

	Sample	KWG1006549-7  Matrix Spike				VG1006549-5 cate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
2,4'-DDE	ND	14.3	22.7	63	15.3	22.7	68	24-141	7	40
2,4'-DDD	0.19	12.8	22.7	55	14.0	22.7	61	12-147	10	40
2,4'-DDT	0.42	15.4	22.7	66	17.0	22.7	73	15-141	10	40

**REVISED** 5:36 pm, Jul 20, 2010

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/19/2010 17:29:20 

Form 3A - Organic

Page

1 of 1

SuperSet Reference: RR116889

QA/QC Report

**Client:** Pacific EcoRisk Laboratories

Project: ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006477 **Date Extracted:** 06/24/2010

**Date Analyzed:** 07/16/2010

# Lab Control Spike Summary **Organochlorine Pesticides**

0/ Dag

**Extraction Method:** EPA 3541 **Analysis Method:** 

8081A

Units: ug/Kg Basis: Dry Level: Low

Extraction Lot: KWG1006549

Lab Control Sample KWG1006549-3 Lab Control Spike

		%Rec		
Analyte Name	Result	Expected	%Rec	Limits
alpha-BHC	13.8	20.0	69	36-139
alpha-Chlordane	12.4	20.0	62	41-134
beta-BHC	13.2	20.0	66	38-142
gamma-BHC (Lindane)	13.9	20.0	69	40-142
delta-BHC	15.0	20.0	75	48-145
Heptachlor	12.0	20.0	60	39-135
Aldrin	13.3	20.0	66	37-134
gamma-Chlordane	13.6	20.0	68	41-135
Heptachlor Epoxide	13.9	20.0	69	45-118
Endosulfan I	12.6	20.0	63	35-121
Dieldrin	14.3	20.0	72	46-136
4,4'-DDE	17.6	20.0	88	46-141
Endrin	13.6	20.0	68	40-152
Endosulfan II	13.2	20.0	66	39-128
4,4'-DDD	18.6	20.0	93	46-146
Endrin Aldehyde	12,3	20.0	62	32-132
Endosulfan Sulfate	14.1	20.0	71	43-138
4,4'-DDT	17.0	20.0	85	46-151
Toxaphene	190	200	95	53-133
Chlordane	159	200	80	52-140
2,4'-DDE	15.1	20.0	75	49-112
2,4'-DDD	15.0	20.0	75	53-115
2,4'-DDT	16.0	20.0	80	44-120



5:36 pm, Jul 20, 2010

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/19/2010 17:29:23 u:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

Page 1 of 1 SuperSet Reference: RR116889



July 16, 2010

Analytical Report for Service Request No: K1006482

Jeffrey Cotsifas Pacific EcoRisk Laboratories 2250 Cordelia Road Fairfield, CA 94534

RE: ACOE San Rafael Channel/16087

Dear Jeffrey:

Enclosed are the results of the rush samples submitted to our laboratory on June 23, 2010. For your reference, these analyses have been assigned our service request number K1006482.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Diwvela Project Chemist

PD/ln

Page 1 of _______

#### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

#### Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

  DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOO/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value that was detected outside the quantitation range.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

# Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	•
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-







**Case Narrative** 

Client: Project: Pacific EcoRisk Laboratories ACOE San Rafael Channel Service Request No.: Date Received:

K1006482 06/23/10

Sample Matrix:

Sediment

#### CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

#### Sample Receipt

Four sediment samples were received for analysis at Columbia Analytical Services on 06/23/10. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

#### **General Chemistry Parameters**

No anomalies associated with the analysis of these samples were observed.

#### **Total Metals**

No anomalies associated with the analysis of these samples were observed.

#### Diesel Range Organics by EPA Method 8015B

#### Sample Notes and Discussion:

The control criteria for matrix spike recovery of Residual Range Organics (RRO) for sample SRC-2010-8-1 were not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

No other anomalies associated with the analysis of these samples were observed.

#### Gasoline Range Organics by EPA Method 8015B

No anomalies associated with the analysis of these samples were observed.

#### **Herbicides by EPA Method 8151**

# Calibration Verification (CCV) Exceptions:

The upper control criterion was exceeded for MCPP and MCPA in CCV 0629F003 and 0629F015. The field samples analyzed in this sequence did not contain the analytes in question. Since the apparent problem indicated a potential high bias, the data quality was not affected. No further corrective action was required.

	W	0
Approved by	Dat	

The primary evaluation criterion was exceeded for 2,4-Dichlorophenylacetic Acid in CCV 0629F003 and 0629F015. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was performed using the average percent recovery of all analytes in the verification standard. The standard met the alternative evaluation criteria.

Results for 2,4-Dichlorophenylacetic Acid in all samples were reported from a column using average percent recovery of all analytes in the verification standard.

#### **Matrix Spike Recovery Exceptions:**

The matrix spike recovery of MCPP for sample SRC-2010-8-1 was outside control criteria. Recoveries in the Laboratory Control Sample (LCS) were acceptable, which indicated the analytical batch was in control. The matrix spike outlier suggested a potential high bias in this matrix. No further corrective action was appropriate.

### **Relative Percent Difference Exceptions:**

The Relative Percent Difference (RPD) for the replicate Matrix Spike analysis of MCPP and MCPA n sample SRC-2010-8-1 was outside the normal CAS control limits. The variability in the results was attributed to the heterogeneous character of the sample. The sample contained relatively large amounts of roots, grass, and leaves, which complicated the homogenization process. Standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

#### **Elevated Detection Limits:**

The detection limits were elevated for all analytes in all field samples. The sample extracts were diluted prior to instrumental analysis due to relatively high levels of non-target background components. The extracts were highly colored and viscous, which indicated the need to perform a dilution prior to injection into the instrument. A semiquantitative screen was performed prior to final analysis. The results of the screening indicated the need to perform a dilution. The results were flagged to indicate the matrix interference.

No other anomalies associated with the analysis of these samples were observed.

#### Semivolatile Organic Compounds by EPA Method 8270C

### **Relative Percent Difference Exceptions:**

The Relative Percent Difference (RPD) for Pentachlorophenol in the replicate matrix spike analyses of Batch QC was outside control criteria. All spike recoveries in the MS, DMS, and associated Laboratory Control Sample (LCS) were within acceptance limits, indicating the analytical batch was in control. The compound was not detected in the associated samples. No further corrective action was appropriate.

#### **Elevated Detection Limits:**

The detection limits were elevated for in samples SRC-2010-8-1, SRC-2010-8-2, SRC-2010-8-3, and SRC-2010-8-4. The sample extracts were diluted prior to instrumental analysis due to relatively high levels of non-target background components. The extract was highly colored and viscous, which indicated the need to perform a dilution prior to injection into the instrument. Clean-up of the extract was performed within the scope of the method, but did not eliminate enough of the background components to prevent dilution.

The detection limit was elevated for Phenol in sample SRC-2010-8-3. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compound at the normal limit. The result was flagged to indicate the matrix interference.

No other anomalies associated with the analysis of these samples were observed.



**Chain of Custody** 



# **CAS CHAIN-OF-CUSTODY RECORD**

# 006

	Client Name:	Pacific Eco	Pacific EcoRisk					REQUESTED ANALYSIS									
	Client Address:	2250 Corde Fairfield, C															
<u> </u>	Sampled By:	Mike McElr					1										
	Phone:	(707) 207-7		·			1										
	FAX:	(707) 207-7		* *************************************			ļ ž										
	Project Manager:	Jeff Cotsifa					of Work	Size Analyis									
<b> </b>	Project Name:	+	ACOE (San Rafael Channel)														
	PO Number:	16087	Traidor One	iiiiiiii			Scope	ze,									
					T		Š	S									
	Client Sample ID	Sample	Sample	Sample		ontainer	See	Grain						i			
		Date	Time	Matrix*	Number	Туре	*	<del> </del>				<u> </u>	ļ		<u> </u>		
1	SRC-2010-8-1	6/10/10	11:55	Sed	1 1	8oz glass	X	X				ļ	ļ	<u> </u>	<u> </u>	ļ	<b></b>
2	SRC-2010-8-2	6/10/10	12:45	Sed	1	8oz glass	X	X			ļ	ļ	ļ		<u> </u>		ļ
3	SRC-2010-8-3	6/10/10	13:30	Sed	1	8oz glass	X	X				<u> </u>					<del>                                     </del>
4	SRC-2010-8-4	6/11/10	11:40	Sed	11	8oz glass	X	X							ļ		ļ
5 6	Manual Ma				<u> </u>							<del> </del>			<del> </del>		<b>-</b>
7					<u> </u>				<b>-</b>		<u> </u>	-	<u> </u>				<del> </del>
8								<b> </b>					ļ				
9																	
10																	
	Correct Containers:	Yes	No					R	LIQU	INSHE	D BY						P
	Sample Temperature:	Ambient	Cold	Warm	Signature	00 (1)	~			Sign	ature:						
-	Sample Preservative:	Yes	No		Oignature	My	(Louisian)			Oigin	atuic.					***************************************	
Com	Turnaround Time: ments:	STD	Specify:		Print:	M. M.Ela	2			Print	:						
	alyze for all of the constitue				Organization: PEQ					Organization:							
Biolo	SAP and the constituents identified in Section L of the USFWS Biological Opinion for placement at the HWRP. The HWRP specific			DATE: 6.22-10 TIME: 1400				DATE: TIME									
	tituents that are not in Tab rting limits than the Master					. /	11		RECE	IVED	BY						***************************************
San	San Rafael Channel SOW. Analyte list to follow via email. NO DIOXINS FOR THESE INDIVIDUAL CORES!				Signature	Mull	V			Signa	ature:						
						Print:				Print:							
Pleas	se take grain size analysis fro	om jar. We w	ere volume l	imited.	Organizat	Organization:				Orga	nizatio	on:					
	,	•			DATE:	23/10	TIME	:085	0	DATE	<b>:</b>				TIME		-
`					- W.	<del>                                     </del>											

Cooler Receipt and Preservation Form	
Client / Project: PAL FEDRISK Service Request K10 06487	
Received: 10 (15/10) Opened: (0/25/10) By: (11	
1. Samples were received via? Mail Fed Ex UPS DHL PDX Courier Hand Delivered	
2. Samples were received in: (circle) Cooler Box Envelope Other NA	
3. Were custody seals on coolers? NA Y N If yes, how many and where?	
If present, were custody seals intact?  Y  N  If present, were they signed and dated?  Y	N
Cooler Temp Thermometer Cooler/COC	- '
Temp °C Blank °C ID ID NA Tracking Number NA	Filed
0.3 20 209 778784387489	<u>X/</u>
1.0 5.4 323 793661755787	***************************************
	**************************************
7. Packing material used. Inserts Baggies Bubble Wrap Gel Packs Wet Ice Sleeves Other	
8. Were custody papers properly filled out (ink, signed, etc.)?	N
9. Did all bottles arrive in good condition (unbroken)? <i>Indicate in the table below.</i>	N
10. Were all sample labels complete (i.e analysis, preservation, etc.)?	N
11. Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA	N
12. Were appropriate bottles/containers and volumes received for the tests indicated?	N
13. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below Y	N
14. Were VOA vials received without headspace? Indicate in the table below.	N
15. Was C12/Res negative?	N
Sample ID on Bottle Sample ID on COC Identified by:	100
Bottle Count Out of Head- Volume Reagent Lot	
	Time
Notes, Discrepancies, & Resolutions:	

# **Total Solids**

Analytical Results

Client:

Pacific EcoRisk Laboratories ACOE San Rafael Chan/16087

Project: Sample Matrix:

Sediment

Service Request: K1006482

**Total Solids** 

Prep Method: Analysis Method:

Test Notes:

NONE

160.3M

Units: PERCENT

Basis: Wet

Sample Name	Lab Code	Date Collected	Date Received	Date Analyzed	Result	Result Notes
SRC-2010-8-1	K1006482-001	06/10/2010	06/23/2010	06/26/2010	42.7	
SRC-2010-8-2	K1006482-002	06/10/2010	06/23/2010	06/26/2010	59.8	
SRC-2010-8-3	K1006482-003	06/10/2010	06/23/2010	06/26/2010	38.1	
SRC-2010-8-4	K1006482-004	06/10/2010	06/23/2010	06/26/2010	45.4	

SuperSet Reference: W1006191

1 of 1

Page

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE San Rafael Chan/16087

Sample Matrix:

Sediment

Service Request: K1006482

**Date Collected**: 06/10/2010 **Date Received:** 06/23/2010

**Date Analyzed:** 06/26/2010

**Duplicate Sample Summary Total Solids** 

Prep Method: Analysis Method:

NONE

Units: PERCENT

Test Notes:

160.3M

Basis: Wet

			Duplicate		Relative	
Sample Name	Lab Code	Sample Result	Sample Result	Average	Percent Difference	Result Notes
SRC-2010-8-1	K1006482-001	42.7	42.3	42.5	<1	

13

Printed: 06/29/2010 05:06

 $u:\Stealth\Crystal.rpt\Solids.rpt$ 

SuperSet Reference: W1006191

Page

1 of 1

**General Chemistry Parameters** 

#### Analytical Report

Client: Pacific EcoRisk Laboratories
Project: ACOE San Rafael Channel/16087

Sample Matrix: Sediment

 Date Collected:
 6/10/2010

 Date Received:
 6/23/2010

 Date Analyzed:
 6/29/2010

K1006482

**Service Request:** 

Particle Size Determination
Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-8-1 Lab Code: K1006482-001

Sand Fraction:Dry Weight (Grams)9.9468Sand Fraction:Weight Recovered (Grams)9.9736Sand Fraction:Percent Recovery100

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	1.3904	5.56
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	1.0911	4.36
Sand, Coarse (0.50	0 to 1 Ø	0.7939	3.17
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	1.0057	4.02
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	1.5588	6.23
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	3.1362	12.5
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	8.6250	34.5
Clay (< 0.0039 mm)	> 8 Ø	7.8100	31.2
	Total	25.4111	102

# Analytical Report

Client: Project:

Pacific EcoRisk Laboratories

ACOE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request: Date Collected: K1006482

Date Received:

6/10/2010

Date Analyzed:

6/23/2010 6/29/2010

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-8-2

Lab Code:

K1006482-002

Sand Fraction: Dry Weight (Grams) 27.9243 Sand Fraction: Weight Recovered (Grams) 27.9318 Sand Fraction: Percent Recovery 100

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	5.5516	16.9
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	2.5425	7.73
Sand, Coarse (0.50	0 to 1 Ø	3.6567	11.1
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	6.5425	19.9
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	2.9954	9.10
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	6.1913	18.8
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	2.9100	8.84
Clay (< 0.0039 mm)	> 8 Ø	2.2950	6.97
	Total	32.6850	99.3

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Service Request: K1006482 Date Collected:

Project:

ACOE San Rafael Channel/16087

Date Received:

6/10/2010 6/23/2010

Sample Matrix: Sediment

Date Analyzed:

6/29/2010

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-8-3

Lab Code:

K1006482-003

Sand Fraction: Dry Weight (Grams)

15.7488

Sand Fraction: Weight Recovered (Grams)

15.5029

Sand Fraction: Percent Recovery

98.4

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	2.0884	10.8
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	1.0241	5.32
Sand, Coarse (0.50	0 to 1 Ø	0.8758	4.55
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	1.6658	8.65
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	5.7813	30.0
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	3.3093	17.2
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	3.7250	19.3
Clay (< 0.0039 mm)	> 8 Ø	1.8950	9.84
	Total	20.3647	106

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

**Project:** 

ACOE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request:

K1006482

Date Collected: Date Received: 6/10/2010

Date Analyzed:

6/23/2010 6/29/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-8-4

Lab Code:

K1006482-004

Sand Fraction: Dry Weight (Grams)

11.0905

Sand Fraction: Weight Recovered (Grams)

10.9696

Sand Fraction: Percent Recovery

98.9

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	0.9582	3.89
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	0.8253	3.35
Sand, Coarse (0.50	0 to 1 Ø	0.9766	3.97
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	1.3595	5.53
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	2.0573	8.36
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	3.7221	15.1
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	10.2600	41.7
Clay (< 0.0039 mm)	> 8 Ø	4.4600	18.1
	Total	24.6190	100

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

Sample Matrix: Sediment

ACOE San Rafael Channel/16087

Date Collected: Date Received:

Service Request:

K1006482 6/10/2010

6/23/2010

Date Analyzed:

6/29/2010

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-8-2

Lab Code:

K1006482-002DUP

Sand Fraction: Dry Weight (Grams)

27.4730

Sand Fraction: Weight Recovered (Grams)

27.4749

Sand Fraction: Percent Recovery

100

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	6.3628	20.6
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	2.7957	9.06
Sand, Coarse (0.50	0 to 1 Ø	3.4387	11.1
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	6.3038	20.4
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	5.7238	18.6
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	2.4253	7.86
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	2.8800	9.34
Clay (< 0.0039 mm)	> 8 Ø	2.2200	7.20
	Total	32.1501	104

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

**Project:** 

ACOE San Rafael Channel/16087

Sample Matrix: Sediment

Service Request: **Date Collected:** 

K1006482 6/10/2010

Date Received:

6/23/2010

Date Analyzed:

6/29/2010

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: SRC-2010-8-2

Lab Code:

K1006482-002TRP

Sand Fraction: Dry Weight (Grams)

30.1017

Sand Fraction: Weight Recovered (Grams)

30.6925

Sand Fraction: Percent Recovery

102

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	6.3363	20.5
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	2.9863	9.68
Sand, Coarse (0.50	0 to 1 Ø	4.1688	13.5
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	7.2684	23.6
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	7.0336	22.8
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	2.5376	8.23
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	1.0450	3.39
Clay (< 0.0039 mm)	> 8 Ø	2.3050	7.47
	Total	33.6810	109

# Columbia Analytical Services

# - Cover Page - INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Project Name:

ACOE San Rafael Channel

Project No.:

16087

Service Request: K1006482

Lab Code:
K1006477-001D
K1006477-001S
K1006480-001D
K1006480-001S
K1006482-001
K1006482-002
K1006482-003
K1006482-004
K1006482-MB

Comments:

Approved By: Date:

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006482

Project No.:

16087

Date Collected: 06/10/10

Project Name: ACOE San Rafael Channel

Sample Name:

Date Received:

06/23/10

Matrix:

SRC-2010-8-1

Basis:

SEDIMENT

Lab Code:

K1006482-001

DRY

Units: mg/Kg

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Barium	6010B	2.0	0.3	2.0	07/08/10	07/09/10	70.4		
Beryllium	6020	0.020	0.003	5.0	07/08/10	07/12/10	0.611		
Boron	6010B	10.1	0.3	2.0	07/08/10	07/09/10	38.5		
Cobalt	6020	0.020	0.001	5.0	07/08/10	07/12/10	14.8		
Manganese	6010B	2.01	0.04	2.0	07/08/10	07/09/10	337		
Vanadium	6010B	2.0	0.4	2.0	07/08/10	07/09/10	60.5		

% Solids:

42.7

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006482

Project No.:

16087

Date Collected: 06/10/10

Project Name: ACOE San Rafael Channel

Date Received: 06/23/10

SEDIMENT Matrix:

Units: mg/Kg Basis: DRY

Sample Name:

SRC-2010-8-2

Lab Code:

K1006482-002

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Barium	6010B	2.0	0.3	2.0	07/08/10	07/09/10	58.3		
Beryllium	6020	0.021	0.003	5.0	07/08/10	07/12/10	0.519		
Boron	6010B	9.9	0.3	2.0	07/08/10	07/09/10	21.0		
Cobalt	6020	0.021	0.001	5.0	07/08/10	07/12/10	12.4		
Manganese	6010B	1.98	0.04	2.0	07/08/10	07/09/10	299		
Vanadium	6010B	2.0	0.4	2.0	07/08/10	07/09/10	32.0		

% Solids:

59.8

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006482

Project No.:

16087

Date Collected: 06/10/10

Project Name: ACOE San Rafael Channel

Date Received: 06/23/10

Matrix:

SEDIMENT

Units: mg/Kg

Basis: DRY

Sample Name:

SRC-2010-8-3

Lab Code: K1006482-003

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Barium	6010B	2.0	0.3	2.0	07/08/10	07/09/10	78.1		
Beryllium	6020	0.020	0.003	5.0	07/08/10	07/12/10	0.496		
Boron	6010B	9.9	0.3	2.0	07/08/10	07/09/10	55.0		
Cobalt	6020	0.020	0.001	5.0	07/08/10	07/12/10	11.1		
Manganese	6010B	1.98	0.04	2.0	07/08/10	07/09/10	254		
Vanadium	6010B	2.0	0.4	2.0	07/08/10	07/09/10	39.0		

% Solids:

38.1

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006482

Project No.:

16087

Date Collected:

06/10/10

Project Name: ACOE San Rafael Channel

Date Received:

06/23/10

Matrix:

SEDIMENT

Units: mg/Kg

Basis: DRY

Sample Name:

SRC-2010-8-4

Lab Code:

K1006482-004

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Barium	6010B	2.0	0.3	2.0	07/08/10	07/09/10	85.5		
Beryllium	6020	0.020	0.003	5.0	07/08/10	07/12/10	0.570		
Boron	6010B	10.0	0.3	2.0	07/08/10	07/09/10	37.9		
Cobalt	6020	0.020	0.001	5.0	07/08/10	07/12/10	15.2		
Manganese	6010B	1.99	0.04	2.0	07/08/10	07/09/10	326		
Vanadium	6010B	2.0	0.4	2.0	07/08/10	07/09/10	53.2		

% Solids:

45.4

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client: Pacific EcoRisk Laboratories Service Request: K1006482

16087 Project No.:

Date Collected:

Project Name: ACOE San Rafael Channel

Date Received:

Matrix:

SEDIMENT

Units: mg/Kg

Basis: DRY

Lab Code: K1006482-MB Sample Name: Method Blank

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Barium	6010B	2.0	0.3	2.0	07/08/10	07/09/10	0.3	U	
Beryllium	6020	0.020	0.003	5.0	07/08/10	07/12/10	0.003	J	
Boron	6010B	10.0	0.3	2.0	07/08/10	07/09/10	0.4	J	
Cobalt	6020	0.020	0.001	5.0	07/08/10	07/12/10	0.010	J	
Manganese	6010B	2.00	0.04	2.0	07/08/10	07/09/10	0.07	J	
Vanadium	6010B	2.0	0.4	2.0	07/08/10	07/09/10	0.4	U	

% Solids:

100.0

- 5A -

#### SPIKE SAMPLE RECOVERY

Client:

Pacific EcoRisk Laboratories

K1006482 Service Request:

Project No.: 16087

Units:

MG/KG

Project Name: ACOE San Rafael Channel

Basis: DRY

Matrix:

SEDIMENT

% Solids:

51.0

Sample Name:

Batch QC1S

Lab Code: K1006477-001S

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	%R	Q	Method
Beryllium	64 - 133	11.3	0.597	10.16	105.3		6020
Cobalt	74 - 118	114	14.2	101.60	98.2		6020

- 5A -

#### SPIKE SAMPLE RECOVERY

Client:

Pacific EcoRisk Laboratories

K1006482 Service Request:

Project No.:

16087

Units: MG/KG

Basis:

Project Name: ACOE San Rafael Channel

DRY

Matrix:

SEDIMENT

% Solids:

54.4

Sample Name:

Batch QC2S

Lab Code: K1006480-001S

Analyte	Control Limit %R	Spike Result C	Sample Result	Spike Added	%R	Q	Method
Barium	60 - 139	458	70.3	404.01	96.0		6010B
Boron	53 - 135	128	31.7	101.00	95.3		6010B
Manganese	28 - 181	337	247	101.00	89.1		6010B
Vanadium	64 - 132	135	35.1	101.00	98.9		6010B

- 6 -

#### **DUPLICATES**

Client:

Pacific EcoRisk Laboratories

Service Request: K1006482

Project No.:

16087

Units: MG/KG

Project Name: ACOE San Rafael Channel

Basis: DRY

Matrix:

SEDIMENT

% Solids: 51.0

Sample Name:

Batch QC1D

Lab Code:

K1006477-001D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Beryllium	20	0.597		0.579		3.1		6020
Cobalt	20	14.2		13.9		2.1		6020

- 6 -

#### **DUPLICATES**

Client:

Pacific EcoRisk Laboratories

Service Request: K1006482

Project No.: 16087

Units:

MG/KG

Project Name: ACOE San Rafael Channel

Basis:

DRY

Matrix:

SEDIMENT

% Solids:

54.4

Sample Name:

Batch QC2D

Lab Code:

K1006480-001D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Barium	30	70.3		70.2		0.1		6010B
Boron		32		31		3.2		6010B
Manganese	30	247		227		8.4		6010B
Vanadium	30	35.1		33.4		5.0		6010B

- 7 -

# LABORATORY CONTROL SAMPLE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006482

Project No.:

16087

Project Name: ACOE San Rafael Channel

Aqueous LCS Source:

Solid LCS Source: ERA D065540

	Aqueous	s: ug/L			Solid:	mg/kg	•	
Analyte	True	Found	%R	True	Found	C L	imits	%R
Barium	1			432	438	81	.   119	101.4
Beryllium				58.2	63.6	83	117	109.3
Boron	Ī			101	113	67	133	111.9
Cobalt				190	210	82	118	110.5
Manganese	l			497	517	81	.   119	104.0
Vanadium	1			180	187	79	121	103.9

**Diesel & Residual Range Organics** 

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

1700 O

Sample Matrix:

Sediment

Service Request: K1006482

**Date Collected:** 06/10/2010

**Date Received:** 06/23/2010

# Diesel and Residual Range Organics

Sample Name: Lab Code:

SRC-2010-8-1

Residual Range Organics (RRO)

K1006482-001

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 3550B

Level: Low

**Analysis Method:** 

8015B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	<b>3</b> 60 H	58	3.8	1	06/24/10	06/28/10	KWG1006188	
Residual Range Organics (RRO)	1700 O	58	6.8	1	06/24/10	06/28/10	KWG1006188	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	104	51-126	06/28/10	Acceptable	
n-Triacontane	107	50-150	06/28/10	Acceptable	

Comments:

Merged

SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482

**Date Collected:** 06/10/2010

**Date Received:** 06/23/2010

# Diesel and Residual Range Organics

Sample Name:

SRC-2010-8-2

Lab Code:

K1006482-002

**Extraction Method:** 

EPA 3550B

**Analysis Method:** 

8015B

Units: mg/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	<b>200</b> H	42	2.7	1	06/24/10	06/28/10	KWG1006188	
Residual Range Organics (RRO)	1300 O	42	4.9	1	06/24/10	06/28/10	KWG1006188	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	94	51-126	06/28/10	Acceptable	
n-Triacontane	107	50-150	06/28/10	Acceptable	

Comments:

SuperSet Reference:

Analytical Results

Client: Pacific EcoRisk Laboratories

**Project:** ACOE San Rafael Channel/16087

Sample Matrix: Sediment

 Service Request:
 K1006482

 Date Collected:
 06/10/2010

 Date Received:
 06/23/2010

# Diesel and Residual Range Organics

Sample Name: Lab Code: SRC-2010-8-3 K1006482-003

Extraction Method: E

EPA 3550B 8015B Units: mg/Kg
Basis: Dry

Level: Low

Analysis Method: 8015B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	540 H	65	4.2	1	06/24/10	06/28/10	KWG1006188	
Residual Range Organics (RRO)	<b>2900</b> O	65	7.6	1	06/24/10	06/28/10	KWG1006188	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	109	51-126	06/28/10	Acceptable	
n-Triacontane	125	50-150	06/28/10	Acceptable	

Comments:

Printed: 07/09/2010 10:58:11 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482 **Date Collected:** 06/10/2010

**Date Received:** 06/23/2010

# Diesel and Residual Range Organics

Sample Name:

SRC-2010-8-4

Lab Code:

K1006482-004

**Extraction Method:** 

EPA 3550B

**Analysis Method:** 

8015B

Units: mg/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	610 H	55	3.6	1	06/24/10	06/28/10	KWG1006188	
Residual Range Organics (RRO)	<b>2900</b> O	55	6.4	1	06/24/10	06/28/10	KWG1006188	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	96	51-126	06/28/10	Acceptable	
n-Triacontane	110	50-150	06/28/10	Acceptable	

Comments:

Printed: 07/09/2010 10:58:15  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Page 1 of 1

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482

Date Collected: NA

Date Received: NA

# Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1006188-4

Units: mg/Kg
Basis: Dry

**Extraction Method:** 

EPA 3550B

Level: Low

Analysis Method:

8015B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	ND U	25	1.6	l	06/24/10	06/28/10	KWG1006188	
Residual Range Organics (RRO)	ND U	25	2.9	1	06/24/10	06/28/10	KWG1006188	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	93	51-126	06/28/10	Acceptable	
n-Triacontane	86	50-150	06/28/10	Acceptable	

Comments:

SuperSet Reference:

QA/QC Report

Client:

Pacific EcoRisk Laboratories

**Project:** 

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Surrogate Recovery Summary Diesel and Residual Range Organics

**Extraction Method: Analysis Method:** 

EPA 3550B

8015B

Service Request: K1006482

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	<u>Sur2</u>
SRC-2010-8-1	K1006482-001	104	107
SRC-2010-8-2	K1006482-002	94	107
SRC-2010-8-3	K1006482-003	109	125
SRC-2010-8-4	K1006482-004	96	110
Method Blank	KWG1006188-4	93	86
SRC-2010-8-1MS	KWG1006188-1	99	101
SRC-2010-8-1DMS	KWG1006188-2	97	95
Lab Control Sample	KWG1006188-3	102	94

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl51-126 Sur2 = n-Triacontane 50-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/09/2010 10:58:24

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page 1 of 1

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482 **Date Extracted:** 06/24/2010

**Date Analyzed:** 06/28/2010

Matrix Spike/Duplicate Matrix Spike Summary Diesel and Residual Range Organics

Sample Name:

SRC-2010-8-1

Lab Code:

K1006482-001

**Extraction Method:** 

EPA 3550B

**Analysis Method:** 

8015B

Units: mg/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1006188

SRC-2010-8-1MS

KWG1006188-1

SRC-2010-8-1DMS

KWG1006188-2

	Sample	N	Aatrix Spike	rix Spike Dupli		icate Matrix Spike		%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Diesel Range Organics (DRO)	360	1000	621	103	995	623	102	43-146	1	40
Residual Range Organics (RRO)	1700	2040	311	117 #	2080	312	128 #	29-167	2	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/09/2010 10:58:28 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic 40

RR116452 SuperSet Reference:

Page 1 of 1

QA/QC Report

Client:

Pacific EcoRisk Laboratories

**Project:** 

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482 **Date Extracted:** 06/24/2010

**Date Analyzed:** 06/28/2010

Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method: EPA 3550B

**Analysis Method:** 

8015B

Units: mg/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006188

Lab Control Sample KWG1006188-3

Lab Control Spike

	Lau	Control Spik	<del></del>	%Rec
Analyte Name	Result	Expected	%Rec	Limits
Diesel Range Organics (DRO)	284	267	107	63-121
Residual Range Organics (RRO)	121	133	91	57-136

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/09/2010 10:58:31

Form 3C - Organic

41

Page

1 of 1

SuperSet Reference: RR116452

**Gasoline Range Organics** 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482

**Date Collected:** 06/10/2010

Pate Collected:

**Date Received:** 06/23/2010

# Gasoline Range Organics

Sample Name:

SRC-2010-8-1

Lab Code:

K1006482-001

Units: mg/Kg Basis: Dry

Extraction Method:

EPA 5035A/5030B

Level: Med

Analysis Method:

8015B

Amalusta Name	D	MDI	MADA	Dilution	Date	Date	Extraction	D.T. 4
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	16	4.0	1	06/23/10	06/23/10	KWG1006137	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	95	83-119	06/23/10	Acceptable	

Comments:	

RR116762

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482

**Date Collected:** 06/10/2010 **Date Received:** 06/23/2010

# Gasoline Range Organics

Sample Name:

SRC-2010-8-2

Lab Code:

K1006482-002

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 5035A/5030B

Level: Med

Analysis Method:

8015B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	10	2.6	1	06/23/10	06/23/10	KWG1006137	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	95	83-119	06/23/10	Acceptable

Comments:	

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482

**Date Collected:** 06/10/2010 **Date Received:** 06/23/2010

## Gasoline Range Organics

Sample Name:

SRC-2010-8-3

Lab Code:

K1006482-003

**Extraction Method:** 

EPA 5035A/5030B

Analysis Method:

8015B

Units: mg/Kg

Basis: Dry

Level: Med

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	17	4.4	1	06/23/10	06/23/10	KWG1006137	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	100	83-119	06/23/10	Acceptable

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482

**Date Collected:** 06/10/2010

**Date Received:** 06/23/2010

# Gasoline Range Organics

Sample Name:

SRC-2010-8-4

Lab Code:

K1006482-004

Units: mg/Kg Basis: Dry

Extraction Method: EPA 5035A/5030B

Level: Med

Analysis Method:

8015B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	<b>7.2</b> J	14	3.7	1	06/23/10	06/23/10	KWG1006137	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	92	83-119	06/23/10	Acceptable

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482

Date Collected: NA

Date Received: NA

Gasoline Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1006137-4

**Extraction Method:** 

EPA 5035A/5030B

Analysis Method:

8015B

Units: mg/Kg

Basis: Dry

Level: Med

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	<b>1.5</b> J	5.0	1.3	1	06/23/10	06/23/10	KWG1006137	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	92	83-119	06/23/10	Acceptable

Comments:

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482

Surrogate Recovery Summary Gasoline Range Organics

**Extraction Method:** EPA 5035A/5030B Analysis Method:

8015B

Units: PERCENT

Level: Med

Sample Name	Lab Code	<u>Sur1</u>
SRC-2010-8-1	K1006482-001	95
SRC-2010-8-2	K1006482-002	95
SRC-2010-8-3	K1006482-003	100
SRC-2010-8-4	K1006482-004	92
Method Blank	KWG1006137-4	92
SRC-2010-8-1MS	KWG1006137-1	94
SRC-2010-8-1DMS	KWG1006137-2	96
Lab Control Sample	KWG1006137-3	94

Surrogate Recovery Control Limits (%)

Sur1 = 4-Bromofluorobenzene

83-119

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/15/2010 16:21:21 u:\Stealth\Crystal.rpt\Form2.rpt

RR116762

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482

**Date Extracted:** 06/23/2010

**Date Analyzed:** 06/23/2010

# Matrix Spike/Duplicate Matrix Spike Summary Gasoline Range Organics

Sample Name:

SRC-2010-8-1

Lab Code:

K1006482-001

Basis: Dry

Units: mg/Kg

**Extraction Method:** 

EPA 5035A/5030B

Level: Med

Analysis Method:

8015B

Extraction Lot: KWG1006137

SRC-2010-8-1MS

SRC-2010-8-1DMS

KWG1006137-1

KWG1006137-2

	Sample	N	Aatrix Spike		Duplic	cate Matrix S	pike	%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	ND	111	146	76	114	144	<b>7</b> 9	68-112	3	40

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/15/2010 16:21:24 u:\Stealth\Crystal.rpt\Form3DMS.rpt

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482

**Date Extracted:** 06/23/2010

**Date Analyzed:** 06/23/2010

Lab Control Spike Summary Gasoline Range Organics

**Extraction Method:** EPA 5035A/5030B

Analysis Method:

8015B

Units: mg/Kg

Level: Med

Basis: Dry

Extraction Lot: KWG1006137

Lab Control Sample KWG1006I37-3

Lab Control Spike

%Rec Limits

Analyte Name

Gasoline Range Organics (GRO)

Expected

%Rec

Result

48.1

50.0

96

76-123

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/15/2010 16:21:27  $u:\Stealth\Crystal.rpt\Form3LCS.rpt$ 

**Chlorinated Herbicides** 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482

**Date Collected:** 06/10/2010 **Date Received:** 06/23/2010

# **Chlorinated Herbicides**

Sample Name: Lab Code:

SRC-2010-8-1

K1006482-001

Units: ug/Kg Basis: Dry

**Extraction Method:** Analysis Method:

Method

8151A

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
MCPP	ND U	58000	15000	5	06/24/10	06/29/10	KWG1006203	
MCPA	ND U	58000	15000	5	06/24/10	06/29/10	KWG1006203	
Dichlorprop	ND U	290	53	5	06/24/10	06/29/10	KWG1006203	

Surrogate Name		Contr %Rec Limit	- Dute	Note
2,4-Dichlorophenylacetic Acid	lacetic Acid	71 27-16	6 06/29/10	Acceptable

Comments:

Printed: 07/08/2010 09:57:49 u:\Stealth\Crystal.rpt\Form1mNew.rpt

RR116383

1 of 1

Analytical Results

Client: Project: Pacific EcoRisk Laboratories ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482 **Date Collected:** 06/10/2010

**Date Received:** 06/23/2010

# **Chlorinated Herbicides**

Sample Name: Lab Code:

SRC-2010-8-2 K1006482-002 Units: ug/Kg Basis: Dry

Extraction Method: Method

Analysis Method:

8151A

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
МСРР	ND U	41000	13000	5	06/24/10	06/29/10	KWG1006203	
MCPA	ND U	41000	13000	5	06/24/10	06/29/10	KWG1006203	
Dichlorprop	ND Ui	210	65	5	06/24/10	06/29/10	KWG1006203	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2,4-Dichlorophenylacetic Acid	65	27-166	06/29/10	Acceptable

Comments:

Printed: 07/08/2010 09:57:53  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482

**Date Collected:** 06/10/2010 **Date Received:** 06/23/2010

**Chlorinated Herbicides** 

Sample Name: Lab Code: SRC-2010-8-3

Units: ug/Kg Basis: Dry

Extraction Method: Method

K1006482-003

Level: Low

Analysis Method:

8151A

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
MCPP	ND U	66000	18000	5	06/24/10	06/29/10	KWG1006203	
MCPA	ND U	66000	18000	5	06/24/10	06/29/10	KWG1006203	
Dichlorprop	ND Ui	330	330	5	06/24/10	06/29/10	KWG1006203	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2,4-Dichlorophenylacetic Acid	59	27-166	06/29/10	Acceptable

Comments:

 $\begin{array}{lll} Printed: & 07/08/2010 & 09:57:57 \\ u:\Stealth\Crystal.rpt\Form\ImNew.rpt \end{array}$ 

Analytical Results

Client: Project: Pacific EcoRisk Laboratories ACOE San Rafael Channel/16087

ND U

ND U

Sample Matrix:

Sediment

Service Request: K1006482

**Date Collected:** 06/10/2010

Note

**Date Received:** 06/23/2010

# Chlorinated Herbicides

Sample Name: Lab Code:

**MCPA** 

Dichlorprop

SRC-2010-8-4

K1006482-004

Units: ug/Kg Basis: Dry

**Extraction Method:** 

Method

Analysis Method:

8151A

Level: Low

KWG1006203

KWG1006203

Analyte Name	Result O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot
MCPP	ND U	56000	15000	5			KWG1006203

56000

280

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2,4-Dichlorophenylacetic Acid	110	27-166	06/29/10	Acceptable

15000

51

5

5

06/24/10

06/24/10

06/29/10

06/29/10

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482

Date Collected: NA

Date Received: NA

## **Chlorinated Herbicides**

Sample Name:

Lab Code:

Method Blank

KWG1006203-4

Extraction Method: Method

Units: ug/Kg Basis: Dry

Level: Low

Analysis Method: 8151A

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
МСРР	ND U	4900	2600	1	06/24/10	06/28/10	KWG1006203	
MCPA	ND U	4900	2600	1	06/24/10	06/28/10	KWG1006203	
Dichlorprop	ND U	25	9.1	1	06/24/10	06/28/10	KWG1006203	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2,4-Dichlorophenylacetic Acid	76	27-166	06/28/10	Acceptable

Comments:

Printed: 07/08/2010 09:58:05 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Page 1 of 1

RR116383

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482

**Surrogate Recovery Summary Chlorinated Herbicides** 

Extraction Method: Method Analysis Method:

8151A

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1
SRC-2010-8-1	K1006482-001	71 D
SRC-2010-8-2	K1006482-002	65 D
SRC-2010-8-3	K1006482-003	59 D
SRC-2010-8-4	K1006482-004	110 D #
Method Blank	KWG1006203-4	76
SRC-2010-8-1MS	KWG1006203-1	70 D
SRC-2010-8-1DMS	KWG1006203-2	67 D
Lab Control Sample	KWG1006203-3	72

Surrogate Recovery Control Limits (%)

Sur1 = 2,4-Dichlorophenylacetic Acid

27-166

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/08/2010 09:58:09  $u:\Stealth\Crystal,rpt\Form2.rpt$ 

RR116383

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482 **Date Extracted:** 06/24/2010

**Date Analyzed:** 06/29/2010

# Matrix Spike/Duplicate Matrix Spike Summary **Chlorinated Herbicides**

Sample Name:

SRC-2010-8-1

Lab Code:

K1006482-001

Basis: Dry

**Extraction Method:** 

Method

Level: Low

Analysis Method: 8151A

Extraction Lot: KWG1006203

Units: ug/Kg

SRC-2010-8-1MS KWG1006203-1

SRC-2010-8-1DMS KWG1006203-2

	Sample	N	Aatrix Spike		Duplic	cate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
MCPP	ND	31500	19400	162	64000	19400	330 *	10-192	68 *	40
MCPA	ND	9440	19400	49	6020	19400	31	10-165	44 *	40
Dichlorprop	ND	198	194	102	208	194	107	29-149	5	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/08/2010 09:58:12 

Form 3A - Organie 58

Page I of 1

SuperSet Reference: RR116383

QA/QC Report

Client: Project:

Sample Matrix:

Pacific EcoRisk Laboratories

ACOE San Rafael Channel/16087

Sediment

Service Request: K1006482 **Date Extracted:** 06/24/2010

**Date Analyzed:** 06/28/2010

Lab Control Spike Summary **Chlorinated Herbicides** 

Extraction Method: Method Analysis Method:

8151A

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1006203

Lab Control Sample KWG1006203-3

	LabLab	Lab Control Spike			
Analyte Name	Result	Expected	%Rec	%Rec Limits	
MCPP	7970	8330	96	49-116	
MCPA	6620	8330	79	52-111	
Dichlorprop	59.5	83.3	71	58-112	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/08/2010 09:58:15  $u:\Stealth\Crystal.rpt\Form3LCS.rpt$ 

**Semi-Volatile Organic Compounds** 

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

**Project:** 

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482

**Date Collected:** 06/10/2010 **Date Received:** 06/23/2010

# Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SRC-2010-8-1

Lab Code:

K1006482-001

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

**Analysis Method:** 

8270C

Analyte Name	Result O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Phenol	ND U	350	24	10	06/24/10	07/12/10	KWG1006611	
Pentachlorophenol	ND U	1200	240	10	06/24/10	07/12/10	KWG1006611	

Comments:

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

**Project:** 

ACOE San Rafael Channel/16087

**Sample Matrix:** 

Sediment

Service Request: K1006482

**Date Collected:** 06/10/2010

**Date Received:** 06/23/2010

# Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SRC-2010-8-2

Lab Code:

K1006482-002

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8270C

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Phenol	<b>29</b> JD	250	20	10	06/24/10	07/12/10	KWG1006611	
Pentachlorophenol	ND U	830	200	10	06/24/10	07/12/10	KWG1006611	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6 2,4,6-Tribromophenol	63 7 <b>4</b>	20-86 10-119	07/12/10 07/12/10	Acceptable Acceptable	

Comments:

Printed: 07/16/2010 08:35:09 

62

Analytical Results

Client:

Pacific EcoRisk Laboratories

ACOE San Rafael Channel/16087

Project: Sample Matrix:

Sediment

Service Request: K1006482

**Date Collected:** 06/10/2010

**Date Received:** 06/23/2010

# Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SRC-2010-8-3

Lab Code:

K1006482-003

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

**Analysis Method:** 

8270C

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Phenol	ND Ui	590	590	10	06/24/10	07/12/10	KWG1006611	
Pentachlorophenol	ND U	1400	270	10	06/24/10	07/12/10	KWG1006611	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Phenol-d6	60	20 <b>-8</b> 6	07/12/10	Acceptable Acceptable
2,4,6-Tribromophenol	71	10 <b>-</b> 119	07/12/10	

Comments:

SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482

**Date Collected:** 06/10/2010 **Date Received:** 06/23/2010

# Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SRC-2010-8-4

Lab Code:

K1006482-004

**Extraction Method:** 

Analysis Method:

EPA 3541 8270C

Units: ug/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Phenol	ND U	330	22	10	06/24/10	07/12/10	KWG1006611	
Pentachlorophenol	ND U	1100	220	10	06/24/10	07/12/10	KWG1006611	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	60	20-86	07/12/10	Acceptable	
2,4,6-Tribromophenol	71	10-119	07/12/10	Acceptable	

Comments:

Printed: 07/16/2010 08:35:15  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Form 1A - Organic

1 of 1 Page

SuperSet Reference: RR116776

Merged

Analytical Results

Client:

Pacific EcoRisk Laboratories

**Project:** 

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

**Service Request:** K1006482

Date Collected: NA

Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG1006611-5

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Analysis Method:

8270C

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Phenol	ND U	15	2.0	1	06/24/10	07/09/10	KWG1006611	
Pentachlorophenol	ND U	49	20	1	06/24/10	07/09/10	KWG1006611	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Phenol-d6	60	20-86	07/09/10	Acceptable Acceptable
2,4,6-Tribromophenol	58	10-119	07/09/10	

Comments:

Printed: 07/16/2010 08:35:18  $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} We will describe the problem of  

QA/QC Report

Client:

Pacific EcoRisk Laboratories

**Project:** 

ACOE San Rafael Channel/16087

**Sample Matrix:** 

Sediment

**Surrogate Recovery Summary** Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3541

**Analysis Method:** 

8270C

Service Request: K1006482

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2
SRC-2010-8-1	K1006482-001	57 D	69 D
SRC-2010-8-2	K1006482-002	63 D	74 D
SRC-2010-8-3	K1006482-003	60 D	71 D
SRC-2010-8-4	K1006482-004	60 D	71 D
Method Blank	KWG1006611-5	60	58
Batch QC	K1006356-008	62 D	65 D
Batch QCMS	KWG1006611-1	59 D	71 D
Batch QCDMS	KWG1006611-2	74 D	83 D
Lab Control Sample	KWG1006611-3	70	75
Duplicate Lab Control Sample	KWG1006611-4	58	59

Surrogate Recovery Control Limits (%)

Surl = Phenol-d6Sur2 = 2,4,6-Tribromophenol

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/16/2010 08:35:23

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page

1 of 1

66

20-86 10-119

> RR116776 SuperSet Reference:

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE San Rafael Channel/16087

Sample Matrix:

Sediment

Service Request: K1006482

**Date Extracted:** 06/24/2010

**Date Analyzed:** 07/09/2010

Matrix Spike/Duplicate Matrix Spike Summary Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Batch QC

Lab Code:

K1006356-008

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8270C

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1006611

Batch QCMS

KWG1006611-1

**Batch QCDMS** 

KWG1006611-2

	Sample		Matrix Spike		Duplic	ate Matrix S	pike	%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Phenol	ND	140	262	54	158	262	60	15-98	12	40
Pentachlorophenol	ND	77.6	262	30	149	262	57	10-123	63 *	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/16/2010 08:35:26  $u:\Stealth\Crystal.rpt\Form3DMS.rpt$ 

Form 3A - Organic

RR116776 SuperSet Reference:

Page

1 of 1

67

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories

ACOE San Rafael Channel/16087

149

Sample Matrix:

Sediment

Service Request: K1006482 **Date Extracted:** 06/24/2010

**Date Analyzed:** 07/09/2010

Lab Control Spike/Duplicate Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

**Extraction Method: Analysis Method:** 

**Analyte Name** 

Pentachlorophenol

Phenol

EPA 3541

8270C

Units: ug/Kg Basis: Dry

Level: Low Extraction Lot: KWG1006611

Duplicate Lab Control Sample

KWG1006611-4

Lab Control Sample KWG1006611-3

**Duplicate Lab Control Spike** Lab Control Spike **RPD** %Rec **RPD** Limit Limits %Rec %Rec Result Expected Result **Expected** 40 28-91 19 250 52 158 250 63 130 40 41 21-97 37 250 103 250 60

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

RR116776

SuperSet Reference:



July 16, 2010

Analytical Report for Service Request No: K1006559

Jeffrey Cotsifas Pacific EcoRisk Laboratories 2250 Cordelia Road Fairfield, CA 94534

RE: ACOE (San Rafael Channel)

Dear Jeffrey:

Enclosed are the results of the rush samples submitted to our laboratory on June 24, 2010. For your reference, these analyses have been assigned our service request number K1006559.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Divvela Project Chemist

PD/ln

Page 1 of 139

# Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

#### Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOO/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value that was detected outside the quantitation range.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  - DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

# Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	_







**Case Narrative** 

Client:

Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Service Request No.: Date Received:

K1006559 06/24/10

Project: Sample Matrix:

Sediment

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

#### Sample Receipt

Two sediment samples were received for analysis at Columbia Analytical Services on 06/24/10. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

## **General Chemistry Parameters**

No anomalies associated with the analysis of these samples were observed.

#### **Total Metals**

#### **Matrix Spike Recovery Exceptions:**

The control criteria for matrix spike recovery of Manganese for sample SF 10 were not applicable. The analyzed concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

No other anomalies associated with the analysis of these samples were observed.

#### **Diesel Range Organics by EPA Method 8015B**

No anomalies associated with the analysis of these samples were observed.

#### Gasoline Range Organics by EPA Method 8015B

No anomalies associated with the analysis of these samples were observed.

#### **Organotin Compounds**

## **Calibration Verification Exceptions:**

The analysis of Butyltins requires the use of dual column confirmation. When the CCV criterion is met for both columns, the higher of the two sample results is generally reported. The primary evaluation criteria were not met on the confirmation column for Di-n-butyltin Cation. The results were reported from the column with an acceptable CCV. The data quality was not affected. No further corrective action was necessary.

No other anomalies associated with the analysis	of these samples were observed.
	RI MIZILL
Approved by	Date
11	

## Organochlorine Pesticides by EPA Method 8081A

#### **Elevated Detection Limits:**

The detection limit was elevated for 4,4-DDT in sample SF 10. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compound at the normal limit. The results were flagged to indicate the matrix interference.

No other anomalies associated with the analysis of these samples were observed.

#### PCB Aroclors by EPA Method 8082

## **Lab Control Sample Exceptions:**

The upper control criterion was exceeded for Aroclor 1016 and Aroclor 1260 in Laboratory Control Sample (LCS) KWG1006609-13. The analytes in question were not detected in the associated field samples. The error associated with elevated recovery indicated a high bias. The sample data was not significantly affected. No further corrective action was appropriate.

No other anomalies associated with the analysis of these samples were observed.

## **Chlorophenoxy Herbicides by EPA Method 8151**

#### **Calibration Verification Exceptions:**

The upper control criterion was exceeded for MCPP and/or MCPA in Continuing Calibration Verification (CCV) 0715F004 and 0715F012. The field samples analyzed in this sequence did not contain the analyte(s) in question. Since the apparent problem indicated a potential high bias, the data quality was not affected. No further corrective action was required.

No other anomalies associated with the analysis of these samples were observed.

#### Semivolatile Organic Compounds by EPA Method 8270C

No anomalies associated with the analysis of these samples were observed.

## Polynuclear Aromatic Hydrocarbons by EPA Method 8270C

No anomalies associated with the analysis of these samples were observed.

## Dioxins and Furans by EPA Method 8290

Dioxin and Furan analysis by EPA Method 1613B was performed at Columbia Analytical Services laboratory in Houston, TX. The narrative for this analysis can be found in the corresponding section of this data package.



**Chain of Custody** 



# CAS CHAIN-OF-CUSTODY RECORD

# 004

	Client Name:	Pacific Eco	Risk			·····		REQUESTED ANALYSIS									
	Client Address:	1	2250 Cordelia Rd. Fairfield, CA 94534														
	Sampled By:	Mike McElr	Mike McElroy														
	Phone:	(707) 207-7															
	FAX:	(707) 207-7	7916				불										
	Project Manager:	Jeff Cotsifa	S				Scope of Work	Analyis									
	Project Name:	ACOE (Sar	n Rafael Cha	annel)			l o	Ans									
	PO Number:	16087					3	Size,									
		0	0	Communic	0.			S									
	Client Sample ID	Sample Date	Sample Time	Sample Matrix*	Number	ontainer Type	See	Grain									
4	SF 10	6/15/10	10:05	Sed	2		*							<del> </del>			-
1	SF 10 SF 10	6/15/10	10:05	Sed	1	8oz glass	X							<u> </u>	<u> </u>		<del>                                     </del>
2	<del></del>	6/15/10	9:30	Sed	2	1 poly bag	+	Х									<del> </del>
ە 4	SF 11	6/15/10	9:30	Sed	1	8oz glass	X	.,									
4 5		0/15/10	9.30	Sed	<u> </u>	1 poly bag	<del>                                     </del>	X						<u> </u>	<u> </u>		
6							<u> </u>										
7					<u> </u>												<del> </del>
8	***************************************													<b></b>			<u> </u>
9							<b>†</b>							<del> </del>	ļ		<u> </u>
10							<u> </u>						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	Correct Containers:	Yes	No		ì	1	Λ	RE	LIQU	NSHE	D BY	''		·		·	·
	Sample Temperature:	Ambient	Cold	Warm	Signature	//_	1/2			Signa	turo:	-4	4	a et			
	Sample Preservative:	Yes	No		Jigilature	1/33	40			Signa	itui e,	Jan-	v 70m	7 >			
	Turnaround Time: Comments:	STD	Specify:		Print:	TERREM	10	Avil	()	Print:		Ter	_ J				
	* Analyze for all of the constitue	ents in Table	1 of the AC	OE Master	Organizati		7	-		0	nizatio	<u> </u>					
	SAP and the constituents identi	fied in Secti	on L of the	USFWS	<del></del>	ion. FER		1//	<u>(1) A</u>	<del> </del>				>			
	Biological Opinion for placemer constituents that are not in Table				DATE: (	0/23/10	TIME			DATE	·	6/24	10		TIME	09	15
	reporting limits than the Master							RECE	IVED	BY							
	San Rafael Channel SOW. Anal				Signature					Signa	ıture:						
					Print:					Print:	•						
					Organizat	ion:				Orgai	nizatio	n:					
DATE:							TIME	•	who	DATE	:				TIME	1	

# Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

PC_PA

Client / Project: <u>Pac. F. c</u> Received: <u>6/24//0</u>	Econisk		S	ervice Reque	est <i>K10</i>	6559			
Received: 6/24/10	_ Opened: 6/24/10	)	By:_	2000		¥.			
<ol> <li>Samples were received via?</li> <li>Samples were received in: (cir</li> </ol>	Mail Fed Ex	UPS Box	DHL Envelope	PDX C	ourier E	Hand Deliverea		NA	
3. Were <u>custody seals</u> on coolers				•					
If present, were custody seals	intact? Y	N	If p	resent, were t	they signed	and dated?		Y	N
Cooler Temp Temp °C Blank °C	Thermometer ID	Cooler/C ID	COC NA		Tracki	ing Number	N	IA File	d
0.4	287							7	
7. Packing material used. <i>Inse</i>	rts Baggies Bubl	ole Wrap	Gel Packs	Wet Ice S	lleeves Oti	her			
8. Were custody papers properly			,				NA	0	N
9. Did all bottles arrive in good c	condition (unbroken)?	Indicate	in the table	below.			NA	Ø	N
10. Were all sample labels comple							NA	Ø	N
11. Did all sample labels and tags	agree with custody p	apers? Ind	licate major	discrepancie.	s in the table	e on page 2.	NA	<b>©</b>	N
12. Were appropriate bottles/cont.	ainers and volumes re	ceived for	the tests ind	icated?		. 0	NA	$\widetilde{\odot}$	N
13. Were the pH-preserved bottle	s (see SMO GEN SOP)	received at	the appropr	iate pH? Ind	icate in the i	table below	NA	Y	N
14. Were VOA vials received with							MA	Y	N
15. Was C12/Res negative?							NA	Y	N
Sample ID on Bottle		Sample ID o	n COC			Identified by:			
Sample ID		it of Head- emp space	Broke pH	Reagent	Volume added		ot Initia	ls Tim	ie
Notes, Discrepancies, & Resolu	itions:						1		
			4						

# **Total Solids**

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE (San Rafael Cha

Sample Matrix:

Sediment

**Total Solids** 

Prep Method:

NONE

Analysis Method:

160.3M

Units: PERCENT

Service Request: K1006559

Basis: Wet

Test Notes:

Sample Name	Lab Code	Date Collected	Date Received	Date Analyzed	Result	Result Notes
SF 10	K1006559-001	06/15/2010	06/24/2010	06/29/2010	67.1	
SF 11	K1006559-002	06/15/2010	06/24/2010	06/29/2010	80.9	

Printed: 06/29/2010 14:58 u:\Stealth\Crystal.rpt\Solids.rpt

Page SuperSet Reference: W1006304

SuperSet Reference: W10

12

QA/QC Report

Client:

Pacific EcoRisk Laboratories ACOE (San Rafael Cha

Project: Sample Matrix:

Sediment

Service Request: K1006559

**Date Collected:** 06/15/2010 **Date Received:** 06/24/2010

**Date Analyzed:** 06/29/2010

**Duplicate Sample Summary Total Solids** 

Prep Method:

**NONE** 

Units: PERCENT

Analysis Method:

160.3M

Basis: Wet

**Test Notes:** 

Duplicate Relative Sample Percent Sample Result Result Difference Notes Lab Code Result Average Sample Name K1006559-001 67.1 67.4 67.3 <1 SF 10

Printed: 06/29/2010 14:58  $u:\Stealth\Crystal.rpt\Solids.rpt$ 

SuperSet Reference: W1006304

13

Page

Analytical Results

Client: Pacific EcoRisk Laboratories

Project: ACOE (San Rafael Cha

Sample Matrix: Sediment

**Total Solids** 

Prep Method: Analysis Method: NONE 160.3M Units: PERCENT Basis: Wet

Service Request: K1006559

Test Notes:

Result Date Date Date Analyzed Notes Collected Received Result Lab Code Sample Name K1006559-001 06/15/2010 06/24/2010 06/29/2010 67.1 SF 10 80.9 06/29/2010 SF 11 K1006559-002 06/15/2010 06/24/2010

Printed: 07/06/2010 13:15  $u:\Stealth\Crystal.rpt\Solids.rpt$ 

SuperSet Reference: W1006304

14

I of

**General Chemistry Parameters** 

Analytical Report

Client: Project Name:

Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Service Request: K1006559 Date Collected: 06/15/10

Project Number: NA Sample Matrix:

**SEDIMENT** 

Date Received: 06/24/10

Carbon, Total Organic (TOC)

Prep Method:

Method

Units: Percent

Analysis Method:

ASTM D4129-82M

Basis: Dry, per method

Test Notes:

Sample Name	Lab Code	MRL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Result	Result Notes
SF 10	K1006559-001	0.050	0.020	1	6/24/2010	07/10/10	0.871	
SF 11	K1006559-002	0.050	0.020	1	6/24/2010	07/10/10	0.271	
Method Blank	K1006559-MB	0.050	0.020	1	NA	07/10/10	ND	

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project Name:

ACOE (San Rafael Channel)

Project Number: NA

Sample Matrix:

**SEDIMENT** 

Service Request: K1006559

Date Collected: NA Date Received: NA

Date Prepared: NA

Date Analyzed: 07/10/10

**Duplicate Summary Inorganic Parameters** 

Sample Name:

Batch QC

Lab Code: Test Notes: K1006477-001DUP

Units: Percent

Basis: Dry, per method

Duplicate Prep Analysis Sample Sample Analyte Method Method Result Average Difference Notes MRL Result

Carbon, Total Organic (TOC)

Method

ASTM D4129-82M

0.050

4.33

3.56

3.95

19

Relative

Percent Result

Report By: MKANALY

Printed: 7/12/2010 2:32:56PM

17

QA/QC Report

Client:

Pacific EcoRisk Laboratories

**Project Name:** 

ACOE (San Rafael Channel)

Project Number: NA

NA

Sample Matrix:

SEDIMENT

Service Request: K1006559

Date Collected: NA
Date Received: NA

Date Prepared: NA

Date Analyzed: 07/10/10

Matrix Spike/Duplicate Matrix Spike Summary

Sample Name : Lab Code : Batch QC

K1006477-001MS

K1006477-001DMS

Units: Percent

Basis: Dry, per method

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Spike MS	e Level DMS	Sample Result	Spike MS	Result DMS	Rec	oike overy DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Carbon, Total Organic (TOC)	Method	ASTM D4129-82M	0.050	12.0	10.8	4.33	14.8	15.5	87	103	77-155	17	

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project Name:

ACOE (San Rafael Channel)

Project Number: Sample Matrix:

NA SOIL

Service Request: Date Collected:

K1006559 NA

Date Received: NA Date Prepared: NA

Date Analyzed: 07/10/10

Laboratory Control Sample Summary **Inorganic Parameters** 

Sample Name:

Lab Control Sample

Lab Code:

K1006559-LCS

Units: Percent

Basis: Dry, per method

Test Notes:

						CAS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result		Recovery Acceptance Limits	Result Notes
Carbon, Total Organic (TOC)	Method	ASTM D4129-82M	0.550	0.476	87	82-119	

QA/QC Report

Client: Pacific EcoRisk Laboratories Service Request: K1006559

Project: ACOE (San Rafael Channel)

Date Collected: NA

Date Received: NA

Carbon, Total Organic (TOC) ASTM D4129-82M Units: Percent

# **CONTINUING CALIBRATION VERIFICATION (CCV)**

	Date Analyzed	True Value	Measured Value	Percent Recovery
CCV1 Result	7/10/2010	20.0	19.7	99
CCV2 Result	7/10/2010	20.0	19.6	98
CCV3 Result	7/10/2010	20.0	19.1	96

20

Printed: 7/12/2010 2:33:13PM

QA/QC Report

Client:Pacific EcoRisk LaboratoriesService Request:K1006559Project:ACOE (San Rafael Channel)Date Collected:NA

Date Collected: NA
Date Received: NA

Carbon, Total Organic (TOC) ASTM D4129-82M Units: Percent

21

# **CONTINUING CALIBRATION BLANK (CCB)**

	Date Analyzed	MRL	Blank Value
CCB1 Result	7/10/2010	0.050	ND
CCB2 Result	7/10/2010	0.050	ND
CCB3 Result	7/10/2010	0.050	ND

Printed: 7/12/2010 2:33:13PM

# Analytical Report

Pacific EcoRisk Laboratories Client: Project: ACOE (San Rafael Channel)

Sample Matrix: Sediment

**Service Request: Date Collected:** 6/15/2010 **Date Received:** 6/24/2010 Date Analyzed: 7/1/2010

K1006559

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: SF 10

Lab Code: K1006559-001

> 47.7799 Sand Fraction: Dry Weight (Grams) Sand Fraction: Weight Recovered (Grams) 48.1468 101 Sand Fraction: Percent Recovery

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	8.1776	14.4
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	2.0267	3.58
Sand, Coarse (0.50	0 to 1 Ø	4.9241	8.69
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	19.6441	34.7
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	9.0624	16.0
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	2.2125	3.91
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	6.4500	11.4
Clay (< 0.0039 mm)	> 8 Ø	6.1050	10.8
L	Total	58.6024	103

# Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE (San Rafael Channel)

Sample Matrix: Sediment

 Service Request:
 K1006559

 Date Collected:
 6/15/2010

 Date Received:
 6/24/2010

 Date Analyzed:
 7/1/2010

Particle Size Determination
Puget Sound Estuary Program Protocol

Sample Name:

SF 11

Lab Code:

K1006559-002

Sand Fraction:Dry Weight (Grams)54.7123Sand Fraction:Weight Recovered (Grams)54.5433Sand Fraction:Percent Recovery99.7

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	1.3491	2.34
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	0.1604	0.28
Sand, Coarse (0.50	0 to 1 Ø	1.4568	2.52
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	39.9556	69.2
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	11.2923	19.6
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	0.2914	0.50
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	0.3850	0.67
Clay (< 0.0039 mm)	> 8 Ø	0.8000	1.39
<u> </u>	Total	55,6906	96.4

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE (San Rafael Channel)

Sample Matrix: Sediment

Service Request:

K1006559

**Date Collected:** 

NA NA

Date Received: Date Analyzed:

7/1/2010

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: Batch QC

Lab Code:

K1006639-001

Sand Fraction: Dry Weight (Grams)

15.3109

Sand Fraction: Weight Recovered (Grams)

14.7400

Sand Fraction: Percent Recovery

96.3

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	1.0266	2.91
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	0.7347	2.08
Sand, Coarse (0.50	0 to 1 Ø	1.6235	4.60
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	1.9505	5.53
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	1.0719	3.04
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	3.0650	8.68
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	17.4750	49.5
Clay (< 0.0039 mm)	> 8 Ø	7.4100	21.0
	Total	34.3572	97.3

#### Analytical Report

Client: Pacific EcoRisk Laboratories Service Request: K1006559 Project: ACOE (San Rafael Channel) **Date Collected:** NA

Sample Matrix: Sediment Date Received: NA

Date Analyzed: 7/1/2010

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: Batch QC

Lab Code: K1006639-001DUP

> Sand Fraction: Dry Weight (Grams) 13.1066 12.7392 Sand Fraction: Weight Recovered (Grams) 97.2 Sand Fraction: Percent Recovery

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	2.1883	6.95
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	1.0291	3.27
Sand, Coarse (0.50	0 to 1 Ø	2.4145	7.67
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	1.6424	5.22
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	0.8600	2.73
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	2.0133	6.40
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	13.6350	43.3
Clay (< 0.0039 mm)	> 8 Ø	7.6500	24.3
	Total	31.4326	100

#### Analytical Report

Client:

Pacific EcoRisk Laboratories

**Project:** 

ACOE (San Rafael Channel)

Sample Matrix: Sediment

Service Request:

K1006559

**Date Collected:** 

NA NA

Date Received: Date Analyzed:

7/1/2010

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: Batch QC

Lab Code:

K1006639-001TRP

Sand Fraction: Dry Weight (Grams)

14.6145

Sand Fraction: Weight Recovered (Grams)

14.2727

Sand Fraction: Percent Recovery

97.7

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel (>2.00 mm)	<-1 Ø	0.4513	1.27
Sand, Very Coarse (1.00 mm to 2.00 mm)	-1 to 0 Ø	1.3773	3.88
Sand, Coarse (0.50	0 to 1 Ø	2.2650	6.38
Sand, Medium (0.250 mm to 0.500 mm)	1 to 2 Ø	2.4836	7.00
Sand, Fine (0.125 mm to 0.250 mm)	2 to 3 Ø	1.7124	4.82
Sand, Very Fine (0.0625 mm to 0.125 mm)	3 to 4 Ø	3.2969	9.29
Silt (0.0039 mm to 0.0625 mm)	4 to 8 Ø	16.6900	47.0
Clay (< 0.0039 mm)	> 8 Ø	8.3550	23.5
	Total	36.6315	103

# Columbia Analytical Services

# - Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Service Request: K1006559

Project Name: Project No.:

Sample Name:	Lab Code:
Batch QC1D	K1006518-001D
Batch QC1S	K1006518-001S
SF 10	K1006559-001
SF 10D	K1006559-001D
SF 10S	K1006559-001S
SF 11	K1006559-002
Method Blank	K1006559-MB

mm	en	ts:
	mm	mmen

Approved By:	<u> </u>		Date:	7/	1/3/10
--------------	----------	--	-------	----	--------

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client: Pacific EcoRisk Laboratories Service Request: K1006559

Project No.:

NA

Date Collected: 06/15/10

Project Name: ACOE (San Rafael Channel)

Date Received: 06/24/10

Matrix:

SEDIMENT

Units: mg/Kg

Basis: DRY

Sample Name:

SF 10

Lab Code:

K1006559-001

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.53	0.05	5.0	06/28/10	06/30/10	8.02		
Barium	6010B	2.1	0.3	2.0	06/29/10	07/03/10	38.4		
Beryllium	6020	0.021	0.003	5.0	06/28/10	06/30/10	0.352		
Boron	6010B	11	0.3	2.0	06/29/10	07/03/10	0.3	บ	
Cadmium	6020	0.021	0.004	5.0	06/28/10	06/30/10	0.145		
Chromium	6020	0.21	0.02	5.0	06/28/10	06/30/10	42.2		
Cobalt	6020	0.021	0.001	5.0	06/28/10	06/30/10	13.7		
Copper	6020	0.11	0.08	5.0	06/28/10	06/30/10	24.3		
Lead	6020	0.052	0.006	5.0	06/28/10	06/30/10	14.1		
Manganese	6010B	2.10	0.04	2.0	06/29/10	07/03/10	434		
Mercury	7471A	0.010	0.001	1.0	06/30/10	07/02/10	0.138		
Nickel	6020	0.21	0.02	5.0	06/28/10	06/30/10	59.9		
Selenium	7742	0.11	0.03	2.0	06/29/10	07/09/10	0.04	J	
Silver	6020	0.021	0.008	5.0	06/29/10	06/30/10	0.106		
Vanadium	6010B	2.1	0.4	2.0	06/29/10	07/03/10	52.3		
Zinc	6010B	2.1	0.3	2.0	06/29/10	07/03/10	67.3		

% Solids:

67.1

Comments:

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client: Pacific EcoRisk Laboratories Service Request: K1006559

Project No.: NA

Date Collected: 06/15/10

Project Name: ACOE (San Rafael Channel)

Date Received: 06/24/10

Matrix:

SEDIMENT

Units: mg/Kg

Basis: DRY

Sample Name:

SF 11

Lab Code:

K1006559-002

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.51	0.05	5.0	06/28/10	06/30/10	4.12		
Barium	6010B	2.1	0.3	2.0	06/29/10	07/03/10	8.5		
Beryllium	6020	0.020	0.003	5.0	06/28/10	06/30/10	0.140		
Boron	6010B	10	0.3	2.0	06/29/10	07/03/10	2.0	J	
Cadmium	6020	0.020	0.004	5.0	06/28/10	06/30/10	0.035		
Chromium	6020	0.20	0.02	5.0	06/28/10	06/30/10	21.4		
Cobalt	6020	0.020	0.001	5.0	06/28/10	06/30/10	7.090		
Copper	6020	0.10	0.08	5.0	06/28/10	06/30/10	4.13		
Lead	6020	0.051	0.006	5.0	06/28/10	06/30/10	6.840		
Manganese	6010B	2.06	0.04	2.0	06/29/10	07/03/10	303		
Mercury	7471A	0.017	0.002	1.0	06/30/10	07/02/10	0.033		
Nickel	6020	0.20	0.02	5.0	06/28/10	06/30/10	27.4		
Selenium	7742	0.10	0.03	2.0	06/29/10	07/09/10	0.03	ט	
Silver	6020	0.021	0.008	5.0	06/29/10	06/30/10	0.018	J	
Vanadium	6010B	2.1	0.4	2.0	06/29/10	07/03/10	18.6		
Zinc	6010B	2.1	0.3	2.0	06/29/10	07/03/10	23.6		

% Solids:

80.9

Comments:

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Pacific EcoRisk Laboratories Service Request: K1006559

Project No.:

NA

Date Collected:

Project Name: ACOE (San Rafael Channel)

Date Received:

Matrix:

SEDIMENT

Units: mg/Kg

Basis: DRY

Sample Name:

Method Blank

Lab Code:

K1006559-MB

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	C	Q
Arsenic	6020	0.50	0.05	5.0	06/28/10	06/30/10	0.05	บ	
Barium	6010B	2.0	0.3	2.0	06/29/10	07/03/10	0.3	บ	
Beryllium	6020	0.020	0.003	5.0	06/28/10	06/30/10	0.003	บ	
Boron	6010B	10	0.3	2.0	06/29/10	07/03/10	0.3	บ	
Cadmium	6020	0.020	0.004	5.0	06/28/10	06/30/10	0.004	ט	
Chromium	6020	0.20	0.02	5.0	06/28/10	06/30/10	0.05	J	
Cobalt	6020	0.020	0.001	5.0	06/28/10	06/30/10	0.006	J	
Copper	6020	0.10	0.08	5.0	06/28/10	06/30/10	0.08	บ	
Lead	6020	0.050	0.006	5.0	06/28/10	06/30/10	0.060		
Manganese	6010B	2.00	0.04	2.0	06/29/10	07/03/10	0.04	บ	
Mercury	7471A	0.020	0.002	1.0	06/30/10	07/02/10	0.002	บ	
Nickel	6020	0.20	0.02	5.0	06/28/10	06/30/10	0.04	J	
Selenium	7742	0.10	0.03	2.0	06/29/10	07/09/10	0.03	ט	
Silver	6020	0.020	0.008	5.0	06/29/10	06/30/10	0.008	ט	
Vanadium	6010B	2.0	0.4	2.0	06/29/10	07/03/10	0.6	J	
Zinc	6010B	2.0	0.3	2.0	06/29/10	07/03/10	0.3	บ	

% Solids: 100.0

Comments:

- 5A -

#### SPIKE SAMPLE RECOVERY

Client:

Pacific EcoRisk Laboratories

Service Request: K1006559

Units: MG/KG

Project No.: NA

?roject Name: ACOE (San Rafael Channel)

Basis: DRY

/atrix:

SEDIMENT

% Solids:

56.6

Sample Name: Batch QC1S

Lab Code: K1006518-001S

Analyte	Control Limit %R	Spike Result	С	Sample Result	С	Spike Added	%R	Q	Method
Mercury	60 - 135	0.474		0.046		0.49	87.3		7471A

- 5A -

#### SPIKE SAMPLE RECOVERY

Client:

Pacific EcoRisk Laboratories

Service Request: K1006559

?roject No.:

NA

Units: MG/KG

?roject Name: ACOE (San Rafael Channel)

Basis: DRY

4atrix:

SEDIMENT

% Solids:

67.1

Sample Name: SF 10S

Lab Code: K1006559-001S

Analyte	Control Limit %R	Spike Result	С	Sample Result	С	Spike Added	₹R	Q	Method
Arsenic	57 - 133	116		8.02		104.95	102.9		6020
Barium	60 - 139	457		38.4		425.80	98.3		6010B
Beryllium	64 - 133	12.1		0.352		10.50	111.9		6020
Boron	53 - 135	98		0.3	U	106.45	92.1		6010B
Cadmium	68 - 137	11.2		0.145		10.50	105.3		6020
Chromium	34 - 175	80.1		42.2		41.98	90.3		6020
Cobalt	74 - 118	116		13.7		104.95	97.5		6020
Copper	22 - 181	77.7		24.3		52.48	101.8		6020
Lead	27 - 178	123		14.1		104.95	103.8		6020
Manganese		542		434		106.45	101.5		6010B
Nickel	59 - 132	161		59.9		104.95	96.3		6020
Selenium	57 - 134	1.98		0.04	J	2.10	92.4		7742
Silver	62 - 131	11.2		0.106		10.65	104.2		6020
Vanadium	64 - 132	166		52.3		106.45	106.8		6010B
Zinc	13 - 172	181		67.3		106.45	106.8		6010B

# Columbia Analytical Services

#### Metals

- 6 -

#### **DUPLICATES**

Client:

Pacific EcoRisk Laboratories

Service Request: K1006559

Project No.:

NA

Project Name: ACOE (San Rafael Channel)

Units: Basis:

DRY

fatrix:

SEDIMENT

% Solids:

56.6

MG/KG

Sample Name:

Batch QC1D

Lab Code:

K1006518-001D

Analyte	Control Limit	Sample	(S)	С	Duplicate (D)	С	RPD	Q	Method
Mercury			0.046		0.046		0.0		7471A

- 6 -

### **DUPLICATES**

Client: Pacific EcoRisk Laboratories Service Request: K1006559

Project No.: NA Units: MG/KG

Project Name: ACOE (San Rafael Channel) Basis: DRY

fatrix: SEDIMENT **% Solids:** 67.1

Sample Name: SF 10D Lab Code: K1006559-001D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic	20	8.02		7.73		3.7		6020
Barium	30	38.4		32.7		16.0		6010B
Beryllium	20	0.352		0.334		5.2		6020
Boron		0.3	U	0.3	Ū			6010B
Cadmium	20	0.145		0.148		2.0		6020
Chromium	20	42.2		40.9		3.1		6020
Cobalt	20	13.7		12.8		6.8		6020
Copper	20	24.3		24.3		0.0		6020
Lead	20	14.1		14.1		0.0		6020
Manganese	30	434		467		7.3		6010B
Nickel	20	59.9		58.5		2.4		6020
Selenium		0.04	J	0.04	J	0.0		7742
Silver	20	0.106		0.108		1.9		6020
Vanadium	30	52.3		53.9		3.0		6010B
Zinc	30	67.3		68.1		1.2		6010B

- 7 -

# LABORATORY CONTROL SAMPLE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006559

Project No.:

Project Name: ACOE (San Rafael Channel)

Aqueous LCS Source:

Solid LCS Source: ERA D065540

	Aqueou	s: ug/L		Solid: mg/kg						
Analyte	True	Found	₽R	True	Found	C Li	mits	₽R		
Arsenic	1			88.3	88.2	78	122	99.9		
Barium				432	460	81	119	106.5		
Beryllium				58.2	60.6	83	117	104.1		
Boron				101	101	67	133	100.0		
Cadmium			1	91	87.2	81	119	95.8		
Chromium	1		l	144	133	80	119	92.4		
Cobalt	1		İ	190	188	82	118	98.9		
Copper				237	228	83	116	96.2		
Lead	1		ĺ	104	114	79	121	109.6		
Manganese			1	497	549	81	119	110.5		
Mercury	1		Ì	6.8	6.580	71	128	96.8		
Nickel			İ	200	196	81	118	98.0		
Selenium	1		ĺ	192	179	80	120	93.2		
Silver	1			76.4	85.6	66	134	112.0		
Vanadium			l	180	198	79	121	110.0		
Zinc	1		<u> </u>	292	313	73	121	107.2		

Butyltins

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

Project: Sample Matrix: ACOE (San Rafael Channel)

Sediment

Service Request: K1006559 **Date Collected:** 06/15/2010

**Date Received:** 06/24/2010

**Butyltins** (as cation)

Sample Name:

SF 10

Lab Code:

K1006559-001

**Extraction Method:** 

**METHOD** 

Units: ug/Kg Basis: Dry

Level: Low

**Analysis Method:** 

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	1.5	0.64	1	06/29/10	07/15/10	KWG1006968	
Tri-n-butyltin Cation	ND U	1.5	0.62	1	06/29/10	07/15/10	KWG1006968	
Di-n-butyltin Cation	<b>0.63</b> J	1.5	0.28	1	06/29/10	07/15/10	KWG1006968	
n-Butyltin Cation	0.93 J	1.5	0.38	1	06/29/10	07/15/10	KWG1006968	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	60	18-95	07/15/10	Acceptable

Comments:

Printed: 07/16/2010 11:52:40

 $u: \label{lem:linear_continuous_continuous} u: \label{lem:linear_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous$ 

RR116805

Analytical Results

Client: Project:

Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix: Sediment

**Service Request:** K1006559 **Date Collected:** 06/15/2010 **Date Received:** 06/24/2010

**Butyltins** (as cation)

Sample Name:

SF 11

Lab Code:

K1006559-002

Extraction Method:

METHOD

Analysis Method: Krone

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	1.3	0.54	1	06/29/10	07/15/10	KWG1006968	
Tri-n-butyltin Cation	ND U	1.3	0.53	1	06/29/10	07/15/10	KWG1006968	
Di-n-butyltin Cation	ND U	1.3	0.24	1	06/29/10	07/15/10	KWG1006968	
n-Butyltin Cation	ND U	1.3	0.32	1	06/29/10	07/15/10	KWG1006968	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	56	18-95	07/15/10	Acceptable	

Comments:

Printed: 07/16/2010 11:52:43 u:\Stealth\Crystal.rpt\FormlmNew.rpt

Form 1A - Organic

Page 1 of 1 SuperSet Reference: RR116805

Analytical Results

Client: Pacific EcoRisk Laboratories
Project: ACOE (San Rafael Channel)

Project: ACOE (San Rafael Channe Sample Matrix: Sediment

Service Request: K1006559

Date Collected: NA

Date Received: NA

Units: ug/Kg

**Butyltins** (as cation)

Sample Name: Method Blank Lab Code: KWG1006968-4

KWG1006968-4

Basis: Dry

METHOD

Level: Low

**Extraction Method:** METH **Analysis Method:** Krone

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Tetra-n-butyltin	ND U	0.97	0.44	l	06/29/10	07/15/10	KWG1006968	
Tri-n-butyltin Cation	ND U	0.97	0.43	1	06/29/10	07/15/10	KWG1006968	
Di-n-butyltin Cation	ND U	0.97	0.19	1	06/29/10	07/15/10	KWG1006968	
n-Butyltin Cation	ND U	0.97	0.26	1	06/29/10	07/15/10	KWG1006968	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	63	18-95	07/15/10	Acceptable	·

Comments:

Printed: 07/16/2010 11:52:46 u:\Stealth\Crystal.rpt\FormlmNew.rpt

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

Surrogate Recovery Summary Butyltins (as cation)

**Extraction Method: Analysis Method:** 

METHOD

Krone

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>
SF 10	K1006559-001	60

DI IO	11000555-001	00
SF 11	K1006559-002	56
Method Blank	KWG1006968-4	63
Batch QC	K1006453-001	69
Batch QCMS	KWG1006968-1	95
Batch QCDMS	KWG1006968-2	80
Lab Control Sample	KWG1006968-3	53

Surrogate Recovery Control Limits (%)

Surl = Tri-n-propyltin

18-95

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/16/2010 11:52:50

 $u:\Stealth\Crystal.rpt\Form2.rpt$ 

Form 2A - Organic

Page
SuperSet Reference: RR116805

1 of

QA/QC Report

Client:

Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Project: Sample Matrix:

Sediment

Service Request: K1006559 **Date Extracted:** 06/29/2010

**Date Analyzed:** 07/15/2010

# Matrix Spike/Duplicate Matrix Spike Summary **Butyltins** (as cation)

Sample Name:

Batch QC

Lab Code:

K1006453-001

**Extraction Method:** 

**METHOD** 

Analysis Method: Krone

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006968

Batch QCMS

Batch QCDMS KWG1006968-2

KWG1006968-1 Matrix Spike **Duplicate Matrix Spike** Sample %Rec **RPD** Result **Analyte Name** Limits **RPD** Result **Expected** %Rec Result Expected %Rec Limit 1.2 29.2 30.3 92 26.7 Tetra-n-butyltin 29.9 85 10-120 9 40 Tri-n-butyltin Cation 0.62 25.2 26.9 91 23.1 26.6 84 10-118 9 40 Di-n-butyltin Cation 0.53 20.8 23,3 87 17.8 23.0 75 10-145 15 40 n-Butyltin Cation 1.1 21.9 18.9 110 20.6 18.7 104 10-126 6 40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/16/2010 11:52:53

Form 3A - Organic

Page 1 of

SuperSet Reference: RR116805

QA/QC Report

Client: Pacific EcoRisk Laboratories Project: ACOE (San Rafael Channel)

Sample Matrix: Sediment Service Request: K1006559 **Date Extracted:** 06/29/2010 **Date Analyzed:** 07/15/2010

Lab Control Spike Summary **Butyltins** (as cation)

Extraction Method: METHOD **Analysis Method:** Krone

Units: ug/Kg Basis: Dry Level: Low

Extraction Lot: KWG1006968

Lab Control Sample KWG1006968-3 Lah Control Spike

	Lab	Control Spike	e	%Rec
Analyte Name	Result	Expected	%Rec	Limits
Tetra-n-butyltin	13.9	25.0	55	30-110
Tri-n-butyltin Cation	11.5	22.2	52	25-101
Di-n-butyltin Cation	10.3	19.2	53	35-108
n-Butyltin Cation	8.93	15.6	57	20-123

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/16/2010 11:52:56 u:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic SuperSet Reference: RR116805

43

1 of 1

**Diesel & Residual Range Organics** 

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

**Date Collected:** 06/15/2010

**Date Received:** 06/24/2010

#### Diesel and Residual Range Organics

Sample Name:

SF 10

Lab Code:

K1006559-001

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 3550B

Level: Low

**Analysis Method:** 

8015B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	8.8 J	37	2.4	1	06/29/10	07/08/10	KWG1006626	
Residual Range Organics (RRO)	34 I	37	43	1	06/29/10	07/08/10	KWG1006626	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	76	51-126	07/08/10	Acceptable	
n-Triacontane	77	50-150	07/08/10	Acceptable	

Comments:

Printed: 07/13/2010 13:02:37  $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Analytical Results

Client: Pacific EcoRisk Laboratories
Project: ACOE (San Rafael Channel)

Sample Matrix: Sediment

Service Request: K1006559

**Date Collected:** 06/15/2010 **Date Received:** 06/24/2010

#### Diesel and Residual Range Organics

Sample Name:

SF 11

**Lab Code:** K1006559-002

EPA 3550B

Extraction Method: Analysis Method:

8015B

Units: mg/Kg
Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	<b>3.9</b> J	31	2.0	1	06/29/10	07/08/10	KWG1006626	
Residual Range Organics (RRO)	<b>17</b> J	31	3.6	1	06/29/10	07/08/10	KWG1006626	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	82	51-126	07/08/10	Acceptable	
n-Triacontane	83	50-150	07/08/10	Acceptable	

Comments:

Page

1 of 1

Analytical Results

Client:

Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Project: Sample Matrix:

Sediment

Service Request: K1006559

Date Collected: NA
Date Received: NA

#### Diesel and Residual Range Organics

Sample Name: Lab Code: Method Blank KWG1006626-4

**Extraction Method:** 

EPA 3550B

Analysis Method:

8015B

Units: mg/Kg
Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	ND U	25	1.6	1	06/29/10	07/08/10	KWG1006626	
Residual Range Organics (RRO)	<b>3.1</b> J	25	2.9	1	06/29/10	07/08/10	KWG1006626	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	78	51-126	07/08/10	Acceptable
n-Triacontane	76	50-150	07/08/10	Acceptable

Comments:

Merged

QA/QC Report

Client:

Pacific EcoRisk Laboratories

**Project:** 

ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Surrogate Recovery Summary Diesel and Residual Range Organics

**Extraction Method:** 

EPA 3550B

Analysis Method:

8015B

Units: PERCENT

Level: Low

Service Request: K1006559

Sample Name	Lab Code	Sur1	Sur2
SF 10	K1006559-001	76	77
SF 11	K1006559-002	82	83
Method Blank	KWG1006626-4	78	76
SF 10MS	KWG1006626-1	85	84
SF 10DMS	KWG1006626-2	83	85
Lab Control Sample	KWG1006626-3	83	85

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl 51-126 Sur2 = n-Triacontane 50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/13/2010 13:02:47 u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page SuperSet Reference: RR116590

1 of 1

48

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559 **Date Extracted:** 06/29/2010

**Date Analyzed:** 07/08/2010

# Matrix Spike/Duplicate Matrix Spike Summary Diesel and Residual Range Organics

Sample Name:

SF 10

Lab Code:

K1006559-001

**Extraction Method:** 

EPA 3550B

**Analysis Method:** 

8015B

Units: mg/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006626

SF 10MS

SF 10DMS

KWG1006626-1

KWG1006626-2

Analyte Name	Sample Result	Matrix Spike		Duplicate Matrix Spike		%Rec		RPD		
		Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Diesel Range Organics (DRO)	8.8	356	397	88	340	396	84	43-146	5	40
Residual Range Organics (RRO)	34	198	199	82	197	198	83	29-167	0	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/13/2010 13:02:50  $u:\Stealth\Crystal.rpt\Form3DMS.rpt$ 

Form 3A - Organic 49

Page RR116590

1 of 1

SuperSet Reference:

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

**Date Extracted:** 06/29/2010

**Date Analyzed:** 07/08/2010

Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method: EPA 3550B

**Analysis Method:** 

8015B

Units: mg/Kg Basis: Dry

Level: Low Extraction Lot: KWG1006626

Lab Control Sample KWG1006626-3

Lab Control Spike

%Rec Limits **Analyte Name** Result **Expected** %Rec Diesel Range Organics (DRO) 222 267 83 63-121 Residual Range Organics (RRO) 105 133 78 57-136

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/13/2010 13:02:53  $u:\Stealth\Crystal.rpt\Form3LCS.rpt$ 

**Gasoline Range Organics** 

Analytical Results

Client: Project: Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

**Date Collected:** 06/15/2010 **Date Received:** 06/24/2010

## Gasoline Range Organics

Sample Name:

SF 10

Lab Code:

K1006559-001

**Extraction Method:** 

EPA 5035A/5030B

Analysis Method:

8015B

Units: mg/Kg

Basis: Dry

Level: Med

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	8.7	2.3	1	06/29/10	06/29/10	KWG1006510	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	90	83-119	06/29/10	Acceptable	

Comments:

Analytical Results

Client: Project: Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

**Date Collected:** 06/15/2010

**Date Received:** 06/24/2010

Gasoline Range Organics

Sample Name:

SF 11

Lab Code:

K1006559-002

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 5035A/5030B

Level: Med

Analysis Method:

8015B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	6.6	1.7	1	06/29/10	06/29/10	KWG1006510	

Comments:	

Analytical Results

Client: Project: Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

Date Collected: NA Date Received: NA

Gasoline Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1006510-4

Units: mg/Kg Basis: Dry

**Extraction Method:** 

EPA 5035A/5030B

Analysis Method:

8015B

Level: Med

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organies (GRO)	<b>1.6</b> J	5.0	1.3	1	06/29/10	06/29/10	KWG1006510	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	93	83-119	06/29/10	Acceptable	

Comments:	

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

**Surrogate Recovery Summary** Gasoline Range Organics

**Extraction Method:** EPA 5035A/5030B Analysis Method:

8015B

Units: PERCENT

Level: Med

Sample Name	Lab Code	Sur1
SF 10	K1006559-001	90
SF 11	K1006559-002	90
Method Blank	KWG1006510-4	93
SF 11MS	KWG1006510-1	90
SF 11DMS	KWG1006510-2	90
Lab Control Sample	KWG1006510-3	91

Surrogate Recovery Control Limits (%)

Surl = 4-Bromofluorobenzene

83-119

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/14/2010 17:18:20 u:\Stealth\Crystal.rpt\Form2.rpt

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

**Date Extracted:** 06/29/2010 **Date Analyzed:** 06/29/2010

## Matrix Spike/Duplicate Matrix Spike Summary Gasoline Range Organics

Sample Name:

SF 11

Lab Code:

K1006559-002

**Extraction Method:** 

EPA 5035A/5030B

Units: mg/Kg Basis: Dry

Level: Med Extraction Lot: KWG1006510

Analysis Method:

8015B

SF 11MS

SF 11DMS

KWG1006510-1 KWG1006510-2

Sample		N	Aatrix Spike		Duplicate Matrix Spike			%Rec	%Rec		
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	RPD Limit	
Gasoline Range Organics (GRO)	ND	57.8	65.5	88	57.8	65.9	88	68-112	0	40	

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/14/2010 17:18:23 u:\Stealth\Crystal.rpt\Form3DMS.rpt

QA/QC Report

Client: Pacific EcoRisk Laboratories Project: ACOE (San Rafael Channel)

Sample Matrix: Sediment Service Request: K1006559 **Date Extracted:** 06/29/2010

**Date Analyzed:** 06/29/2010

Lab Control Spike Summary Gasoline Range Organics

Extraction Method: EPA 5035A/5030B

Analysis Method:

8015B

Units: mg/Kg Basis: Dry

Level: Med

Extraction Lot: KWG1006510

Lab Control Sample KWG1006510-3

Lab Control Spike

%Rec Limits

**Analyte Name** %Rec Result Expected

Gasoline Range Organies (GRO) 46.5 50.0 93 76-123

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/14/2010 17:18:26 u \Stealth\Crystal.rpt\Form3LCS.rpt

**Organochlorine Pesticides** 

Analytical Results

Client: Pacific EcoRisk Laboratories
Project: ACOE (San Rafael Channel)

Sample Matrix: Sediment

**Service Request:** K1006559 **Date Collected:** 06/15/2010 **Date Received:** 06/24/2010

## **Organochlorine Pesticides**

Sample Name:

SF 10

Lab Code:

K1006559-001

**Extraction Method:** 

EPA 3541

Analysis Method:

8081A

Units: ug/Kg Basis: Dry

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND	U	0.30	0.087	1	06/29/10	07/17/10	KWG1006610	
beta-BHC	ND	U	0.30	0.27	1	06/29/10	07/17/10	KWG1006610	
gamma-BHC (Lindane)	ND	U	0.30	0.076	1	06/29/10	07/17/10	KWG1006610	
delta-BHC	ND	U	0.30	0.11	1	06/29/10	07/17/10	KWG1006610	
Heptachlor	ND	U	0.30	0.069	1	06/29/10	07/17/10	KWG1006610	
Aldrin	ND	U	0.30	0.069	1	06/29/10	07/17/10	KWG1006610	
Heptachlor Epoxide	ND	U	0.30	0.072	1	06/29/10	07/17/10	KWG1006610	
gamma-Chlordane†	0.16	J	0.30	0.084	1	06/29/10	07/17/10	KWG1006610	
Endosulfan I	ND	U	0.30	0.084	1	06/29/10	07/17/10	KWG1006610	
alpha-Chlordane	ND	U	0.30	0.094	1	06/29/10	07/17/10	KWG1006610	Militaria de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición dela composición de la composición de la composición dela composición dela composición dela composición de la
Dieldrin	ND	U	0.30	0.076	1	06/29/10	07/17/10	KWG1006610	
4,4'-DDE	0.87		0.30	0.070	1	06/29/10	07/17/10	KWG1006610	
Endrin	ND	U	0.30	0.085	1	06/29/10	07/17/10	KWG1006610	
Endosulfan II	ND	U	0.30	0.13	1	06/29/10	07/17/10	KWG1006610	
4,4'-DDD	0.44		0.30	0.15	1	06/29/10	07/17/10	KWG1006610	
Endrin Aldehyde	ND	U	0.30	0.072	1	06/29/10	07/17/10	KWG1006610	
Endosulfan Sulfate	ND	U	0.30	0.076	1	06/29/10	07/17/10	KWG1006610	
4,4'-DDT	ND	Ui	0.30	0.30	1	06/29/10	07/17/10	KWG1006610	
Toxaphene	ND	U	15	3.6	1	06/29/10	07/17/10	KWG1006610	
Chlordane	ND 1	U	15	15	1	06/29/10	07/17/10	KWG1006610	
2,4'-DDE	ND	U	0.30	0.093	1	06/29/10	07/17/10	KWG1006610	
2,4'-DDD	0.17	JР	0.30	0.090	1	06/29/10	07/17/10	KWG1006610	***************************************
2,4'-DDT	0.21	J	0.30	0.066	1	06/29/10	07/17/10	KWG1006610	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	54	21-112	07/17/10	Acceptable	
Decachlorobiphenyl	66	15-130	07/17/10	Acceptable	

Comments:

Printed: 07/19/2010 18:01:37 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

Page 1 of 2

SuperSet Reference: RR116894

Analytical Results

**Client: Project:**  Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559 **Date Collected:** 06/15/2010

**Date Received:** 06/24/2010

**Organochlorine Pesticides** 

Sample Name:

SF 10

Lab Code:

K1006559-001

Units: ug/Kg Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:	

Printed: 07/19/2010 18:01:37

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

Page 2 of 2

SuperSet Reference: RR116894

Analytical Results

Client: Pacific EcoRisk Laboratories
Project: ACOE (San Rafael Channel)

Sample Matrix: Sediment

**Service Request:** K1006559 **Date Collected:** 06/15/2010 **Date Received:** 06/24/2010

## **Organochlorine Pesticides**

Sample Name:

SF 11

Lab Code:

K1006559-002

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg Basis: Dry

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND	U	0.25	0.072	1	06/29/10	07/17/10	KWG1006610	
beta-BHC	ND	U	0.25	0.23	1	06/29/10	07/17/10	KWG1006610	
gamma-BHC (Lindane)	ND	U	0.25	0.063	1	06/29/10	07/17/10	KWG1006610	
delta-BHC	ND	U	0.25	0.087	1	06/29/10	07/17/10	KWG1006610	
Heptachlor	ND	U	0.25	0.057	1	06/29/10	07/17/10	KWG1006610	
Aldrin	ND	U	0.25	0.057	1	06/29/10	07/17/10	KWG1006610	
Heptachlor Epoxide	ND	U	0.25	0.060	1	06/29/10	07/17/10	KWG1006610	***************************************
gamma-Chlordane†	ND	U	0.25	0.070	1	06/29/10	07/17/10	KWG1006610	
Endosulfan I	ND	U	0.25	0.070	1	06/29/10	07/17/10	KWG1006610	
alpha-Chlordane	ND	U	0.25	0.078	1	06/29/10	07/17/10	KWG1006610	
Dieldrin	ND	U	0.25	0.063	1	06/29/10	07/17/10	KWG1006610	
4,4'-DDE	ND	U	0.25	0.059	1	06/29/10	07/17/10	KWG1006610	
Endrin	ND	U	0,25	0.071	1	06/29/10	07/17/10	KWG1006610	
Endosulfan II	ND	U	0.25	0.11	1	06/29/10	07/17/10	KWG1006610	
4,4'-DDD	ND	U	0.25	0.13	1	06/29/10	07/17/10	KWG1006610	
Endrin Aldehyde	ND	U	0.25	0.060	1	06/29/10	07/17/10	KWG1006610	
Endosulfan Sulfate	ND	U	0.25	0.063	1	06/29/10	07/17/10	KWG1006610	
4,4'-DDT	ND	U	0.25	0.071	1	06/29/10	07/17/10	KWG1006610	
Toxaphene	ND	U	13	3.0	1	06/29/10	07/17/10	KWG1006610	
Chlordane	ND	U	13	13	1	06/29/10	07/17/10	KWG1006610	
2,4'-DDE	ND	U	0.25	0.077	1	06/29/10	07/17/10	KWG1006610	
2,4'-DDD	ND	U	0.25	0.075	1	06/29/10	07/17/10	KWG1006610	
2,4'-DDT	ND	U	0.25	0.055	1	06/29/10	07/17/10	KWG1006610	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	54	21-112	07/17/10	Acceptable
Decachlorobiphenyl	67	15-130	07/17/10	Acceptable

Comments:

Printed: 07/19/2010 18:01:40

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

Page 1 of 2

SuperSet Reference: RR116894

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

Project: Sample Matrix:

ACOE (San Rafael Channel) Sediment

Service Request: K1006559

**Date Collected:** 06/15/2010

**Date Received:** 06/24/2010

**Organochlorine Pesticides** 

Sample Name:

SF 11

Lab Code:

K1006559-002

Units: ug/Kg

Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:	

Printed: 07/19/2010 18:01:40

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

2 of 2

SuperSet Reference: RR116894

Merged

Analytical Results

Client: Pacific EcoRisk Laboratories
Project: ACOE (San Rafael Channel)

Sample Matrix: Sediment

Service Request: K1006559

**Date Collected:** NA **Date Received:** NA

## **Organochlorine Pesticides**

**Sample Name:** Method Blank **Lab Code:** KWG1006610-10

**Extraction Method:** EPA 3541 **Analysis Method:** 8081A

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	0.20	0.058	1	06/29/10	07/17/10	KWG1006610	
beta-BHC	ND U	0.20	0.18	1	06/29/10	07/17/10	KWG1006610	
gamma-BHC (Lindane)	ND U	0.20	0.051	1	06/29/10	07/17/10	KWG1006610	
delta-BHC	ND U	0.20	0.070	1	06/29/10	07/17/10	KWG1006610	
Heptachlor	ND U	0.20	0.046	1	06/29/10	07/17/10	KWG1006610	
Aldrin	ND U	0.20	0.046	1	06/29/10	07/17/10	KWG1006610	
Heptachlor Epoxide	ND U	0.20	0.048	1	06/29/10	07/17/10	KWG1006610	
gamma-Chlordane†	ND U	0.20	0.056	1	06/29/10	07/17/10	KWG1006610	
Endosulfan I	ND U	0.20	0.056	1	06/29/10	07/17/10	KWG1006610	
alpha-Chlordane	ND U	0.20	0.063	1	06/29/10	07/17/10	KWG1006610	
Dieldrin	ND U	0.20	0.051	1	06/29/10	07/17/10	KWG1006610	
4,4'-DDE	ND U	0.20	0.047	1	06/29/10	07/17/10	KWG1006610	
Endrin	ND U	0.20	0.057	1	06/29/10	07/17/10	KWG1006610	
Endosulfan II	ND U	0.20	0.086	1	06/29/10	07/17/10	KWG1006610	
4,4'-DDD	ND U	0.20	0.10	1	06/29/10	07/17/10	KWG1006610	
Endrin Aldehyde	ND U	0.20	0.048	1	06/29/10	07/17/10	KWG1006610	
Endosulfan Sulfate	ND U	0.20	0.051	1	06/29/10	07/17/10	KWG1006610	
4,4'-DDT	ND U	0.20	0.057	1	06/29/10	07/17/10	KWG1006610	
Toxaphene	ND U	10	2.4	1	06/29/10	07/17/10	KWG1006610	
Chlordane	ND U	10	10	1	06/29/10	07/17/10	KWG1006610	
2,4'-DDE	ND U	0.20	0.062	1	06/29/10	07/17/10	KWG1006610	
2,4'-DDD	ND U	0.20	0.060	1	06/29/10	07/17/10	KWG1006610	
2,4'-DDT	ND U	0.20	0.044	1	06/29/10	07/17/10	KWG1006610	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	57	21-112	07/17/10	Acceptable	
Decachlorobiphenyl	69	15-130	07/17/10	Acceptable	

Comments:

Printed: 07/19/2010 18:01:43 u:\Stealth\Crystal.rpt\Form1mNew.rpt

ot Merged

Form 1A - Organic

Page 1 of 2

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

**Project:** Sample Matrix:

Sediment

Service Request: K1006559

Date Collected: NA

Date Received: NA

**Organochlorine Pesticides** 

Sample Name: Lab Code:

Method Blank

KWG1006610-10

Units: ug/Kg Basis: Dry

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/19/2010 18:01:43

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

64

Page 2 of 2

SuperSet Reference:

QA/QC Report

**Client:** 

Pacific EcoRisk Laboratories

**Project:** 

ACOE (San Rafael Channel)

Sample Matrix:

Sediment

**Surrogate Recovery Summary Organochlorine Pesticides** 

**Extraction Method: Analysis Method:** 

EPA 3541

8081A

Service Request: K1006559

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2
SF 10	K1006559-001	54	66
SF 11	K1006559-002	54	67
Method Blank	KWG1006610-10	57	69
SF 10MS	KWG1006610-1	49	60
SF 10DMS	KWG1006610-2	50	62
SF 10MS	KWG1006610-4	55	63
SF 10DMS	KWG1006610-5	47	58
SF 11MS	KWG1006610-7	58	64
SF 11DMS	KWG1006610-8	60	62
Lab Control Sample	KWG1006610-3	57	68

### Surrogate Recovery Control Limits (%)

Sur1 =	Tetrachloro-m-xylene	21-112
Sur2 =	Decachlorobiphenyl	15-130

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/19/2010 18:01:48

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page 1 of 1

SuperSet Reference: RR116894

QA/QC Report

**Client:** Pacific EcoRisk Laboratories **Project:** ACOE (San Rafael Channel)

Sample Matrix: Sediment Service Request: K1006559 **Date Extracted:** 06/29/2010 **Date Analyzed:** 07/17/2010

## Matrix Spike/Duplicate Matrix Spike Summary **Organochlorine Pesticides**

Sample Name:

SF 10

Lab Code:

K1006559-001

**Extraction Method: Analysis Method:** 

8081A

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1006610

	Sample		SF 10MS VG1006610- Matrix Spike	1	KV	SF 10DMS VG1006610- cate Matrix S		%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
alpha-BHC	ND	7.47	14.9	50	7.96	14.9	53	23-133	6	40
beta-BHC	ND	7.48	14.9	50	8.48	14.9	57	22-142	12	40
gamma-BHC (Lindane)	ND	7.71	14.9	52	8.28	14.9	56	26-135	7	40
delta-BHC	ND	8.42	14.9	57	9.44	14.9	63	25-148	11	40
Heptachlor	ND	8.72	14.9	59	9.38	14.9	63	21-136	7	40
Aldrin	ND	7.44	14.9	50	8.10	14.9	54	22-135	9	40
Heptachlor Epoxide	ND	7.77	14.9	52	8.62	14.9	58	25-129	10	40
gamma-Chlordane	0.16	7.91	14.9	52	8.83	14.9	58	24-133	11	40
Endosulfan I	ND	6.23	14.9	42	6.92	14.9	46	15-119	11	40
alpha-Chlordane	ND	7.80	14.9	53	8.70	14.9	58	24-132	11	40
Dieldrin	ND	7.87	14.9	53	8.80	14.9	59	26-133	11	40
4,4'-DDE	0.87	9.42	14.9	58	10.5	14.9	65	22-142	11	40
Endrin	ND	7.83	14.9	53	8.70	14.9	58	22-145	11	40
Endosulfan II	ND	6.60	14.9	44	7.23	14.9	49	13-129	9	40
4,4'-DDD	0.44	8.93	14.9	57	9.71	14.9	62	19-143	8	40
Endrin Aldehyde	ND	7.38	14.9	50	8.02	14.9	54	10-129	8	40
Endosulfan Sulfate	ND	7.82	14.9	53	8.71	14.9	58	20-134	11	40.
4,4'-DDT	ND	10.6	14.9	71	11.7	14.9	79	19-154	10	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/19/2010 18:01:51  $u:\Stealth\Crystal.rpt\Form3DMS.rpt$ 

Form 3A - Organic

Page

1 of 1

RR116894

SuperSet Reference:

QA/QC Report

**Client:** Pacific EcoRisk Laboratories **Project:** ACOE (San Rafael Channel)

**Sample Matrix:** Sediment Service Request: K1006559 **Date Extracted:** 06/29/2010 **Date Analyzed:** 07/17/2010

Matrix Spike/Duplicate Matrix Spike Summary **Organochlorine Pesticides** 

Sample Name:

SF 10

Lab Code: K1006559-001

**Extraction Method:** 

EPA 3541

**Analysis Method:** 8081A Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1006610

SF 10MS KWG1006610-4

SF 10DMS KWG1006610-5

	Sample		Matrix Spike			cate Matrix S		%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
2,4'-DDE	ND	9.97	14.9	67	9.29	14.9	62	24-141	7	40
2,4'-DDD	0.17	9.42	14.9	62	8.73	14.9	57	12-147	8	40
2,4'-DDT	0.21	10.9	14.9	71	9.87	14.9	65	15-141	9	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/19/2010 18:01:54 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

Page

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

**Date Extracted:** 06/29/2010 **Date Analyzed:** 07/17/2010

# Matrix Spike/Duplicate Matrix Spike Summary Organochlorine Pesticides

Sample Name:

SF 11

Lab Code:

K1006559-002

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Units: ug/Kg Basis: Dry

Dasis. Diy

Level: Low

Extraction Lot: KWG1006610

SF 11MS

SF 11DMS

KWG1006610-7

KWG1006610-8

	Sample		Matrix Spike			cate Matrix S	-	%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Toxaphene	ND	115	123	94	132	123	107	20-155	14	40
Chlordane	ND	108	123	88	104	123	84	46-139	4	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/19/2010 18:01:57 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

Page

1 of 1

SuperSet Reference: RR116894

QA/QC Report

**Client:** Project: Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559 **Date Extracted:** 06/29/2010

**Date Analyzed:** 07/17/2010

# Lab Control Spike Summary **Organochlorine Pesticides**

**Extraction Method:** EPA 3541 **Analysis Method:** 

8081A

Units: ug/Kg Basis: Dry

Level: Low Extraction Lot: KWG1006610

Lab Control Sample KWG1006610-3 Lab Control Spike

	Las Control Spike		%Rec	
Analyte Name	Result	Expected	%Rec	Limits
alpha-BHC	6.26	10.0	63	36-139
beta-BHC	6.97	10.0	70	38-142
gamma-BHC (Lindane)	6.41	10.0	64	40-142
delta-BHC	6.94	10.0	69	48-145
Heptachlor	6.60	10.0	66	39-135
Aldrin	5.93	10.0	59	37-134
Heptachlor Epoxide	6.47	10.0	65	45-118
gamma-Chlordane	6.40	10.0	64	41-135
Endosulfan I	5.25	10.0	52	35-121
alpha-Chlordane	6.43	10.0	64	41-134
Dieldrin	6.67	10.0	67	46-136
4,4'-DDE	7.12	10.0	71	46-141
Endrin	6.37	10.0	64	40-152
Endosulfan II	5.65	10.0	57	39-128
4,4'-DDD	7.18	10.0	72	46-146
Endrin Aldehyde	5.86	10.0	59	32-132
Endosulfan Sulfate	6.57	10.0	66	43-138
4,4'-DDT	7.43	10.0	74	46-151
Toxaphene	91.7	100	92	53-133
Chlordane	84.4	100	84	52-140
2,4'-DDE	6.78	10.0	68	49-112
2,4'-DDD	6.76	10.0	68	53-115
2,4'-DDT	7.08	10.0	71	44-120

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/19/2010 18:02:00 

Form 3C - Organic

Page 1 of 1

SuperSet Reference: RR116894

Analytical Results

Client: Project: Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

**Date Collected:** 06/15/2010

**Date Received:** 06/24/2010

## **Organochlorine Pesticides**

Sample Name:

SF 10

Lab Code:

K1006559-001

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

**Analysis Method:** 

8081A

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Methoxychlor	ND U	0.30	0.23	1	06/29/10	07/17/10	KWG1006610	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
oro-m-xylene	54	21-112	07/17/10	Acceptable	
•				1	
Decachlorobiphenyl	66	15-130	07/17/10	Acceptable	

Comments:

Merged

Page

Analytical Results

Client: Project: Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559 **Date Collected:** 06/15/2010

**Date Received:** 06/24/2010

## **Organochlorine Pesticides**

Sample Name:

SF 11

Lab Code:

K1006559-002

EPA 3541

Units: ug/Kg Basis: Dry

**Extraction Method: Analysis Method:** 

8081A

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Methoxychlor	ND U	0.25	0.19	1	06/29/10	07/17/10	KWG1006610	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	54	21-112	07/17/10	Acceptable	
Decachlorobiphenyl	67	15-130	07/17/10	Acceptable	

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

**Date Collected:** NA **Date Received:** NA

**Organochlorine Pesticides** 

Sample Name:

Method Blank

Lab Code:

KWG1006610-10

**Extraction Method:** 

EPA 3541

Units: ug/Kg
Basis: Dry

Dusis. Di

Analysis Method:

8081A

Level: Low

A 1 A NY	<b>T</b> . V. O	1.507		Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Methoxychlor	ND U	0.20	0.15	1	06/29/10	07/17/10	KWG1006610	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	57	21-112	07/17/10	Acceptable	
Decachlorobiphenyl	69	15-130	07/17/10	Acceptable	

Comments:

SuperSet Reference:

QA/QC Report

**Client:** 

Pacific EcoRisk Laboratories

Project:

ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

**Surrogate Recovery Summary Organochlorine Pesticides** 

Extraction Method: **Analysis Method:** 

EPA 3541

8081A

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2
SF 10	K1006559-001	54	66
SF 11	K1006559-002	54	67
Method Blank	KWG1006610-10	57	69
SF 10MS	KWG1006610-1	49	60
SF 10DMS	KWG1006610-2	50	62
Lab Control Sample	KWG1006610-3	57	68

#### Surrogate Recovery Control Limits (%)

Sur1 =	Tetrachloro-m-xylene	21-112
Sur2 =	Decachlorobiphenyl	15-130

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/22/2010 15:21:23

 $u:\Stealth\Crystal.rpt\Form2.rpt$ 

Form 2A - Organic 73

SuperSet Reference: RR117042

Page

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559 **Date Extracted:** 06/29/2010

**Date Analyzed:** 07/17/2010

Units: ug/Kg

Basis: Dry

## Matrix Spike/Duplicate Matrix Spike Summary **Organochlorine Pesticides**

Sample Name:

SF 10

Lab Code:

K1006559-001

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8081A

Level: Low

Extraction Lot: KWG1006610

SF 10MS

KWG1006610-1

SF 10DMS KWG1006610-2

Matrix Spike **Duplicate Matrix Spike** Sample %Rec **RPD** Result Limits **RPD Analyte Name** Result **Expected** %Rec Result **Expected** %Rec Limit 10.5 14.9 11.5 77 ND71 14.9 24-151 9 40 Methoxychlor

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/22/2010 15:21:26

Form 3A - Organic 74

Page

1 of 1

SuperSet Reference: RR117042

QA/QC Report

Client:

Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

**Project:** Sample Matrix:

Sediment

Service Request: K1006559

**Date Extracted:** 06/29/2010

**Date Analyzed:** 07/17/2010

Lab Control Spike Summary **Organochlorine Pesticides** 

**Extraction Method:** 

EPA 3541

Analysis Method:

8081A

Units: ug/Kg

Basis: Dry

Level: Low Extraction Lot: KWG1006610

Lab Control Sample

10.0

KWG1006610-3

Lab Control Spike

%Rec

**Analyte Name** 

Result

6.95

%Rec Expected

Limits

Methoxychlor

70

42-147

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/22/2010 15:21:29

Form 3C - Organic

75

SuperSet Reference:

RR117042

1 of 1

Page

**Polychlorinated Biphenyls** 

Analytical Results

Client: Pacific EcoRisk Laboratories
Project: ACOE (San Rafael Channel)

Sample Matrix: Sediment

**Date Collected:** K1006559 **Date Received:** 06/15/2010 **Date Received:** 06/24/2010

# Polychlorinated Biphenyls (PCBs)

Sample Name:

SF 10

Lab Code:

K1006559-001

Extraction Method: Analysis Method:

EPA 3541

8082

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	3.8	2.0	1	06/29/10	07/08/10	KWG1006609	*
Aroclor 1221	ND U	7.5	2.0	1	06/29/10	07/08/10	KWG1006609	
Aroclor 1232	ND U	3.8	2.0	1	06/29/10	07/08/10	KWG1006609	
Aroclor 1242	ND U	3.8	2.0	1	06/29/10	07/08/10	KWG1006609	
Aroclor 1248	ND U	3.8	2.0	1	06/29/10	07/08/10	KWG1006609	
Aroclor 1254	ND U	3.8	2.0	1	06/29/10	07/08/10	KWG1006609	
Aroclor 1260	<b>2.9</b> J	3.8	2.0	1	06/29/10	07/08/10	KWG1006609	*
Aroclor 1262	ND U	3.8	2.0	1	06/29/10	07/08/10	KWG1006609	
Aroclor 1268	ND U	3.8	2.0	1	06/29/10	07/08/10	KWG1006609	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	87	35-133	07/08/10	Acceptable	

Comments:

77

RR116510

SuperSet Reference:

Analytical Results

Client: Project: Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559 **Date Collected:** 06/15/2010

**Date Received:** 06/24/2010

### Polychlorinated Biphenyls (PCBs)

Sample Name:

SF 11

Lab Code:

K1006559-002

**Extraction Method: Analysis Method:** 

EPA 3541

8082

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	3.1	1.7	1	06/29/10	07/08/10	KWG1006609	*
Aroclor 1221	ND U	6.2	1.7	1	06/29/10	07/08/10	KWG1006609	
Aroclor 1232	ND U	3.1	1.7	1	06/29/10	07/08/10	KWG1006609	
Aroclor 1242	ND U	3.1	1.7	1	06/29/10	07/08/10	KWG1006609	
Aroclor 1248	ND U	3.1	1.7	1	06/29/10	07/08/10	KWG1006609	
Aroclor 1254	ND U	3.1	1.7	1	06/29/10	07/08/10	KWG1006609	
Aroclor 1260	ND U	3.1	1.7	1	06/29/10	07/08/10	KWG1006609	*
Aroclor 1262	ND U	3.1	1.7	1	06/29/10	07/08/10	KWG1006609	
Aroclor 1268	ND U	3.1	1.7	1	06/29/10	07/08/10	KWG1006609	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	86	35-133	07/08/10	Acceptable	

Comments:

Analytical Results

Client:

Pacific EcoRisk Laboratories

Project:

ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

**Date Collected:** NA **Date Received:** NA

## Polychlorinated Biphenyls (PCBs)

Sample Name:

Method Blank

Lab Code:

KWG1006609-13

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8082

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	2.5	1,3	1	06/29/10	07/08/10	KWG1006609	*
Aroclor 1221	ND U	5.0	1.3	1	06/29/10	07/08/10	KWG1006609	
Aroclor 1232	ND U	2.5	1.3	1	06/29/10	07/08/10	KWG1006609	
Aroclor 1242	ND U	2.5	1.3	1	06/29/10	07/08/10	KWG1006609	
Aroclor 1248	ND U	2.5	1.3	1	06/29/10	07/08/10	KWG1006609	
Aroclor 1254	ND U	2.5	1.3	1	06/29/10	07/08/10	KWG1006609	
Aroclor 1260	ND U	2.5	1.3	1	06/29/10	07/08/10	KWG1006609	*
Aroclor 1262	ND U	2.5	1.3	1	06/29/10	07/08/10	KWG1006609	
Aroclor 1268	ND U	2.5	1.3	1	06/29/10	07/08/10	KWG1006609	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	100	35-133	07/08/10	Acceptable

79

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

**Surrogate Recovery Summary** Polychlorinated Biphenyls (PCBs)

**Extraction Method:** EPA 3541 **Analysis Method:** 

8082

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>
SF 10	K1006559-001	87
SF 11	K1006559-002	86
Method Blank	KWG1006609-13	100
SF 11MS	KWG1006609-10	77
SF 11DMS	KWG1006609-11	79
Lab Control Sample	KWG1006609-12	81

Surrogate Recovery Control Limits (%)

Surl = Decachlorobiphenyl

35-133

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/12/2010 16:14:17

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

**Service Request:** K1006559 **Date Extracted:** 06/29/2010

**Date Extracted:** 06/29/2010 **Date Analyzed:** 07/08/2010

Matrix Spike/Duplicate Matrix Spike Summary Polychlorinated Biphenyls (PCBs)

Sample Name:

SF 11

Lab Code:

K1006559-002

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8082

Units: ug/Kg
Basis: Dry

Level: Low

Extraction Lot: KWG1006609

SF 11MS

SF 11DMS

KWG1006609-10

KWG1006609-11

Analyte Name	Sample	N	Aatrix Spike		Duplic	%Rec		RPD		
	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits RPD	RPD	Limit
Aroclor 1016	ND	148	123	120	158	123	128	27-174	7	40
Aroclor 1260	ND	158	123	128	165	123	133	20-185	4	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the coutrol criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/12/2010 16:14:20

Form 3A - Organic

Page

1 of 1

SuperSet Reference: RR116510

QA/QC Report

Client:

Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Project: Sample Matrix:

Sediment

Service Request: K1006559

**Date Extracted:** 06/29/2010 **Date Analyzed:** 07/08/2010

Lab Control Spike Summary Polychlorinated Biphenyls (PCBs)

**Extraction Method:** EPA 3541

**Analysis Method:** 

8082

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006609

Lab Control Sample KWG1006609-12

Lab Control Spike

Analyte Name	Result	Expected	%Rec	Limits		
Aroclor 1016	124	100	124 *	48-121		
Aroclor 1260	133	100	133 *	53-129		

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/12/2010 16:14:23

Form 3C - Organic

Page 1 of 1

SuperSet Reference: RR116510 Polynuclear Aromatic Hydrocarbons

Analytical Results

Client: Project: Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559 **Date Collected:** 06/15/2010 **Date Received:** 06/24/2010

> Units: ug/Kg Basis: Dry

Level: Low

## Polynuclear Aromatic Hydrocarbons

Sample Name:

SF 10

Lab Code:

K1006559-001

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8270C SIM

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene			0.60	1	06/29/10	07/10/10	KWG1006686	11010
•	5.2	2.5		1				
Acenaphthylene	<b>1.8</b> J	2.5	0.59	1	06/29/10	07/10/10	KWG1006686	
Acenaphthene	<b>1.4</b> J	2.5	0.76	1	06/29/10	07/10/10	KWG1006686	
Fluorene	3.1	2.5	0.61	1	06/29/10	07/10/10	KWG1006686	
Phenanthrene	<b>2</b> 7	2.5	1.4	1	06/29/10	07/10/10	KWG1006686	
Anthracene	16	2.5	0.58	1	06/29/10	07/10/10	KWG1006686	
Fluoranthene	47	2.5	0.98	1	06/29/10	07/10/10	KWG1006686	
Pyrene	57	2.5	0.76	1	06/29/10	07/10/10	KWG1006686	
Benzo(b)fluoranthene	35	2.5	0.92	1	06/29/10	07/10/10	KWG1006686	
Benzo(k)fluoranthene	13	2.5	0.87	1	06/29/10	07/10/10	KWG1006686	
Benz(a)anthracene	23	2.5	0.72	1	06/29/10	07/10/10	KWG1006686	
Chrysene	26	2.5	0.80	1	06/29/10	07/10/10	KWG1006686	
Benzo(a)pyrene	37	2.5	0.76	1	06/29/10	07/10/10	KWG1006686	
Indeno(1,2,3-cd)pyrene	32	2.5	0.87	1	06/29/10	07/10/10	KWG1006686	
Dibenz(a,h)anthracene	3.9	2.5	0.80	1	06/29/10	07/10/10	KWG1006686	
Benzo(g,h,i)perylene	39	2.5	0.85	1	06/29/10	07/10/10	KWG1006686	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	72	17-104	07/10/10	Acceptable	
Fluoranthene-d10	82	27-106	07/10/10	Acceptable	
Terphenyl-d14	81	35-109	07/10/10	Acceptable	

Comments:

Printed: 07/15/2010 13:28:42 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

Page

Analytical Results

Client: Pacific EcoRisk Laboratories Project: ACOE (San Rafael Channel)

Sample Matrix: Sediment Service Request: K1006559 **Date Collected:** 06/15/2010 **Date Received:** 06/24/2010

# Polynuclear Aromatic Hydrocarbons

Sample Name:

SF 11

Lab Code:

K1006559-002

**Extraction Method: Analysis Method:** 

EPA 3541 8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	7.9	2.5	0.60	1	06/29/10	07/10/10	KWG1006686	
Acenaphthylene	<b>0.94</b> J	2.5	0.59	1	06/29/10	07/10/10	KWG1006686	
Acenaphthene	ND U	2.5	0.76	1	06/29/10	07/10/10	KWG1006686	
Fluorene	1.7 J	2.5	0.61	1	06/29/10	07/10/10	KWG1006686	
Phenanthrene	13	2.5	1.4	1	06/29/10	07/10/10	KWG1006686	
Anthracene	4.0	2.5	0.58	1	06/29/10	07/10/10	KWG1006686	
Fluoranthene	14	2.5	0.98	1	06/29/10	07/10/10	KWG1006686	
Pyrene	15	2.5	0.76	1	06/29/10	07/10/10	KWG1006686	
Benzo(b)fluoranthene	8.2	2.5	0.92	1	06/29/10	07/10/10	KWG1006686	
Benzo(k)fluoranthene	2.9	2.5	0.87	1	06/29/10	07/10/10	KWG1006686	
Benz(a)anthracene	7.6	2.5	0.72	1	06/29/10	07/10/10	KWG1006686	
Chrysene	7.1	2.5	0.80	1	06/29/10	07/10/10	KWG1006686	
Benzo(a)pyrene	7.3	2.5	0.76	1	06/29/10	07/10/10	KWG1006686	
Indeno(1,2,3-cd)pyrene	5.4	2.5	0.87	1	06/29/10	07/10/10	KWG1006686	
Dibenz(a,h)anthracene	<b>1.5</b> J	2.5	0.80	1	06/29/10	07/10/10	KWG1006686	
Benzo(g,h,i)perylene	6.6	2.5	0.85	1	06/29/10	07/10/10	KWG1006686	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	73	17-104	07/10/10	Acceptable	
Fluoranthene-d10	75	27-106	07/10/10	Acceptable	
Terphenyl-d14	85	35-109	07/10/10	Acceptable	

Comments:

Printed: 07/15/2010 13:28:45  $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt \\$ 

Merged

Form 1A - Organic

85

Analytical Results

**Client:** Project: Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

Date Collected: NA Date Received: NA

# Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

Method Blank KWG1006686-5

**Extraction Method: Analysis Method:** 

EPA 3541 8270C SIM Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	0.76 J	1.3	0.60	1	06/29/10	07/10/10	KWG1006686	
Acenaphthylene	ND U	1.3	0.59	1	06/29/10	07/10/10	KWG1006686	
Acenaphthene	ND U	1.3	0.76	1	06/29/10	07/10/10	KWG1006686	
Fluorene	ND U	1.3	0.61	1	06/29/10	07/10/10	KWG1006686	
Phenanthrene	ND U	1.4	1.4	1	06/29/10	07/10/10	KWG1006686	
Anthracene	ND U	1.3	0.58	1	06/29/10	07/10/10	KWG1006686	
Fluoranthene	ND U	1.3	0.98	1	06/29/10	07/10/10	KWG1006686	
Pyrene	ND U	1.3	0.76	1	06/29/10	07/10/10	KWG1006686	
Benzo(b)fluoranthene	ND U	1.3	0.92	1	06/29/10	07/10/10	KWG1006686	
Benzo(k)fluoranthene	ND U	1.3	0.87	1	06/29/10	07/10/10	KWG1006686	
Benz(a)anthracene	ND U	1.3	0.72	1	06/29/10	07/10/10	KWG1006686	
Chrysene	ND U	1.3	0.80	1	06/29/10	07/10/10	KWG1006686	
Benzo(a)pyrene	ND U	1.3	0.76	1	06/29/10	07/10/10	KWG1006686	
Indeno(1,2,3-cd)pyrene	ND U	1.3	0.87	1	06/29/10	07/10/10	KWG1006686	
Dibenz(a,h)anthracene	ND U	1.3	0.80	1	06/29/10	07/10/10	KWG1006686	
Benzo(g,h,i)perylene	ND U	1.3	0.85	1	06/29/10	07/10/10	KWG1006686	***************************************

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	<b>7</b> 4	17-104	07/10/10	Acceptable	,
Fluoranthene-d10 Terphenyl-d14	74 91	27-106 35-109	07/10/10 07/10/10	Acceptable Acceptable	

Comments:

Printed: 07/15/2010 13:28:48  $u: \label{lem:limbew.rpt} u: \label{lem:limbew.rpt} u: \label{lem:limbew.rpt} \label{lem:limbew.rpt} u: \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{lem:limbew.rpt} \label{limbew.rpt} \label{lem:limbew.rpt} \label{limbew.rpt} \labell$ 

Merged

Form 1A - Organic 86

Page

QA/QC Report

**Client:** 

Pacific EcoRisk Laboratories

**Project:** 

ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

**Surrogate Recovery Summary** Polynuclear Aromatic Hydrocarbons

**Extraction Method:** EPA 3541

**Analysis Method:** 

8270C SIM

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
SF 10	K1006559-001	72	82	81
SF 11	K1006559-002	73	75	85
Method Blank	KWG1006686-5	74	74	91
SF 11MS	KWG1006686-1	66	68	77
SF 11DMS	KWG1006686-2	64	72	76
Lab Control Sample	KWG1006686-3	72	84	86
Duplicate Lab Control Sample	KWG1006686-4	69	74	78

Surrogate Recovery Control Limits (%)

Sur1 =	Fluorene-d10	17-104
Sur2 =	Fluoranthene-d10	27-106
Sur3 =	Terphenyl-d14	35-109

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/15/2010 13:28:53

Form 2A - Organic

Page 1 of 1

87

SuperSet Reference: RR116738

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559 **Date Extracted:** 06/29/2010

**Date Analyzed:** 07/10/2010

#### Matrix Spike/Duplicate Matrix Spike Summary Polynuclear Aromatic Hydrocarbons

Sample Name:

SF 11

Lab Code:

K1006559-002

**Extraction Method: Analysis Method:** 

8270C SIM

EPA 3541

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1006686

SF 11MS KWG1006686-1

SF 11DMS KWG1006686-2

	Sample		Matrix Spike	<del>-</del>		ate Matrix S		%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	7.9	180	249	69	188	249	72	11-119	4	40
Acenaphthylene	0.94	191	249	76	203	249	81	32-106	6	40
Acenaphthene	ND	191	249	76	202	249	81	29-110	6	40
Fluorene	1.7	200	249	80	215	249	85	29-117	7	40
Phenanthrene	13	206	249	77	226	249	85	19-128	9	40
Anthracene	4.0	218	249	<b>8</b> 6	251	249	99	31-115	14	40
Fluoranthene	14	260	249	99	221	249	83	22-138	16	40
Pyrene	15	304	<b>24</b> 9	116	240	249	90	11-148	23	40
Benzo(b)fluoranthene	8.2	241	249	93	223	249	<b>8</b> 6	15-136	8	40
Benzo(k)fluoranthene	2.9	223	249	88	227	249	90	29-126	1	40
Benz(a)anthracene	7.6	250	249	97	212	249	82	25-128	16	40
Chrysene	7.1	242	249	94	219	249	85	25-132	10	40
Benzo(a)pyrene	7.3	254	249	99	229	249	89	24-131	10	40
Indeno(1,2,3-cd)pyrene	5.4	245	249	96	235	249	92	20-136	4	40
Dibenz(a,h)anthracene	1.5	206	249	82	221	249	88	29-124	7	40
Benzo(g,h,i)perylene	6.6	249	249	97	245	249	96	24-127	1	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/15/2010 13:28:56  $u:\Stealth\Crystal.rpt\Form3DMS.rpt$ 

Form 3A - Organic

Page SuperSet Reference: RR116738

1 of 1

QA/QC Report

Client: Pacific EcoRisk Laboratories
Project: ACOE (San Rafael Channel)

Sample Matrix: Sediment

**Service Request:** K1006559 **Date Extracted:** 06/29/2010 **Date Analyzed:** 07/10/2010

#### Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

**Extraction Method:** EPA 3541 **Analysis Method:** 8270C SIM

Units: ug/Kg
Basis: Dry
Level: Low

Extraction Lot: KWG1006686

	KW	Control Samp /G1006686-3 Control Spik		Duplicate Lab Control Sample KWG1006686-4 Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	384	500	77	320	500	64	43-99	18	40
Acenaphthylene	425	500	85	359	500	72	41-110	17	40
Acenaphthene	416	500	83	354	500	71	44-104	16	40
Fluorene	424	500	85	372	500	74	49-105	13	40
Phenanthrene	467	500	93	390	500	78	47-104	18	40
Anthracene	470	500	94	369	500	74	47-112	24	40
Fluoranthene	461	500	92	377	500	75	51-111	20	40
Pyrene	443	500	89	377	500	75	48-113	16	40
Benzo(b)fluoranthene	441	500	88	387	500	77	51-113	13	40
Benzo(k)fluoranthene	436	500	87	380	500	76	56-114	14	40
Benz(a)anthracene	431	500	86	358	500	72	51-111	19	40
Chrysene	431	500	86	369	500	74	54-111	16	40
Benzo(a)pyrene	454	500	91	388	500	78	52-118	16	40
Indeno(1,2,3-cd)pyrene	471	500	94	404	500	81	42-123	15	40
Dibenz(a,h)anthracene	437	500	87	376	500	75	44-119	15	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

464

500

93

408

500

82

46-114

13

40

1 of 1

Printed: 07/15/2010 13:28:59 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Benzo(g,h,i)perylene

Form 3C - Organic

Page SuperSet Reference: RR116738

**Chlorinated Herbicides** 

Analytical Results

**Client:** Project: Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

**Date Collected:** 06/15/2010 **Date Received:** 06/24/2010

**Chlorinated Herbicides** 

Sample Name:

SF 10

Lab Code:

K1006559-001

Units: ug/Kg Basis: Dry

**Extraction Method:** 

Method

Level: Low

**Analysis Method:** 

8151A

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
MCPP	ND U	9000	2600	1	06/29/10	07/15/10	KWG1006967	
MCPA	ND U	9000	2600	1	06/29/10	07/15/10	KWG1006967	
Dichlorprop	ND U	45	9.1	1	06/29/10	07/15/10	KWG1006967	

Comments:

SuperSet Reference:

Analytical Results

Client:

Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Project: Sample Matrix:

Sediment

C ---

Service Request: K1006559

**Date Collected:** 06/15/2010

**Date Received:** 06/24/2010

#### **Chlorinated Herbicides**

Sample Name:

SF 11

Lab Code:

K1006559-002

Units: ug/Kg Basis: Dry

**Extraction Method:** 

Method

. .

Analysis Method:

8151A

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
MCPP	ND U	7500	2600	1	06/29/10	07/15/10	KWG1006967	
MCPA	ND U	7500	2600	1	06/29/10	07/15/10	KWG1006967	
Dichlorprop	ND U	38	9.1	1	06/29/10	07/15/10	KWG1006967	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2,4-Dichlorophenylacetic Acid	70	27-166	07/15/10	Acceptable

Comments:

Printed: 07/16/2010 11:31:43 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Project: Sample Matrix:

Sediment

Service Request: K1006559

Date Collected: NA

Date Received: NA

#### **Chlorinated Herbicides**

Sample Name:

Method Blank

Lab Code:

KWG1006967-2

Units: ug/Kg Basis: Dry

**Extraction Method:** 

Method

Level: Low

**Analysis Method:** 

8151A

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
MCPP	ND U	6000	2600	1	06/29/10	07/15/10	KWG1006967	
MCPA	ND U	6000	2600	1	06/29/10	07/15/10	KWG1006967	
Dichlorprop	ND U	30	9.1	1	06/29/10	07/15/10	KWG1006967	

Surrogate Name	Con %Rec Lin		Date Analyzed	Note	
2,4-Dichlorophenylacetic Acid	75	27-166	07/15/10	Acceptable	

Comments:

SuperSet Reference:

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Surrogate Recovery Summary Chlorinated Herbicides

Extraction Method: Analysis Method:

Lab Control Sample

Method 8151A

71

Units: PERCENT Level: Low

Service Request: K1006559

Sample Name Lab Code Sur1 86 SF 10 K1006559-001 SF 11 K1006559-002 70 75 Method Blank KWG1006967-2 72 KWG1006967-3 SF 11MS 77 SF 11DMS KWG1006967-4

KWG1006967-1

Surrogate Recovery Control Limits (%)

Sur1 = 2,4-Dichlorophenylacetic Acid

27-166

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/16/2010 11:31:50 u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page SuperSet Reference: RR116799

1 of 1

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

**Date Extracted:** 06/29/2010 **Date Analyzed:** 07/15/2010

#### Matrix Spike/Duplicate Matrix Spike Summary **Chlorinated Herbicides**

Sample Name:

**Analysis Method:** 

SF 11

Lab Code:

K1006559-002

**Extraction Method:** 

Method

8151A

Units: ug/Kg

Basis: Dry

Level: Low Extraction Lot: KWG1006967

SF 11MS

KWG1006967-3

SF 11DMS

KWG1006967-4

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
MCPP	ND	11800	12300	96	10400	12300	84	10-192	13	40
MCPA	ND	10000	12300	81	11000	12300	89	10-165	10	40
Dichlorprop	ND	105	123	85	101	123	82	29-149	4	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the ealculation which have not been rounded.

Printed: 07/16/2010 11:31:53 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic 95

Page

1 of 1

SuperSet Reference: RR116799

QA/QC Report

Client: Project:

Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

Date Extracted: 06/29/2010

**Date Analyzed:** 07/15/2010

Lab Control Spike Summary Chlorinated Herbicides

Extraction Method: Analysis Method:

Method

8151A

Units: ug/Kg

Basis: Dry Level: Low

Extraction Lot: KWG1006967

Lab Control Sample KWG1006967-1

Lab Control Spike

	Lab	Lab Control Spike				
Analyte Name	Result	Expected	%Rec	%Rec Limits		
MCPP	16200	16700	97	49-116		
MCPA	13700	16700	82	52-111		
Dichlorprop	142	167	85	58-112		

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/16/2010 11:31:56

Form 3C - Organic

SuperSet Reference: RR116799

Page

1 of 1

 $u:\Stealth\Crystal.rpt\Form3LCS.rpt$ 

**Semi-Volatile Organic Compounds** 

Analytical Results

Client: Project:

Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

**Date Collected:** 06/15/2010

**Date Received:** 06/24/2010

#### Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SF 10

Lab Code:

K1006559-001

**Extraction Method:** 

EPA 3541

Analysis Method:

8270C

Units: ug/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Phenol	<b>29</b> J	30	2.0	1	06/29/10	07/12/10	KWG1006676	
Pentachlorophenol	ND U	100	20	1	06/29/10	07/12/10	KWG1006676	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	55	20-86	07/12/10	Acceptable	
2,4,6-Tribromophenol	68	10-119	07/12/10	Acceptable	

Comments:

Printed: 07/16/2010 15:49:10 u:\Stealth\Crystal.rpt\Form1mNew.rpt

SuperSet Reference:

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories

ND U

Project: Sample Matrix: ACOE (San Rafael Channel) Sediment

Service Request: K1006559 **Date Collected:** 06/15/2010

**Date Received:** 06/24/2010

#### Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SF 11

Lab Code:

K1006559-002

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

KWG1006676

**Analysis Method:** 

Pentachlorophenol

8270C

**Dilution** Date Date **Extraction Analyte Name** Result Q **MRL MDL Factor Extracted** Analyzed Lot Note Phenol 07/16/10 KWG1006676 **3.0** J 30 2.0 1 06/29/10

20

1

06/29/10

07/16/10

100

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	48	20-86	07/16/10	Acceptable	
2 4 6-Tribromophenol	48	10-119	07/16/10	Accentable	

Comments:

Printed: 07/16/2010 15:49:13  $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} I m \label{lem:limit} We will be a substitute of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limit of the limi$ 

Merged

Form 1A - Organic 99

SuperSet Reference: RR116830

Page

1 of 1

Analytical Results

**Client:** 

Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Project: Sample Matrix:

Sediment

Service Request: K1006559

Date Collected: NA
Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG1006676-5

Units: ug/Kg Basis: Dry

**Extraction Method:** 

EPA 3541

Level: Low

Analysis Method:

8270C

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Phenol	ND U	15	2.0	1	06/29/10	07/12/10	KWG1006676	
Pentachlorophenol	ND U	50	20	1	06/29/10	07/12/10	KWG1006676	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	69	20-86	07/12/10	Acceptable	
2,4,6-Tribromophenol	70	10-119	07/12/10	Acceptable	

Comments:

QA/QC Report

**Client:** 

Pacific EcoRisk Laboratories

Project:

ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

**Surrogate Recovery Summary** Semi-Volatile Organic Compounds by GC/MS

**Extraction Method:** EPA 3541

**Analysis Method:** 

8270C

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2
SF 10	K1006559-001	55	68
SF 11	K1006559-002	48	48
Method Blank	KWG1006676-5	69	70
SF 10MS	KWG1006676-1	54	65
SF 10DMS	KWG1006676-2	55	61
Lab Control Sample	KWG1006676-3	62	71
Duplicate Lab Control Sample	KWG1006676-4	68	74

Surrogate Recovery Control Limits (%)

Sur1 = Phenol-d6 20-86 Sur2 = 2,4,6-Tribromophenol 10-119

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/16/2010 15:49:20

Form 2A - Organic

SuperSet Reference: RR116830

Page

1 of 1

 $u:\Stealth\Crystal.rpt\Form2.rpt$ 

QA/QC Report

Client: Pacific EcoRisk Laboratories Project: ACOE (San Rafael Channel)

Sample Matrix: Sediment Service Request: K1006559 **Date Extracted:** 06/29/2010

**Date Analyzed:** 07/12/2010

Matrix Spike/Duplicate Matrix Spike Summary Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SF 10

Lab Code: K1006559-001 Units: ug/Kg Basis: Dry

Level: Low

**Extraction Method: Analysis Method:** 

EPA 3541

8270C

Extraction Lot: KWG1006676

SF 10MS

SF 10DMS

KWG1006676-1

KWG1006676-2

	Sample	N	Aatrix Spike		Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec		RPD	Limit
Phenol	29	165	250	54	155	250	50	15-98	6	40
Pentachlorophenol	ND	110	250	44	79.0	250	32	10-123	33	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/16/2010 15:49:23 

Form 3A - Organic

Page SuperSet Reference: RR116830

1 of 1

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE (San Rafael Channel)

Sample Matrix:

Sediment

Service Request: K1006559

Date Extracted: 06/29/2010

**Date Extracted:** 06/29/2010 **Date Analyzed:** 07/12/2010

Lab Control Spike/Duplicate Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

**Extraction Method:** 

EPA 3541

**Analysis Method:** 

8270C

Semi-volatile Organic Compounds by GC/MS

Units: ug/Kg

**Basis:** Dry Level: Low

Extraction Lot: KWG1006676

Lab Control Sample KWG1006676-3 Duplicate Lab Control Sample

KWG1006676-4

**Duplicate Lab Control Spike** Lab Control Spike %Rec **RPD** Limits **RPD** Limit %Rec %Rec **Analyte Name** Result Expected Result **Expected** 145 250 142 250 28-91 40 Phenol 58 57 2 Pentachlorophenol 130 250 52 127 250 51 21-97 2 40

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/16/2010 15:49:26 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page SuperSet Reference: RR116830

1 of 1

## **Dioxins and Furans**



July 21, 2010 Service Request No: K1006559

Pradeep Divvela Columbia Analytical Services, Inc 1317 S. 13th Avenue Kelso, WA 98626

### Laboratory Results for: Pacific EcoRisk Laboratories/ACOE (San Rafael Channel) Dear Pradeep:

Enclosed are the results of the sample(s) submitted to our laboratory on July 3rd, 2010. For your reference, these analyses have been assigned our service request number: **K1006559.** All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My direct number is 281-994-2954. You may also contact me via email at DBiles@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Darren Biles Project Manager

Page 1 of _____



## Certificate of Analysis

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

An Employee Owned Company

Client:Pacific EcoRisk LaboratoriesService Request No.:K1006559Project:ACOE (San Rafael Channel)Date Received:7/03/10

Sample Matrix: Sediment

#### **CASE NARRATIVE**

All analyses were performed in adherence to the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II. When appropriate to the method, method blank results have been reported with each analytical test.

#### **Sample Receipt**

Two sediment samples were received for analysis at Columbia Analytical Services on 7/03/10.

The samples were received at 0°C in good condition and are consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Please note the reporting forms are currently referencing the date CAS- Kelso received the samples (6/24/10) and not the date CAS-Houston received the samples (7/3/10.)

#### **Data Validation Notes and Discussion**

#### **B** flags – Method Blanks

The Method Blank EQ1000340-01 contained low levels of 1234678-HpCDD and OCDD at or below the Method Reporting Limit (MRL).

The associated compounds in the samples are flagged with 'B' flags.

#### Y flags - Labeled Standards

Samples that had recoveries of labeled standards outside the acceptance limits are flagged with 'Y' flags. In all cases, the signal-to-noise ratios are greater than 10:1, making these data acceptable.

#### MS/DMS

EQ1000340: Laboratory Control Spike/Duplicate Laboratory Control Spike (LCS/DLCS) samples were analyzed and reported in lieu of an MS/DMS for this extraction batch. The batch quality control criteria were met.

**Approved by:** Date: 07/21/10

Xiangqiu Liang, Laboratory Director

#### C flags – 2378-TCDF Confirmation

Confirmation of the TCDF compound: When 2378-TCDF is detected on the DB-5 column, confirmation analyses are performed on a second column (DB-225.) The results from both the DB-5 column and the DB-225 column are included in this data package.

The valid result for the 2378-TCDF compound is reported from the confirmation column.

The confirmation results have been included on the TEQ summary pages.

#### K flags

EMPC - When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.

#### **Detection Limits**

Detection limits are calculated for each congener in each sample by measuring the height of the noise level for each quantitation ion for the associated labeled standard. The concentration equivalent to 2.5 times the height of the noise is then calculated using the appropriate response factor and the weight of the sample. The calculated concentration equals the detection limit.

#### The TEQ results for each sample have been calculated by CAS/Houston to include:

- WHO-2005 TEFs ("The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds", M. Van den Berg et al., Toxicological Sciences 93(2):223-241, 2006)
- > 2378-TCDF from the DB-225 column, when confirmation required
- Non-detected compounds are not included in the 'Total'

**Approved by:** Date: 07/21/10

Xiangqiu Liang, Laboratory Director

Client: Pacific EcoRisk Laboratories Service Request: K1006559

**Project:** ACOE (San Rafael Channel)

#### SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
K1006559-001	SF 10	6/15/10	10:05
K1006559-002	SF 11	6/15/10	09:30

# Laboratory Certifications 2010-2011

STATE/PROGRAM	AGENCY	CERTIFICATION ID	EXP DATE
ARIZONA	AZ-DHS	AZ0725	05/27/11
ARKANSAS	ADEQ	10-035-0	06/16/11
CALIFORNIA	CA-ELAP	2452	02/28/11
DOD ELAP	A2LA	2897.01	11/30/11
FLORIDA/NELAP	FL-DOHS	E87611	06/30/11
HAWAII	HI-DOH	N/A	06/30/11
ILLINOIS/NELAP	IL-EPA	002380	10/06/10
ISO 17025	A2LA	2897.01	11/30/11
LOUISIANA/NELAP	LELAP	03048	06/30/10
LOUISIANA/NELAP	LDHH	LA100032	12/31/10
MAINE	ME-DOHS	2010041	06/05/12
MICHIGAN	MIDEQ	9971	06/30/10
MINNESOTA	MDH	048-999-427	12/31/10
NEVADA	NDEP	TX014112010A	07/31/10
NEW JERSEY	NJDEP	TX008	06/30/11
NEW MEXICO	NMED-DWB	N/A	06/30/11
NEW YORK/NELAP	NY-DOH	11707	04/01/11
OKLAHOMA	OKDEQ	2009-25	08/31/10
OREGON/NELAP	ORELAP	TX200002-006	03/24/10
PENNSYLVANIA/NELAP	PLAP	002	06/30/11
TENNESSEE	TNDEC	04016	06/30/11
TEXAS/NELAP	TCEQ	T104704216-10-1	06/30/11
UTAH/NELAP	UTELCP	COLU2	06/30/10
SOIL IMPORT PERMIT	USDA	P330-09-00067	03/27/12
WASHINGTON/NELAP	WA-Ecology	C1855	11/14/10
WEST VIRGINIA	WVDEP	347	06/30/11

### Abbreviations, Acronyms & Definitions

Conc ConCentration

**Dioxin(s)** Polychlorinated dibenzo-p-dioxin(s)

**EDL** Estimated Detection Limit

**EMPC** Estimated Maximum Possible Concentration

**Flags** Data qualifiers

**Furan(s)** Polychlorinated dibenzofuran(s)

**g** Grams

**ICAL** Initial CALibration

**ID** IDentifier

**lons** Masses monitored for the analyte during data acquisition

**L** Liter (s)

**LCS** Laboratory Control Sample

**DLCS** Duplicate Laboratory Control Sample

MB Method Blank

MCL Method Calibration LimitMDL Method Detection LimitMRL Method Reporting Limit

**mL** Milliliters

MS Matrix Spiked sample

**DMS** Duplicate Matrix Spiked sample

NO Number of peaks meeting all identification criteria

PCDD(s) Polychlorinated dibenzo-p-dioxin(s)
PCDF(s) Polychlorinated dibenzofuran(s)

ppb Parts per billion
 ppm Parts per million
 ppq Parts per quadrillion
 ppt Parts per trillion
 QA Quality Assurance
 QC Quality Control

**Ratio** Ratio of areas from monitored ions for an analyte

**% Rec.** Percent Recovery

RPD Relative Percent Difference
RRF Relative Response Factor

**RT** Retention Time

RRT Relative Retention Time
SDG Sample Delivery Group
S/N Signal-to-Noise ratio

TEF Toxicity Equivalence Factor
TEQ Toxicity Equivalence Quotient

### Data Qualifier Flags – Dioxin/Furans

- B Indicates the associated analyte is found in the method blank, as well as in the sample.
- C Confirmation of the TCDF compound: When 2378-TCDF is detected on the DB-5 column, confirmation analyses are performed on a second column (DB-225). The results from both the DB-5 column and the DB-225 column are included in this data package. The results from the DB-225 analyses should be used to evaluate the 2378-TCDF in the samples. The confirmed result should be used in determining the TEQ value for TCDF.
- E Indicates an estimated value used when the analyte concentration exceeds the upper end of the linear calibration range.
- J Indicates an estimated value used when the analyte concentration is below the method reporting limit (MRL) and above the estimated detection limit (EDL).
- K EMPC When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.
- o **U** Indicates the compound was analyzed and not detected.
- Y Samples that had recoveries of labeled standards outside the acceptance limits are flagged with 'Y'. In all cases, the signal-to-noise ratios are greater than 10:1, making these data acceptable.
- ND Indicates concentration is reported as 'Not Detected.'
- S Peak is saturated; data not reportable.
- P Indicates chlorodiphenyl ether interference present at the retention time of the target compound.
- **Q** Lock-mass interference by chlorodiphenyl ether compounds.

# COLUMBIA ANALYTICAL SERVICES, INC. – Houston Data Processing/Form Production and Peer Review Signatures

SR# Uniqu	SR# Unique ID K1006559			DB-5	DB-225 S				
	First Le	vel - Data I	Processing	<ul> <li>to be filled by pers</li> </ul>	son generating the	forms			
Date:	27/19/10	Analyst:	MC	Samples: nc	1.007				
	1 90								
	Seco	nd Level - I	Data Review	<ul> <li>to be filled by per</li> </ul>	son doing peer re	view			
Date:		Analyst:		Samples:					
7/2	31110		OC	001-0	<i>102</i>				
	~ 7 . ~		7/						

# COLUMBIA ANALYTICAL SERVICES, INC. – Houston Data Processing/Form Production and Peer Review Signatures

SR# Unique ID	K1006559	DB-5	DB-225	SPB-Octyl
	t Level - Data Processi	ing - to be filled by person o	generating the fo	rms
Date:	Analyst:	Samples:		
07/20/10	XX	(-001)		
S	econd Level - Data Rev	<b>riew</b> – to be filled by person	doing peer revie	W
Date: 07/20/1	Analyst:	Samples: 00 /		



## **Analytical Results**

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

An Employee Owned Company

Analytical Report

Pacific EcoRisk Laboratories **Client:** ACOE (San Rafael Channel) **Project:** 

Sediment **Sample Matrix:** 

SF 10 Sample Name:

K1006559-001 Lab Code:

Service Request: K1006559 **Date Collected:** 6/15/10 1005 **Date Received:** 6/24/10

Units: ng/Kg Basis: Dry Percent Solids: 67.1

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method **Sample Amount:** 11.860g

P208660 **Data File Name:** 08/01/08 **ICAL Date:** 

**Date Analyzed:** 7/16/10 1940 **Date Extracted:** 7/8/10 **Instrument Name:** E-HRMS-04 GC Column: DB-5

Blank File Name: P208658 Cal Ver. File Name: P208656

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	ND	U	0.102	1.26			1	
1,2,3,7,8-PeCDD	ND	U	0.0575	3.14			1	
1,2,3,4,7,8-HxCDD	ND	U	0.0439	3.14			1	
1,2,3,6,7,8-HxCDD	0.440	J	0.0419	3.14	1.30	1.000	1	
1,2,3,7,8,9-HxCDD	0.263	JK	0.0438	3.14	1.54	1.009	1	
1,2,3,4,6,7,8-HpCDD	5.09	В	0.0496	3.14	1.01	1.001	1	
OCDD	34.4	В	0.0796	6.28	0.89	1.000	1	
2,3,7,8-TCDF	0.383	CJ	0.0469	1.26	0.88	1.001	1	
1,2,3,7,8-PeCDF	ND	U	0.0410	3.14			1	
2,3,4,7,8-PeCDF	ND	U	0.0394	3.14			1	
1,2,3,4,7,8-HxCDF	0.167	JK	0.0341	3.14	1.02	1.000	1	
1,2,3,6,7,8-HxCDF	0.0868	JK	0.0328	3.14	1.04	1.003	1	
1,2,3,7,8,9-HxCDF	ND	U	0.0415	3.14			1	
2,3,4,6,7,8-HxCDF	0.0867	JK	0.0354	3.14	1.75	1.016	1	
1,2,3,4,6,7,8-HpCDF	1.05	J	0.0726	3.14	1.06	1.000	1	
1,2,3,4,7,8,9-HpCDF	ND	U	0.0953	3.14			1	
OCDF	2.70	J	0.0723	6.28	0.88	1.004	1	
Total Tetra-Dioxins	ND	U	0.102	1.26			1	
Total Penta-Dioxins	0.207	J	0.0575	3.14	1.43		1	
Total Hexa-Dioxins	2.98	J	0.0419	3.14	1.20		1	
Total Hepta-Dioxins	13.1		0.0496	3.14	1.05		1	
Total Tetra-Furans	0.383	J	0.0469	1.26	0.88		1	
Total Penta-Furans	0.438	J	0.0394	3.14	1.48		1	
Total Hexa-Furans	1.39	J	0.0328	3.14	1.23		1	
Total Hepta-Furans	2.92	J	0.0726	3.14	1.06		1	

Analytical Report

Pacific EcoRisk Laboratories **Client:** ACOE (San Rafael Channel) **Project:** 

Sediment **Sample Matrix:** 

SF 10 Sample Name:

K1006559-001 Lab Code:

Service Request: K1006559 **Date Collected:** 6/15/10 1005 **Date Received:** 6/24/10

> Units: Percent Basis: Dry

Percent Solids: 67.1

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method **Sample Amount:** 

11.860g

P208660 **Data File Name:** 08/01/08 **ICAL Date:** 

**Date Analyzed:** 7/16/10 1940 **Date Extracted:** 7/8/10 **Instrument Name:** E-HRMS-04

GC Column: DB-5 Blank File Name: P208658 Cal Ver. File Name: P208656

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec	Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	717.479	72		40-135	0.78	1.008
13C-1,2,3,7,8-PeCDD	1000	685.983	69		40-135	1.56	1.167
13C-1,2,3,6,7,8-HxCDD	2500	1680.906	67		40-135	1.25	0.992
13C-1,2,3,4,6,7,8-HpCDD	2500	1396.940	56		40-135	1.05	1.068
3C-OCDD	5000	1826.862	37	Y	40-135	0.91	1.148
C-2,3,7,8-TCDF	1000	627.606	63		40-135	0.79	0.980
3C-1,2,3,7,8-PeCDF	1000	764.364	76		40-135	1.56	1.129
3C-1,2,3,4,7,8-HxCDF	2500	1637.086	65		40-135	0.52	0.972
3C-1,2,3,4,6,7,8-HpCDF	2500	1373.774	55		40-135	0.44	1.044
7C1-2,3,7,8-TCDD	800	700.311	88		40-135	NA	1.009

Comments:
Comments.

Analytical Report

Client:Pacific EcoRisk LaboratoriesService Request:K1006559Project:ACOE (San Rafael Channel)Date Collected:6/15/10 1005Sample Matrix:SedimentDate Received:6/24/10

 Sample Name:
 SF 10
 Units:
 ng/Kg

 Lab Code:
 K1006559-001
 Basis:
 Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analytical Method:** 8290 **Prep Method:** Method

			Dilution		TEF - Adjusted	
Analyte Name	Result	DL	Factor	TEF	Concentration	
2,3,7,8-TCDD	ND	0.102	1	1		
1,2,3,7,8-PeCDD	ND	0.0575	1	1		
1,2,3,4,7,8-HxCDD	ND	0.0439	1	0.1		
1,2,3,6,7,8-HxCDD	0.440	0.0419	1	0.1	0.0440	
1,2,3,7,8,9-HxCDD	0.263	0.0438	1	0.1	0.0263	
1,2,3,4,6,7,8-HpCDD	5.09	0.0496	1	0.01	0.0509	
OCDD	34.4	0.0796	1	0.0003	0.0103	
2,3,7,8-TCDF	0.333	0.0594	1	0.1	0.0333	
1,2,3,7,8-PeCDF	ND	0.0410	1	0.03		
2,3,4,7,8-PeCDF	ND	0.0394	1	0.3		
1,2,3,4,7,8-HxCDF	0.167	0.0341	1	0.1	0.0167	
1,2,3,6,7,8-HxCDF	0.0868	0.0328	1	0.1	0.00868	
1,2,3,7,8,9-HxCDF	ND	0.0415	1	0.1		
2,3,4,6,7,8-HxCDF	0.0867	0.0354	1	0.1	0.00867	
1,2,3,4,6,7,8-HpCDF	1.05	0.0726	1	0.01	0.0105	
1,2,3,4,7,8,9-HpCDF	ND	0.0953	1	0.01		
OCDF	2.70	0.0723	1	0.0003	0.000810	

Total TEQ 0.210

2005 WHO TEFs, ND = 0

**Comments:** 

Analytical Report

**Client:** Pacific EcoRisk Laboratories Service Request: K1006559 **Project:** ACOE (San Rafael Channel) **Date Collected:** 6/15/10 1005 Sediment **Date Received:** 6/24/10 **Sample Matrix:** 

Sample Name:

K1006559-001 Lab Code: Basis: Dry Run Type: Reanalysis Percent Solids: 67.1

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method **Sample Amount:** 11.860g

SF 10

**Data File Name:** U137166 12/17/07 **ICAL Date:** 

**Date Analyzed:** 7/17/10 1723 **Date Extracted:** 7/8/10 **Instrument Name:** E-HRMS-01

Units: ng/Kg

GC Column: DB-225 Blank File Name: U137156 Cal Ver. File Name: U137155

Ion **Dilution** Result Q **EDL** MRL Ratio RRT **Analyte Name Factor** 2,3,7,8-TCDF **0.333** J 0.82 0.0594 1.26 1.001

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDF	1000	675.659	68	40-135	0.79	1.060	
37C1-2,3,7,8-TCDD	800	703.467	88	40-135	NA	0.989	

**Comments:** 

Analytical Report

Pacific EcoRisk Laboratories **Client:** ACOE (San Rafael Channel) **Project:** 

Sediment **Sample Matrix:** 

SF 11 Sample Name:

K1006559-002 Lab Code:

Service Request: K1006559 **Date Collected:** 6/15/10 0930 **Date Received:** 6/24/10

> Units: ng/Kg Basis: Dry

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method **Sample Amount:** 

11.958g

**Data File Name:** P208661 08/01/08 **ICAL Date:** 

**Date Analyzed:** 7/16/10 2029 **Date Extracted:** 7/8/10 **Instrument Name:** E-HRMS-04

Percent Solids: 80.9

GC Column: DB-5 Blank File Name: P208658 Cal Ver. File Name: P208656

Analyte Name	Result (	0	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
							ractor	
2,3,7,8-TCDD	ND U	_	0.0567	1.03			1	
1,2,3,7,8-PeCDD	ND U		0.0485	2.58			1	
1,2,3,4,7,8-HxCDD	ND U		0.0288	2.58			1	
1,2,3,6,7,8-HxCDD	ND U	J	0.0273	2.58			1	
1,2,3,7,8,9-HxCDD	ND U	J	0.0287	2.58			1	
1,2,3,4,6,7,8-HpCDD	<b>0.259</b> H	BJ	0.0446	2.58	1.04	1.000	1	
OCDD	<b>1.72</b> H	BJ	0.0639	5.17	0.97	1.000	1	
2,3,7,8-TCDF	ND U	IJ	0.0417	1.03			1	
1,2,3,7,8-PeCDF	ND U	J	0.0333	2.58			1	
2,3,4,7,8-PeCDF	ND U	J	0.0320	2.58			1	
1,2,3,4,7,8-HxCDF	ND U	J	0.0243	2.58			1	
1,2,3,6,7,8-HxCDF	ND U	J	0.0234	2.58			1	
1,2,3,7,8,9-HxCDF	ND U	J	0.0296	2.58			1	
2,3,4,6,7,8-HxCDF	ND U	J	0.0252	2.58			1	
1,2,3,4,6,7,8-HpCDF	0.0725 J	Ī	0.0311	2.58	1.12	1.000	1	
1,2,3,4,7,8,9-HpCDF	ND U	J	0.0409	2.58			1	
OCDF	<b>0.310</b> J	ľK	0.0711	5.17	0.68	1.005	1	
Total Tetra-Dioxins	ND U	J	0.0567	1.03			1	
Total Penta-Dioxins	ND U	J	0.0485	2.58			1	
Total Hexa-Dioxins	ND U	J	0.0273	2.58			1	
Total Hepta-Dioxins	<b>0.259</b> J	Г	0.0446	2.58	1.04		1	
Total Tetra-Furans	ND U	IJ	0.0417	1.03			1	
Total Penta-Furans	ND U	IJ	0.0320	2.58			1	
Total Hexa-Furans	ND U	IJ	0.0234	2.58			1	
Total Hepta-Furans	0.0725 J	Ţ	0.0311	2.58	1.12		1	

**Comments:** 

Analytical Report

Pacific EcoRisk Laboratories **Client:** ACOE (San Rafael Channel) **Project:** 

Sediment **Sample Matrix:** 

SF 11 Sample Name:

K1006559-002 Lab Code:

Service Request: K1006559 **Date Collected:** 6/15/10 0930 **Date Received:** 6/24/10

Units: Percent Basis: Dry Percent Solids: 80.9

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Prep Method:** Method **Sample Amount:** 11.958g

P208661 **Data File Name:** 08/01/08

**ICAL Date:** 

**Date Analyzed:** 7/16/10 2029 **Date Extracted:** 7/8/10 **Instrument Name:** E-HRMS-04 GC Column: DB-5

Blank File Name: P208658 Cal Ver. File Name: P208656

<b>Labeled Compounds</b>	Spike Conc.(pg)	Conc. Found (pg)	%Rec	Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	713.655	71		40-135	0.78	1.008
13C-1,2,3,7,8-PeCDD	1000	655.683	66		40-135	1.57	1.167
13C-1,2,3,6,7,8-HxCDD	2500	1606.541	64		40-135	1.25	0.992
13C-1,2,3,4,6,7,8-HpCDD	2500	1242.374	50		40-135	1.05	1.068
13C-OCDD	5000	1716.869	34	Y	40-135	0.91	1.148
3C-2,3,7,8-TCDF	1000	615.998	62		40-135	0.78	0.980
3C-1,2,3,7,8-PeCDF	1000	716.813	72		40-135	1.56	1.130
3C-1,2,3,4,7,8-HxCDF	2500	1501.349	60		40-135	0.52	0.972
13C-1,2,3,4,6,7,8-HpCDF	2500	1185.949	47		40-135	0.44	1.044
7C1-2,3,7,8-TCDD	800	658.344	82		40-135	NA	1.009

Comments:
Comments.

Analytical Report

Client:Pacific EcoRisk LaboratoriesService Request:K1006559Project:ACOE (San Rafael Channel)Date Collected:6/15/10 0930Sample Matrix:SedimentDate Received:6/24/10

 Sample Name:
 SF 11
 Units:
 ng/Kg

 Lab Code:
 K1006559-002
 Basis:
 Dry

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analytical Method:** 8290 **Prep Method:** Method

			Dilution		TEF - Adjusted	
Analyte Name	Result	DL	Factor	TEF	Concentration	
2,3,7,8-TCDD	ND	0.0567	1	1		
1,2,3,7,8-PeCDD	ND	0.0485	1	1		
1,2,3,4,7,8-HxCDD	ND	0.0288	1	0.1		
1,2,3,6,7,8-HxCDD	ND	0.0273	1	0.1		
1,2,3,7,8,9-HxCDD	ND	0.0287	1	0.1		
1,2,3,4,6,7,8-HpCDD	0.259	0.0446	1	0.01	0.00259	
OCDD	1.72	0.0639	1	0.0003	0.000516	
2,3,7,8-TCDF	ND	0.0417	1	0.1		
1,2,3,7,8-PeCDF	ND	0.0333	1	0.03		
2,3,4,7,8-PeCDF	ND	0.0320	1	0.3		
1,2,3,4,7,8-HxCDF	ND	0.0243	1	0.1		
1,2,3,6,7,8-HxCDF	ND	0.0234	1	0.1		
1,2,3,7,8,9-HxCDF	ND	0.0296	1	0.1		
2,3,4,6,7,8-HxCDF	ND	0.0252	1	0.1		
1,2,3,4,6,7,8-HpCDF	0.0725	0.0311	1	0.01	0.000725	
1,2,3,4,7,8,9-HpCDF	ND	0.0409	1	0.01		
OCDF	0.310	0.0711	1	0.0003	0.0000930	

Total TEQ 0.00392

2005 WHO TEFs, ND = 0

**Comments:** 

Analytical Report

Client:Pacific EcoRisk LaboratoriesService Request:K1006559Project:ACOE (San Rafael Channel)Date Collected:NASample Matrix:SedimentDate Received:NASample Name:Method BlankUnits:ng/Kg

EQ1000340-01

Lab Code:

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

 Analytical Method:
 8290
 Date Analyzed:
 7/16/10 1803

 Prep Method:
 Method
 Date Extracted:
 7/8/10

 Sample Amount:
 10.000g
 Instrument Name:
 E-HRMS-04

 GC Column:
 DB-5

 Data File Name:
 P208658

 ICAL Date:
 08/01/08

 Blank File Name:
 P208658

 Cal Ver. File Name:
 P208656

Analyte Name	Result	0	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	ND		0.0535	1.00			1	
1,2,3,7,8-PeCDD	ND		0.0504	2.50			1	
1,2,3,4,7,8-HxCDD	ND		0.0256	2.50			1	
1,2,3,6,7,8-HxCDD	ND		0.0242	2.50			1	
1,2,3,7,8,9-HxCDD	ND		0.0255	2.50			1	
1,2,3,4,6,7,8-HpCDD	0.0926		0.0302	2.50	1.57	1.001	1	
OCDD	0.375	J	0.0597	5.00	0.77	1.000	1	
2,3,7,8-TCDF	ND	U	0.0388	1.00			1	
1,2,3,7,8-PeCDF	ND	U	0.0312	2.50			1	
2,3,4,7,8-PeCDF	ND	U	0.0300	2.50			1	
1,2,3,4,7,8-HxCDF	ND	U	0.0229	2.50			1	
1,2,3,6,7,8-HxCDF	ND	U	0.0220	2.50			1	
1,2,3,7,8,9-HxCDF	ND	U	0.0279	2.50			1	
2,3,4,6,7,8-HxCDF	ND	U	0.0237	2.50			1	
1,2,3,4,6,7,8-HpCDF	ND	U	0.0238	2.50			1	
1,2,3,4,7,8,9-HpCDF	ND	U	0.0313	2.50			1	
OCDF	ND	U	0.0474	5.00			1	
Total Tetra-Dioxins	ND	U	0.0535	1.00			1	
Total Penta-Dioxins	ND		0.0504	2.50			1	
Total Hexa-Dioxins	ND		0.0242	2.50			1	
Total Hepta-Dioxins	ND		0.0302	2.50			1	
Total Tatra Europa	MD	II	0.0288	1.00			1	
Total Parts Furans	ND		0.0388	1.00			1	
Total Penta-Furans	ND		0.0300	2.50			1	
Total Hexa-Furans	ND		0.0220	2.50			1	
Total Hepta-Furans	ND	U	0.0238	2.50			1	

**Comments:** 

Basis: Dry

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: ACOE (San Rafael Channel)

Sample Matrix: Sediment

Sample Name: Method Blank Lab Code: EQ1000340-01 Service Request: K1006559

Date Collected: NA

Date Received: NA

Units: Percent
Basis: Dry

### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.000g

Data File Name: P208658 ICAL Date: 08/01/08

Date Analyzed: 7/16/10 1803
Date Extracted: 7/8/10
Instrument Name: E-HRMS-04
GC Column: DB-5

Blank File Name: P208658
Cal Ver. File Name: P208656

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec	Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	672.048	67		40-135	0.77	1.009
13C-1,2,3,7,8-PeCDD	1000	686.581	69		40-135	1.56	1.168
13C-1,2,3,6,7,8-HxCDD	2500	1647.296	66		40-135	1.26	0.992
13C-1,2,3,4,6,7,8-HpCDD	2500	1396.904	56		40-135	1.05	1.068
3C-OCDD	5000	1744.035	35	Y	40-135	0.91	1.148
C-2,3,7,8-TCDF	1000	608.785	61		40-135	0.77	0.980
C-1,2,3,7,8-PeCDF	1000	739.405	74		40-135	1.58	1.130
C-1,2,3,4,7,8-HxCDF	2500	1616.719	65		40-135	0.53	0.971
3C-1,2,3,4,6,7,8-HpCDF	2500	1382.723	55		40-135	0.44	1.044
Cl-2,3,7,8-TCDD	800	636.934	80		40-135	NA	1.009

Comments:
Comments.



# **Accuracy and Precision**

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

An Employee Owned Company

QA/QC Report

Client:Pacific EcoRisk LaboratoriesService Request:K1006559Project:ACOE (San Rafael Channel)Date Analyzed:7/17/10

Sample Matrix: Sediment

### Lab Control Sample Summary

### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:8290Units:ng/KgPrep Method:MethodBasis:Dry

Extraction Lot: 114850

	<b>Lab Control Sample</b> EQ1000340-02			•	te Lab Contro EQ1000340-03	% Rec		RPD	
Analyte Name	Result	Expected	% Rec	Result	Expected	% Rec	Limits	RPD	Limit
2,3,7,8-TCDD	19.6	20.0	98	18.5	20.0	93	74 - 127	5	18
1,2,3,7,8-PeCDD	52.3	50.0	105	51.1	50.0	102	73 - 122	3	14
1,2,3,4,7,8-HxCDD	47.1	50.0	94	42.1	50.0	84	60 - 153	11	26
1,2,3,6,7,8-HxCDD	49.5	50.0	99	49.2	50.0	98	72 - 126	1	16
1,2,3,7,8,9-HxCDD	44.9	50.0	90	41.7	50.0	83	59 - 140	8	32
1,2,3,4,6,7,8-HpCDD	50.0	50.0	100	48.9	50.0	98	66 - 132	2	19
OCDD	95.7	100	96	92.6	100	93	73 - 140	3	28
2,3,7,8-TCDF	20.2	20.0	101	19.9	20.0	100	66 - 129	1	18
1,2,3,7,8-PeCDF	46.7	50.0	93	45.5	50.0	91	70 - 123	2	14
2,3,4,7,8-PeCDF	45.5	50.0	91	44.9	50.0	90	69 - 122	1	17
1,2,3,4,7,8-HxCDF	47.9	50.0	96	46.4	50.0	93	71 - 121	3	15
1,2,3,6,7,8-HxCDF	52.7	50.0	105	50.4	50.0	101	70 - 130	4	14
1,2,3,7,8,9-HxCDF	51.7	50.0	103	53.1	50.0	106	53 - 130	3	28
2,3,4,6,7,8-HxCDF	50.3	50.0	101	51.1	50.0	102	66 - 126	1	22
1,2,3,4,6,7,8-HpCDF	47.7	50.0	95	46.6	50.0	93	66 - 122	2	17
1,2,3,4,7,8,9-HpCDF	52.6	50.0	105	53.2	50.0	106	69 - 136	1	21
OCDF	110	100	110	111	100	111	66 - 146	1	24

**Comments:** 

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: ACOE (San Rafael Channel)

Sample Matrix: Sediment

**Sample Name:** Lab Control Sample **Lab Code:** EQ1000340-02

Service Request: K1006559

Date Collected: NA

Date Received: NA

Units: ng/Kg Basis: Dry

### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.000g

 Data File Name:
 P208667

 ICAL Date:
 08/01/08

Date Analyzed: 7/17/10 0120
Date Extracted: 7/8/10
Instrument Name: E-HRMS-04
GC Column: DB-5

Blank File Name: P208658
Cal Ver. File Name: P208656

Analyte Name	Result Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	19.6	0.0439	1.00	0.78	1.001	1	
1,2,3,7,8-PeCDD	52.3	0.0477	2.50	1.54	1.000	1	
1,2,3,4,7,8-HxCDD	47.1	0.0326	2.50	1.25	0.999	1	
1,2,3,6,7,8-HxCDD	49.5	0.0312	2.50	1.26	1.000	1	
1,2,3,7,8,9-HxCDD	44.9	0.0325	2.50	1.25	1.008	1	
1,2,3,4,6,7,8-HpCDD	50.0	0.0310	2.50	1.04	1.000	1	
OCDD	95.7	0.0517	5.00	0.90	1.000	1	
2,3,7,8-TCDF	20.2	0.0402	1.00	0.80	1.001	1	
1,2,3,7,8-PeCDF	46.7	0.0324	2.50	1.51	1.001	1	
2,3,4,7,8-PeCDF	45.5	0.0312	2.50	1.52	1.024	1	
1,2,3,4,7,8-HxCDF	47.9	0.0184	2.50	1.19	1.000	1	
1,2,3,6,7,8-HxCDF	52.7	0.0177	2.50	1.20	1.003	1	
1,2,3,7,8,9-HxCDF	51.7	0.0226	2.50	1.18	1.036	1	
2,3,4,6,7,8-HxCDF	50.3	0.0191	2.50	1.17	1.017	1	
1,2,3,4,6,7,8-HpCDF	47.7	0.0620	2.50	0.99	1.000	1	
1,2,3,4,7,8,9-HpCDF	52.6	0.0816	2.50	0.99	1.034	1	
OCDF	110	0.0664	5.00	0.87	1.004	1	
Total Tetra-Dioxins	19.6	0.0439	1.00	0.80		1	
Total Penta-Dioxins	52.3	0.0477	2.50	1.54		1	
Total Hexa-Dioxins	141	0.0312	2.50	1.25		1	
Total Hepta-Dioxins	50.5	0.0310	2.50	1.15		1	
Total Tetra-Furans	20.2	0.0402	1.00	0.80		1	
Total Penta-Furans	94.1	0.0312	2.50	1.69		1	
Total Hexa-Furans	203	0.0177	2.50	1.19		1	
Total Hepta-Furans	100	0.0620	2.50	0.99		1	

Common	٠.
Comment	S.

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: ACOE (San Rafael Channel)

Sample Matrix: Sediment

**Sample Name:** Lab Control Sample **Lab Code:** EQ1000340-02

Service Request: K1006559

Date Collected: NA

Date Received: NA

Units: Percent
Basis: Dry

### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.000g

Data File Name: P208667 ICAL Date: 08/01/08

Date Analyzed: 7/17/10 0120
Date Extracted: 7/8/10
Instrument Name: E-HRMS-04
GC Column: DB-5

Blank File Name: P208658
Cal Ver. File Name: P208656

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec	Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	743.420	74		40-135	0.79	1.009
13C-1,2,3,7,8-PeCDD	1000	658.775	66		40-135	1.56	1.168
13C-1,2,3,6,7,8-HxCDD	2500	1764.231	71		40-135	1.28	0.992
13C-1,2,3,4,6,7,8-HpCDD	2500	1506.198	60		40-135	1.05	1.068
3C-OCDD	5000	1909.832	38	Y	40-135	0.91	1.148
-2,3,7,8-TCDF	1000	652.828	65		40-135	0.78	0.981
C-1,2,3,7,8-PeCDF	1000	729.057	73		40-135	1.53	1.130
C-1,2,3,4,7,8-HxCDF	2500	1643.241	66		40-135	0.53	0.971
3C-1,2,3,4,6,7,8-HpCDF	2500	1512.814	61		40-135	0.44	1.044
Cl-2,3,7,8-TCDD	800	703.620	88		40-135	NA	1.009

Comments:
Comments.

128

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: ACOE (San Rafael Channel)

Sample Matrix: Sediment

Sample Name: Duplicate Lab Control Sample

**Lab Code:** EQ1000340-03

Service Request: K1006559

Date Collected: NA

Date Received: NA

Units: ng/Kg
Basis: Dry

### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.000g

ample Amount: 10.000g

**Data File Name:** P208668 **ICAL Date:** 08/01/08

Date Analyzed: 7/17/10 0209
Date Extracted: 7/8/10
Instrument Name: E-HRMS-04
GC Column: DB-5
Blank File Name: P208658

Cal Ver. File Name: P208656

Ion Dilution EDL Ratio RRT **Analyte Name** Result O **MRL Factor** 2.3.7.8-TCDD 18.5 0.0398 1.00 0.77 1.001 51.1 0.0488 2.50 1.54 1.001 1 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 42.1 0.0224 2.50 1.40 0.998 1 49.2 1.14 1.000 1 1,2,3,6,7,8-HxCDD 0.0213 2.50 1,2,3,7,8,9-HxCDD 41.7 0.0223 2.50 1.21 1.008 1 1,2,3,4,6,7,8-HpCDD 48.9 0.0286 2.50 1.05 1.000 1 OCDD 92.6 0.0589 5.00 0.89 1.000 1 2,3,7,8-TCDF 19.9 0.0517 1.00 0.75 1.001 0.0266 2.50 1.49 1.000 1,2,3,7,8-PeCDF 45.5 1 0.0255 2.50 1.023 2,3,4,7,8-PeCDF 44.9 1.51 1,2,3,4,7,8-HxCDF 46.4 0.0244 2.50 1.21 1.000 1 1,2,3,6,7,8-HxCDF 50.4 0.0235 2.50 1.19 1.003 1 1.18 1,2,3,7,8,9-HxCDF 53.1 0.0297 2.50 1.036 2,3,4,6,7,8-HxCDF 51.1 0.0252 2.50 1.19 1.017 1 1,2,3,4,6,7,8-HpCDF 46.6 0.0476 2.50 0.99 1.000 1 53.2 2.50 0.98 1.034 1 1,2,3,4,7,8,9-HpCDF 0.0626 **OCDF** 111 0.0703 5.00 0.87 1.004 1 **Total Tetra-Dioxins** 0.0398 1.00 0.77 18.6 Total Penta-Dioxins 51.3 0.0488 2.50 1.54 1 Total Hexa-Dioxins 133 0.0213 2.50 1.40 Total Hepta-Dioxins 49.3 0.0286 1.06 2.50 1 Total Tetra-Furans 20.0 0.0517 1.00 0.88 **Total Penta-Furans** 92.1 0.0255 2.50 1.49 1 Total Hexa-Furans 0.0235 2.50 1.21 201 1 Total Hepta-Furans 99.8 0.0476 2.50 0.99

**Comments:** 

129

Analytical Report

Client: Pacific EcoRisk Laboratories
Project: ACOE (San Rafael Channel)

Sample Matrix: Sediment

Sample Name: Duplicate Lab Control Sample

**Lab Code:** EQ1000340-03

Service Request: K1006559

Date Collected: NA

Date Received: NA

Units: Percent

Units: Percent Basis: Dry

### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.000g

10.000g

**Data File Name:** P208668 **ICAL Date:** 08/01/08

Date Analyzed: 7/17/10 0209
Date Extracted: 7/8/10
Instrument Name: E-HRMS-04
GC Column: DB-5

Blank File Name: P208658
Cal Ver. File Name: P208656

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec	Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	757.168	76		40-135	0.79	1.008
3C-1,2,3,7,8-PeCDD	1000	679.783	68		40-135	1.57	1.167
3C-1,2,3,6,7,8-HxCDD	2500	1822.545	73		40-135	1.25	0.992
3C-1,2,3,4,6,7,8-HpCDD	2500	1416.448	57		40-135	1.06	1.068
3C-OCDD	5000	1707.522	34	Y	40-135	0.90	1.148
2,3,7,8-TCDF	1000	664.112	66		40-135	0.75	0.980
C-1,2,3,7,8-PeCDF	1000	738.431	74		40-135	1.56	1.130
C-1,2,3,4,7,8-HxCDF	2500	1618.962	65		40-135	0.52	0.972
3C-1,2,3,4,6,7,8-HpCDF	2500	1407.768	56		40-135	0.44	1.044
Cl-2,3,7,8-TCDD	800	695.624	87		40-135	NA	1.009

Comments:
Comments.



# **Chain of Custody**

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

An Employee Owned Company

# Intra-Network Chain of Custody 1317 South 13th Avenue • Kelso, WA 98626 • 1-360-577-7222 • FAX 1-360-636-1079

Project Name:

ACOE (San Rafael Channel)

**Project Number:** 

Project Manager:

Jeffrey Cotsifas

Company:

Pacific EcoRisk Laboratories

CDD PCDF 8290

				Sam	ole	Date		Ā
Lab Code	Client Sample ID	# of Cont.	Matrix	Date	Time	Received	Send To	
K1006559-001	SF 10		Sediment	6/15/10	1005	6/24/10	HOUSTON	V
K1006559-002	SF 11	** Linaying a co-	Sediment	6/15/10	0930	6/24/10	HOUSTON	V

**Test Comments** 

PCDD PCDF - 8290

K1006559-001,2

Analyte list attached

Special Instructions/Comments	Turnaround Requirements	Report Requirements	Invoice Information
Please provide the electronic (PDF and EDD) report to the following e-mail address: kelso_data@caslab.com	RUSH (Surcharges Apply)	I. Results Only  II. Results + QC Summaries	
	PLEASE CIRCLE WORK DAYS		PO#
	1 2 3 4 5	III. Results + QC and Calibration Summaries	K1006559
	STANDARD	IV. Data Validation Report with Raw Data	
	Requested FAX Date:	PQL/MDL/J (Y_)	Bill to
	Requested Report Date: 07/15/10	EDD	

Relinquished By:

7/2/10 1130 Received By:

MO3/16 Airbill Number:

CAS Contact: Pradeep Divvela

# Columbia Analytical Services, Inc. Cooler Receipt Form

Client	Project: Pacific EcoR	isk Labs/ ACOE (Sa	an Rafael Chann	<u>iel)</u> Service Req	uest:	K1006559							
Receiv	/ed:7/3/10; 1000	Opened (Date/Tin	ne): <u>7/3/10;</u>	1000 By:	С	D for JB							
1.	Samples were received	ed via?  US M	Iail 🔲 Fedex	<b>✓</b> UPS	]DHL []Courie	er Hand Delivered							
2.	Samples were received	ed in: (circle)	Cooler Box	x Other_		<i>NA</i>							
3.	Were <u>custody seals</u> p	resent on coolers?	✓Y	□N If yes, h	ow many and wher	e?2-front							
	If present, were custo	dy seals intact?	<b>✓</b> Y □N	If present, were	they signed and dat	ed?							
4.	Is shipper's air-bill fi	led?	□Y <b>∨</b> N	If not, record air	bill number:	1Z9736594446764848							
5. Temperature of cooler(s) upon receipt (°C):													
6. If applicable, list Chain of Custody numbers:													
7. Were custody papers properly filled out (ink, signed, etc.)? □NA ☑Y □N													
8. Packing material used: \[ \subseteq \int Bubble Wrap \] \[ \subseteq \int Blue Ice \] \[ \subseteq \int Sleeves \] \[ \subseteq \int Other \]													
9. Were the correct types of bottles used for the tests indicated?													
Did all bottles arrive in good condition (i.e. unbroken, out of temp.)? <i>Indicate in the table below.</i>													
	Sample ID	Bottle Count	Bottle Type	Out of Temp	Broken	Initials							
				$\vdash$									
10.	Were all bottle labels	complete (i.e. anal	ysis, ID, etc.)?			✓Y □N							
	Did all bottle labels a	- '		Indicate in the to	able below.	— — ✓Y □N							
San	nple ID on Bottle	Sample ID or			D on Bottle	Sample ID on COC							
	-			_									
	L				I								
11.	Additional notes, disc	crepancies, and reso	olutions:										
		· · · · · · · · · · · · · · · · · · ·											

# Sample Acceptance Policy

### Custody Seals (desirable, mandatory if specified in SAP):

- ✓ On outside of cooler
- ✓ Seals intact, signed and dated

### **Chain-of-Custody documentation (mandatory):**

- ✓ Properly filled out in ink & signed by the client
- ✓ Sign and date the coc for CAS/HOU upon cooler receipt
- ✓ Coc must list method number
- ✓ If no coc was submitted with the samples, complete a CAS/HOU coc for the client

### Sample Integrity (mandatory):

- ✓ Sample containers must arrive in good condition (not broken or leaking)
- ✓ Sample IDs on the bottles must match the sample IDs on the coc
- ✓ The correct type of sample bottle must be used for the method requested
- ✓ The correct number of sample containers received must agree with the documentation on the coc
- ✓ The correct sample matrix must appear on the coc
- ✓ An appropriate sample volume or weight must be received.

### Temperature Preservatives (varies by sample matrix):

- √ Aqueous and Non-aqueous samples must be shipped and stored cold, at 0 to 6°C
- ✓ Tissue samples must be shipped and stored frozen, at -20 to -10°C
- ✓ Air samples can be shipped and stored at ambient temperature, ~23°C
- ✓ The sample temperature must be recorded on the coc
- ✓ Notify a Project Chemist if any samples are outside the acceptance temperature or have compromised sample integrity the client must decide re: replacement sample submittal or continue with the analysis

### **Cooler Receipt Form, CRF (mandatory):**

- ✓ Cooler receipt forms must be completed for each coc & SR#
- ✓ Sample integrity issues must be documented on the CRF
- ✓ A scan of the carrier and the airbill number must be recorded in CAS LIMS

### Sample Integrity Issues/Resolutions (mandatory):

- ✓ Sample integrity issues are documented on the CRF and given to the Project Chemist for resolution with the client
- ✓ Client resolution is documented in writing (typically email or on the CRF) and filed in the project folder(s)

# **Service Request Summary**

Folder #: K1006559

Client Name: Pacific EcoRisk Laboratories

Project Name: ACOE (San Rafael Channel)

Project Number:

**Report To:** Jeffrey Cotsifas

Pacific EcoRisk Laboratories

2250 Cordelia Road Fairfield, CA 94534

Phone Number: 707-207-7760

Cell Number:

Fax Number: 707-207-7916

E-mail: cotsifas@pacificecorisk.com

Project Chemist: Darren Biles
Originating Lab: KELSO
Logged By: JJONES

Date Received: 6/24/10

Internal Due Date: 7/16/10

QAP: LAB QAP

Qualifier Set: CAS Standard Formset: CAS Standard

Merged?: N,Y

Report to MDL?: N,Y P.O. Number: 16087

EDD: BASIC_WQC

16 oz-Glass Jar WM Unpreserved

2 _ 2 oz-Glass Jar WM CLEAR Teflon Liner 4-deg C

2 _ 1 each-Plastic Bag Ziplock Unpreserved

2 _ -N/A N/A

**Location:** K-Delilah-100, K-PETUNIA-02,

E-WIC-02-Box168, SMO

**RUSH** 

					KELSO				KELSO			KELSO		
CAS Samp No	Client Samp No.	Matrix	Collected	ASTM D4129-82M/ TOC	S. S. S. S. S. Mer		010B/ Metal	010B/ Metals 5020/ Metals 6020/ Sb Ag				8015B/ DRO_RRO	8081A/ PEST_OC_LL	8082/ PCB_LL
K1006559-001	SF 10	Sediment	6/15/10 100:	V	V	V	V	V	V	V	V	V	V	V
K1006559-002	SF 11	Sediment	6/15/10 0930	V	V	V	V	V	V	V	V	V	v	V

#### **Test Comments:**

Group	Test/Method	Samples	Comments
GenChem	Sub Sample/Subsample	1-2	Lab to aliquot a portion of sample for dioxins and bring to SMO for shipping
Metals	Metals T/6010B	1-2	В
Metals	Metals T/6020	1-2	As,Cd,Cr,Cu,Pb,Ni,Zn,Ba,Be,Co,Mn,V
Metals	Sb Ag T/6020	1-2	Ag
Semivoa GC	HERB/8151A	1-2	Dichlorprop,MCPA and MCPP
Semivoa GCMS	PCDD PCDF/8290	1-2, 0	Analyte list attached
Semivoa GCMS	SVO_LL/8270C	1-2	Phenol and Pentachlorophenol only
SMO	Archive -20C/Archive	1-2	Archive samples after analysis has been performed.
SMO	Archive 4C/Archive	1-2	Archive samples after analysis has been performed.

				KELSO		KELSO		KELSO		KELSO	KELSO	SV	VM
CAS Samp No.	Client Samp No.	Matrix	Collected	8151A/ HERB	Butyltins/ BUTYLTINS	8270C SIM/ PAH_SIM	8270C/ SVO_LL	Archive/ Archive -20C	Archive/ Archive 4C	TS-MET/ Total Solids	8015B/ VOC_GRO	8290/ PCDD PCDF	CAS SOP/ Total Solids
K1006559-001	SF 10	Sediment	6/15/10 1005	V	V	V	V	V	V	V	V	II	V
K1006559-002	SF 11	Sediment	6/15/10 0930	V	V	V	V	V	V	V	V	II	v

# Preparation Information Benchsheet

Prep Run#: 114850 Prep WorkFlow: OrgExtDioxS(30) Status: Prepped

Team: Semivoa GCMS/AKODUR Prep Method: Method Prep Date/Time: 7/8/10 12:55 PM

#	Lab Code	Client ID	B#	Method /Test	рН	Matrix	Amt. Ext.	Sample Description
1	E1000731-001	10068313-1	.01	8290/PCDD PCDF		Paper	5.217g	white paper squares
2	E1000740-001	10068632-1	.01	8290/PCDD PCDF		Paper	5.142g	white cardboard
3	EQ1000340-01	MB		8290/PCDD PCDF		Solid	10.000g	
4	EQ1000340-02	LCS		8290/PCDD PCDF		Solid	10.000g	
5	EQ1000340-03	DLCS		8290/PCDD PCDF		Solid	10.000g	
6	K1006356-021	SRC-2010-8-Z-Comp	.04	8290/PCDD PCDF		Sediment	13.336g	dark brown wet soil
7	K1006559-001	SF 10	.04	8290/PCDD PCDF		Sediment	11.860g	dark brown wet soil
8	K1006559-002	SF 11	.04	8290/PCDD PCDF		Sediment	11.958g	dark brown wet soil
9	K1006816-001	OUTSIDE-CB2-062910	.03	8290/PCDD PCDF		Soil	10.990g	brown soil
10	K1006816-002	OUTSIDE-CB3-062910	.03	8290/PCDD PCDF		Soil	10.870g	brown soil
11	K1006816-003	OUTSIDE-CB5-062910	.03	8290/PCDD PCDF		Soil	10.318g	brown soil
12	K1006816-004	DALLAS AVE-062910	.03	8290/PCDD PCDF		Soil	13.406g	brown soil

### **Spiking Solutions**

Name: 8290 Matrix Work	ing Standard	I	Inventory ID 17186	Logbook Ref: D11-21-5A		Expires On: 04/16/2011
EQ1000340-02 100.00μL	EQ1000340-03	100.00μL				
Name: 8290 Internal Wor	king Standard	I	Inventory ID 19025	Logbook Ref: D11-41-1A		Expires On: 06/24/2011
E1000731-001 100.00μL K1006559-001 100.00μL	E1000740-001 K1006559-002	100.00μL 100.00μL	EQ1000340-01 100.00μL K1006816-001 100.00μL	EQ1000340-02 100.00μL K1006816-002 100.00μL	EQ1000340-03 100.00μL K1006816-003 100.00μL	K1006356-021 100.00μL K1006816-004 100.00μL
Name: 8290/1613B Clear	nup Working Standard	I	Inventory ID 19198	Logbook Ref: D11-42-2A/B		Expires On: 07/01/2011
E1000731-001 100.00μL K1006559-001 100.00μL	E1000740-001 K1006559-002	100.00μL 100.00μL	EQ1000340-01 100.00μL K1006816-001 100.00μL	EQ1000340-02 100.00μL K1006816-002 100.00μL	EQ1000340-03 100.00μL K1006816-003 100.00μL	K1006356-021 100.00μL K1006816-004 100.00μL
<b>Preparation Materials</b>						
Carbon, High Purity	C2-40-1 (19119)		Ethyl Acetate 99.9% Minimum EtOAc	C2-41-3 (19127)	Extraction Thimbles 43 x123 mm	(1577)
Glass Wool	C2-37-2 (19132)		Sulfuric Acid Reagent Grade H2SO4	C2-40-2 (19147)	Dichloromethane (Methylene Chloride) 99.9% MeCl2	C2-41-2 (19145)
Sodium Chloride Reagent Grade NaCl	C2-38-1 (19137)		Sodium Hydroxide Reagent Grade NaOH	C2-40-5 (19149)	Sodium Sulfate Anhydrous Reagent Grade Na2SO4	C2-36-004 (16226)
Tridecane (n-Tridecane)	C2-40-3 (19135)		Hexane (n-Hexane) 98.5% Minimum	C2-40-6 (19125)	Nonane (n-Nonane) 99%	C2-33-001 (13944)
Silica Gel Reagent Grade	C2-38-6 (19140)		Toluene 99.9% Minimum	C2-41-1 (19142)		

# Preparation Information Benchsheet

Prep Run#: 114850 Prep WorkFlow: OrgExtDioxS(30) Status: Prepped

Team: Semivoa GCMS/AKODUR Prep Method: Method Prep Date/Time: 7/8/10 12:55 PM

**Preparation Steps** 

Step:	Extraction	Step:	Acid Clean	Step:	Silica Gel Clean	Step:	Final Volume
Started:	7/8/10 12:55	Started:	7/12/10 09:58	Started:	7/12/10 12:00	Started:	7/13/10 06:30
Finished:	7/9/10 07:10	Finished:	7/12/10 11:21	Finished:	7/12/10 14:00	Finished:	7/13/10 10:00
By:	CDONOVAN	By:	CDONOVAN	By:	CDONOVAN	By:	CDONOVAN

 Comments:

 Reviewed By:
 CD
 Date:
 7/14/2010

 Chain of Custody
 Extracts Examined

 Relinquished By:
 Date:
 Extracts Examined

 Received By:
 Date:
 Yes
 No

# **Total Solids Report**

Sample ID	Tare (g)	Tare + Wet Wt.(g)	Tare + Dry Wt.(g)	% Total Solids
E1000731-001	13.082	16.646	16.004	82.0
K1006559-001	12.985	17.957	16.425	69.2
K1006559-002	12.873	18.023	17.076	81.6
K1006816-001	13.414	16.286	16.230	98.1
K1006816-002	13.013	17.090	17.011	98.1
K1006816-003	13.423	15.608	15.542	97.0
K1006816-004	12.983	18.188	18.093	98.2

Batch No.:				
Comments:				
Analyst:	ak	Date/Time:	7/15/10	11:14 AM



July 16, 2010

Analytical Report for Service Request No: K1006947

Jeffrey Cotsifas Pacific EcoRisk Laboratories 2250 Cordelia Road Fairfield, CA 94534

RE: ACOE- San Rafael Channel

Dear Jeffrey:

Enclosed are the results of the samples submitted to our laboratory on July 07, 2010. For your reference, these analyses have been assigned our service request number K1006947.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Divvela Project Chemist

PD/ln

Page 1 of 41

### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

#### Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

  DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

### Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value that was detected outside the quantitation range.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

### Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

# Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-







**Case Narrative** 

Client: Project: Pacific EcoRisk Laboratories ACOE - San Rafael Channel Service Request No.: Date Received:

K1006947 07/07/10

Sample Matrix:

Oceanwater

#### CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), and Laboratory Control Sample (LCS).

### Sample Receipt

Eight field samples were received for analysis at Columbia Analytical Services on 07/07/10. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

### **General Chemistry Parameters**

No anomalies associated with the analysis of these samples were observed.

#### **Total and Dissolved Metals**

#### Method Blank Exceptions:

The Method Blank contained low levels of Lead above the Method Reporting Limit (MRL). In accordance with CAS QA/QC policy, all sample results less than twenty times the level found in the Method Blank were flagged as estimated. The samples were not re-prepared and re-analyzed as insufficient sample remained for additional testing.

No other anomalies associated with the analysis of these samples were observed.

	De 07/16/10
Approved by	Date

Chain of Custody



# **CAS CHAIN-OF-CUSTODY RECORD**

r																
Client Name:	ACOE								REQUESTED ANALYSIS							
Client Address:							Ve									
Sampled By:	Mike McEli			<del></del>		٠.	reductive									
Phone:	707-207-7					ને. <del>ફે</del>	Led Led									
FAX:							with		롼							
Project Manager:	Jeff Cotsifa	s (PFR)				Metals with reductive oitation	N SI	<u>_6</u>	ed							
Project Name:			E-San Ray	C.0 01	- ₹ _	letals	<u> </u>	Dissolved		o o						
PO Number:	16087	al ACOE	<u>. Our /caq</u>	in Chi	wer channel			Total Hg	Dis		eg pe					
		T	т -			Total Metals precipitation	Dissolved Monte Dissolved Monte Distribution	ш	<u>ш</u>	Se	Dissolved					
Client Sample ID	Sample	Sample	Sample		ontainer	Total	Diss	1631	1631E	Total	iss	TSS				
SRC-2010-01	<b>Date</b> 07/06/10	Time ~42:00 12:	Matrix*	Number	Туре						-		<u> </u>			and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
SRC-2010-01 SRC-2010-02	07/06/10	12:01	MET	12 7	multiple	×	×	×	×	×	×	×		-	ļ	<del> </del>
SRC-2010-02	07/06/10	12:02	MET	7	multiple	×	×	×	×	×	×	×	<del> </del>	<del> </del>		<u> </u>
SRC-2010-03	07/06/10	12:03	MET	7	multiple multiple	×	×	×	×	×	<u> </u>	×				<del> </del>
SRC-2010-05	07/06/10	12:04	MET	7	multiple	<u> </u>	×	×	×	×	×	×				<del> </del>
SRC-2010-06	07/06/10	12:04	MET	7	multiple	×	×	×	×	×	×	×	<u> </u>	-		
SRC-2010-07	07/06/10	12:06	MET	7	multiple	<del>  ×</del>	×	×	×	×	×	×		1		_
SRC-2010-08	07/06/10	m-12:07 12		7	multiple	×	×	×	×	×	×	×	<del>                                     </del>			<del> </del>
Correct Containers:	Yes	No	_			RELIQUINSHED E							L		l	1
Sample Temperature:	Ambient	Cold	Warm	Ci	17.	> %			Signature:							No.
Sample Preservative:	Yes	No		Signature	1	n	7	_	Signa	ature:						
Turnaround Time:	STD	Specify:	···	Print:	MALE		The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa		Print							
Comments:					M. M.E	104					<u> </u>					
				Organizat	ion:7ER				Orga	nizatio	n:					
SRC-2010-01 Extra volume for 0	QC provided			DATE: 7	1-6-10	TIME	: /60	Ø	DATE	:				TIME		
								RECE	IVED	вү						NORSCH-TIME OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE
Sample date and time are when	the sample	was extrac	ted after 24	Signature	41		guerri.		Signa	ture:						Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Con
hour settling period.							ofi	*.	Print:							
		Organizat	ion: A	5			Orga	nizatio	n:							
				DATE: 7	2-7-10	TIME	: 85	<b>&gt;</b> O	DATE					TIME		
*MATRIX CODES: (SED = Sedin	nent); ( <b>FW</b> =	Freshwater)	; (WW = Waste	ewater); (ST	RMW = Stormwa				l	<del></del>						

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form Service Request K10<u>OlO</u>47 Received: 7 Opened: By Fed Ex **UPS** Samples were received via? Mail 1. DHLPDXCourier Hand Delivered 2. Samples were received in: (circle) Cooler BoxEnvelope Other NA Were custody seals on coolers? NA N If yes, how many and where? If present, were custody seals intact? Y N If present, were they signed and dated? Y N Cooler Cooler/COC Temp Thermometer NΑ Temp ℃ Blank °C in Tracking Number NA Filed 4 Packing material used. Inserts Baggies Bubble Wrap (Gel Packs) Wet Ice Sleeves Other Were custody papers properly filled out (ink, signed, etc.)? NA N Did all bottles arrive in good condition (unbroken)? Indicate in the table below. NA N Were all sample labels complete (i.e analysis, preservation, etc.)? NA N Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA N Were appropriate bottles/containers and volumes received for the tests indicated? NA N Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below NA N Were VOA vials received without headspace? Indicate in the table below. ÑΑ Y N 15. Was C12/Res negative? Y NA N Sample ID on Bottle Sample ID on COC Identified by: Out of Head-**Bottle Count** Volume Reagent Lot Sample ID **Bottle Type** Temp space Broke рΗ Reagent added Number Initials Time

		***************************************				
Notes, Discrepancies,	& Resolus	ions:				
voices, Discrepancies,	a Resolut					··· ··· ··· · · · · · · · · · · · · ·
		***************************************	· · · · · · · · · · · · · · · · · · ·	 		
7		:			Page 1	of

**General Chemistry Parameters** 

### Analytical Report

Client:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project Name:

ACOE- San Rafael Channel

**Date Collected:** 07/06/10

Project Number: NA

**Date Received:** 07/07/10

Sample Matrix: OCEAN WATER

Solids, Total Suspended (TSS)

Units: mg/L

Analysis Method SM 2540 D Basis: NA

Test Notes:

SM

				Dilution	Date		Result
Sample Name	Lab Code	MRL	MDL	Factor	Analyzed	Result	Notes
SRC-2010-01	K1006947-001	10	10	1	07/08/10	56	
SRC-2010-02	K1006947-002	10	10	1	07/08/10	382	
SRC-2010-03	K1006947-003	10	10	1	07/08/10	169	
SRC-2010-04	K1006947-004	6.7	6.7	1	07/08/10	42.7	
SRC-2010-05	K1006947-005	5.0	5.0	1	07/08/10	25.5	
SRC-2010-06	K1006947-006	10	10	1	07/08/10	48	
SRC-2010-07	K1006947-007	10	10	1	07/08/10	172	
SRC-2010-08	K1006947-008	5.0	5.0	1	07/08/10	28.0	
Method Blank	K1006947-MB	4.0	5.0	1	07/08/10	ND	

Standard Methods for the Examination of Water and Wastewater, 20th Ed., 1998.

QA/QC Report

Client:

Pacific EcoRisk Laboratories ACOE- San Rafael Channel

**Project Name:** Project Number: NA

Sample Matrix: OCEAN WATER

Service Request: K1006947

**Date Collected:** 7/6/2010

**Date Received:** 7/7/2010

**Date Prepared**: NA Date Analyzed: 07/08/10

**Duplicate Summary Inorganic Parameters** 

Sample Name: Lab Code:

SRC-2010-01

K1006947-001DUP

Units: mg/L Basis: NA

Test Notes:

SM

	Dupli					Relative	
	Analysis		Sample	Sample		Percent	
Analyte	Method	MRL	Result	Result	Average	Difference	Notes
Solids, Total Suspended (TSS)	SM 2540 D	10	56	57	57	2	

Standard Methods for the Examination of Water and Wastewater, 20th Ed., 1998.

QA/QC Report

Client:

Pacific EcoRisk Laboratories ACOE- San Rafael Channel

Service Request : K1006947

Project Name:

Date Collected:

Project Number:

NA

Date Received:

NA NA

Sample Matrix:

OCEAN WATER

Date Prepared: Date Analyzed: NA 07/08/10

Laboratory Control Sample Summary **Inorganic Parameters** 

Lab Control Sample

Units: mg/L

Lab Code:

Sample Name:

K1006947-LCS

Basis: NA

010

Test Notes:

						Percent		
Analyte	Prep Method	Analysis Method	True Value	Result		Recovery Acceptance Limits	Result Notes	
Solids, Total Suspended (TSS)	NONE	SM 2540 D	165	170	103	80-115		

Standard Methods for the Examination of Water and Wastewater, 20th Ed., 1998.

SM

Metals

# Analytical Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE- San Rafael Channel

Service Request: K1006947 **Date Collected:** 07/06/10

Sample Matrix:

Ocean water

Date Received: 07/07/10

Mercury, Total

Prep Method:

**METHOD** 

Units: ng/L

Analysis Method:

1631E

Basis: NA

Test Notes:

Sample Name	Lab Code	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
SRC-2010-01	K1006947-001	1.0	0.06	1	07/09/10	07/12/10	39.2	
SRC-2010-02	K1006947-002	1.0	0.06	1	07/09/10	07/12/10	3.60	
SRC-2010-03	K1006947-003	1.0	0.06	1	07/09/10	07/12/10	3.45	
SRC-2010-04	K1006947-004	1.0	0.06	1	07/09/10	07/12/10	26.3	
SRC-2010-05	K1006947-005	1.0	0.06	1	07/09/10	07/12/10	5.93	
SRC-2010-06	K1006947-006	1.0	0.06	1	07/09/10	07/12/10	72.5	
SRC-2010-07	K1006947-007	1.0	0.06	1	07/09/10	07/12/10	84.3	
SRC-2010-08	K1006947-008	1.0	0.06	1	07/09/10	07/12/10	1.86	
Method Blank 1	K1006947-MB1	1.0	0.06	1	07/09/10	07/12/10	ND	
Method Blank 2	K1006947-MB2	1.0	0.06	1	07/09/10	07/12/10	ND	
Method Blank 3	K1006947-MB3	1.0	0.06	1	07/09/10	07/12/10	0.16	J

# Analytical Report

Client: Project:

Pacific EcoRisk Laboratories

ACOE- San Rafael Channel

Service Request: K1006947

**Date Collected:** 07/06/10

Sample Matrix: Ocean water Date Received: 07/07/10

Mercury, Dissolved

Prep Method: Analysis Method: 1631E

METHOD

Units: ng/L Basis: NA

Test Notes:

Sample Name	Lab Code	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
SRC-2010-01	K1006947-001 DISS	1.0	0.06	1	07/09/10	07/12/10	1.35	
SRC-2010-02	K1006947-002 DISS	1.0	0.06	1	07/09/10	07/12/10	1.41	
SRC-2010-03	K1006947-003 DISS	1.0	0.06	1	07/09/10	07/12/10	1.02	
SRC-2010-04	K1006947-004 DISS	1.0	0.06	1	07/09/10	07/12/10	0.81	
SRC-2010-05	K1006947-005 DISS	1.0	0.06	1	07/09/10	07/12/10	0.92	
SRC-2010-06	K1006947-006 DISS	1.0	0.06	1	07/09/10	07/12/10	1.48	
SRC-2010-07	K1006947-007 DISS	1.0	0.06	1	07/09/10	07/12/10	0.61	
SRC-2010-08	K1006947-008 DISS	1.0	0.06	1	07/09/10	07/12/10	0.68	

QA/QC Report

Client: Project: Pacific EcoRisk Laboratories ACOE- San Rafael Channel

Sample Matrix:

Ocean water

Service Request: K1006947 Date Collected: 07/06/10

**Date Collected:** 07/06/10 **Date Received:** 07/07/10 **Date Extracted:** 07/09/10

Date Analyzed: 07/12/10

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

e:

SRC-2010-01

K1006947-001MS,

K1006947-001DMS

Units: ng/L

Basis: NA

Lab Code: Test Notes:

Percent Recovery

	Prep	Analysis		Spiko	e Level	Sample	Spike				CAS Acceptance	Relative Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Mercury	METHOD	1631E	1.0	20	20	39.2	58.4	59.3	96	101	71-125	2	

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project: LCS Matrix: ACOE- San Rafael Channel

Water

Date Collected: NA

Date Received: NA Date Extracted: NA

Date Analyzed: 07/12/10

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name:

Ongoing Precision and Recovery (Initial)

Units: ng/L

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Mercury	метнор	1631E	5.00	5.28	106	77-123	

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project:

ACOE- San Rafael Channel

Date Collected: NA

LCS Matrix:

Water

Date Received: NA

Date Extracted: NA

Date Analyzed: 07/12/10

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name:

Ongoing Precision and Recovery (Final)

Units: ng/L

Basis: NA

Test Notes:

						CAS Percent Recovery	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	4.79	96	77-123	

#### COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Report

Client:

Pacific EcoRisk Laboratories

Project:

ACOE- San Rafael Channel

LCS Matrix:

Water

Service Request: K1006947

Date Collected: NA

**Date Received:** NA **Date Extracted:** NA

**Date Analyzed:** 07/12/10

Quality Control Sample (QCS) Summary

Total Metals

Sample Name:

Quality Control Sample

Units: ng/L

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	4.25	85	77-123	

## Columbia Analytical Services

# - Cover Page - INORGANIC ANALYSIS DATA PACKAGE

Client:

Comments:

Pacific EcoRisk Laboratories

Project Name:

Project No.:

ACOE - San Rafael Channel

Service Request: K1006947

Sample Name:	Lab Code:
SRC-2010-01	K1006947-001
SRC-2010-01	K1006947-001 DISS
SRC-2010-01D	K1006947-001D
SRC-2010-01S	K1006947-001S
SRC-2010-02	K1006947-002
SRC-2010-02	K1006947-002 DISS
SRC-2010-03	K1006947-003
SRC-2010-03	K1006947-003 DISS
SRC-2010-04	K1006947-004
SRC-2010-04	K1006947-004 DISS
SRC-2010-05	K1006947-005
SRC-2010-05	K1006947-005 DISS
SRC-2010-06	K1006947-006
SRC-2010-06	K1006947-006 DISS
SRC-2010-07	K1006947-007
SRC-2010-07	K1006947-007 DISS
SRC-2010-08	K1006947-008
SRC-2010-08	K1006947-008 DISS
Method Blank	K1006947-MB

Approved By:	Date:	and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th	

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Matrix:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project No.:

ACOE - San Rafael Channel

Date Collected: 07/06/10

Date Received: 07/07/10

Project Name: NA

WATER

Units: ug/L

Basis: N/A

Sample Name:

SRC-2010-01

Lab Code:

K1006947-001

Analyte	Analysis Method	MRL	MOL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.83	0.07	1.0	07/14/10	07/16/10	4.86		
Cadmium	6020	0.033	0.003	1.0	07/14/10	07/16/10	0.034		
Chromium	6020	0.33	0.05	1.0	07/14/10	07/16/10	2.00		
Copper	6020	0.167	0.007	1.0	07/14/10	07/16/10	3.430		
Lead	6020	0.033	0.015	1.0	07/14/10	07/16/10	1.620		
Nickel	6020	0.33	0.05	1.0	07/14/10	07/16/10	5.99		
Selenium	7742	1.0	0.2	2.0	07/14/10	07/16/10	0.3	J	
Zinc	6020	0.83	0.10	1.0	07/14/10	07/16/10	6.30		

% Solids:

0.0

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project No.:

ACOE - San Rafael Channel

Date Collected: 07/06/10

Project Name: NA

Date Received: 07/07/10

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

SRC-2010-01

Lab Code:

K1006947-001 DISS

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	C	Q
Arsenic	6020	0.50	0.04	1.0	07/14/10	07/16/10	2.83		
Cadmium	6020	0.020	0.002	1.0	07/14/10	07/16/10	0.014	J	
Chromium	6020	0.20	0.03	1.0	07/14/10	07/16/10	0.04	J	
Copper	6020	0.100	0.004	1.0	07/14/10	07/16/10	1.070		
Lead	6020	0.020	0.009	1.0	07/14/10	07/16/10	0.014	J	х
Nickel	6020	0.20	0.03	1.0	07/14/10	07/16/10	2.10		
Selenium	7742	1.0	0.2	2.0	07/14/10	07/16/10	0.2	บ	
Zinc	6020	0.50	0.06	1.0	07/14/10	07/16/10	0.62		

% Solids:

0.0

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project No.:

ACOE - San Rafael Channel

Date Collected: 07/06/10

Project Name: NA

**Date Received:** 07/07/10

Matrix:

WATER

Units: ug/L

N/A Basis:

Sample Name:

SRC-2010-02

Lab Code:

K1006947-002

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.63	0.05	1.0	07/14/10	07/16/10	11.9		
Cadmium	6020	0.025	0.002	1.0	07/14/10	07/16/10	0.035		
Chromium	6020	0.25	0.04	1.0	07/14/10	07/16/10	3.10		
Copper	6020	0.125	0.005	1.0	07/14/10	07/16/10	5.640		
Lead	6020	0.025	0.011	1.0	07/14/10	07/16/10	2.840		
Nickel	6020	0.25	0.04	1.0	07/14/10	07/16/10	7.28		
Selenium	7742	1.0	0.2	2.0	07/14/10	07/16/10	0.3	J	
Zinc	6020	0.63	0.08	1.0	07/14/10	07/16/10	10.8		

% Solids:

0.0

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Matrix:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project No.:

ACOE - San Rafael Channel

Date Collected: 07/06/10

Date Received: 07/07/10

Project Name: NA

WATER

Units: ug/L

Basis: N/A

Sample Name:

SRC-2010-02

Lab Code:

K1006947-002 DISS

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.67	0.05	1.0	07/14/10	07/16/10	7.24		
Cadmium	6020	0.027	0.003	1.0	07/14/10	07/16/10	0.018	J	
Chromium	6020	0.27	0.04	1.0	07/14/10	07/16/10	0.07	J	
Copper	6020	0.133	0.005	1.0	07/14/10	07/16/10	1.790		
Lead	6020	0.027	0.012	1.0	07/14/10	07/16/10	0.016	J	x
Nickel	6020	0.27	0.04	1.0	07/14/10	07/16/10	2.51		
Selenium	7742	1.0	0.2	2.0	07/14/10	07/16/10	0.2	ט	
Zinc	6020	0.67	0.08	1.0	07/14/10	07/16/10	1.53		

% Solids:

0.0

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Matrix:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project No.:

ACOE - San Rafael Channel

Date Collected: 07/06/10

Project Name: NA

Date Received: 07/07/10

WATER

Units: ug/L

Basis: N/A

Sample Name:

SRC-2010-03

Lab Code:

K1006947-003

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Ω
Arsenic	6020	0.56	0.04	1.0	07/14/10	07/16/10	7.09		
Cadmium	6020	0.022	0.002	1.0	07/14/10	07/16/10	0.010	J	
Chromium	6020	0.22	0.03	1.0	07/14/10	07/16/10	0.27		
Copper	6020	0.111	0.004	1.0	07/14/10	07/16/10	0.569		
Lead	6020	0.022	0.010	1.0	07/14/10	07/16/10	0.178		x
Nickel	6020	0.22	0.03	1.0	07/14/10	07/16/10	1.89		
Selenium	7742	1.0	0.2	2.0	07/14/10	07/16/10	0.2	ט	
Zinc	6020	0.56	0.07	1.0	07/14/10	07/16/10	2.30		

% Solids:

0.0

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project No.: ACOE - San Rafael Channel

Date Collected: 07/06/10

Project Name: NA

**Date Received:** 07/07/10

Matrix:

WATER

Basis:

Units: ug/L

Sample Name:

SRC-2010-03

Lab Code:

K1006947-003 DISS

N/A

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.59	0.05	1.0	07/14/10	07/16/10	3.99		
Cadmium	6020	0.024	0.002	1.0	07/14/10	07/16/10	0.016	J	
Chromium	6020	0.24	0.04	1.0	07/14/10	07/16/10	0.06	J	
Copper	6020	0.118	0.005	1.0	07/14/10	07/16/10	1.790		
Lead	6020	0.024	0.011	1.0	07/14/10	07/16/10	0.023	J	х
Nickel	6020	0.24	0.04	1.0	07/14/10	07/16/10	2.29		
Selenium	7742	1.0	0.2	2.0	07/14/10	07/16/10	0.2	U	
Zinc	6020	0.59	0.07	1.0	07/14/10	07/16/10	1.09		

% Solids:

0.0

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project No.:

ACOE - San Rafael Channel

Date Collected: 07/06/10

Project Name: NA

Date Received: 07/07/10

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

SRC-2010-04

Lab Code:

K1006947-004

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	1.00	0.08	1.0	07/14/10	07/16/10	5.11		
Cadmium	6020	0.040	0.004	1.0	07/14/10	07/16/10	0.027	J	
Chromium	6020	0.40	0.06	1.0	07/14/10	07/16/10	2.73		
Copper	6020	0.200	0.008	1.0	07/14/10	07/16/10	3.910		
Lead	6020	0.040	0.018	1.0	07/14/10	07/16/10	2.120		
Nickel	6020	0.40	0.06	1.0	07/14/10	07/16/10	7.44		
Selenium	7742	1.0	0.2	2.0	07/14/10	07/16/10	0.2	U	
Zinc	6020	1.00	0.12	1.0	07/14/10	07/16/10	7.32		

% Solids:

0.0

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project No.: ACOE - San Rafael Channel

Date Collected: 07/06/10

Project Name: NA

Date Received: 07/07/10

Matrix:

WATER

Units: ug/L Basis:

Sample Name:

SRC-2010-04

Lab Code:

K1006947-004 DISS

N/A

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	1.00	0.08	1.0	07/14/10	07/16/10	3.22		
Cadmium	6020	0.040	0.004	1.0	07/14/10	07/16/10	0.014	J	
Chromium	6020	0.40	0.06	1.0	07/14/10	07/16/10	0.07	J	
Copper	6020	0.200	0.008	1.0	07/14/10	07/16/10	1.450		
Lead	6020	0.040	0.018	1.0	07/14/10	07/16/10	0.019	J	х
Nickel	6020	0.40	0.06	1.0	07/14/10	07/16/10	2.38		
Selenium	7742	1.0	0.2	2.0	07/14/10	07/16/10	0.2	บ	
Zinc	6020	1.00	0.12	1.0	07/14/10	07/16/10	0.64	J	

% Solids:

0.0

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project No.:

ACOE - San Rafael Channel

Date Collected: 07/06/10

Project Name: NA

Date Received: 07/07/10

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

SRC-2010-05

Lab Code:

K1006947-005

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.83	0.07	1.0	07/14/10	07/16/10	14.9		
Cadmium	6020	0.033	0.003	1.0	07/14/10	07/16/10	0.017	J	
Chromium	6020	0.33	0.05	1.0	07/14/10	07/16/10	1.33		
Copper	6020	0.167	0.007	1.0	07/14/10	07/16/10	2.250		
Lead	6020	0.033	0.015	1.0	07/14/10	07/16/10	1.100		
Nickel	6020	0.33	0.05	1.0	07/14/10	07/16/10	3.25		
Selenium	7742	1.0	0.2	2.0	07/14/10	07/16/10	0.2	บ	
Zinc	6020	0.83	0.10	1.0	07/14/10	07/16/10	4.24		

% Solids:

0.0

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project No.: ACOE - San Rafael Channel

Date Collected: 07/06/10

Project Name: NA

Date Received: 07/07/10

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

SRC-2010-05

Lab Code:

K1006947-005 DISS

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	1.00	0.08	1.0	07/14/10	07/16/10	13.4		
Cadmium	6020	0.040	0.004	1.0	07/14/10	07/16/10	0.011	J	
Chromium	6020	0.40	0.06	1.0	07/14/10	07/16/10	0.09	J	
Copper	6020	0.200	0.008	1.0	07/14/10	07/16/10	1.040		
Lead	6020	0.040	0.018	1.0	07/14/10	07/16/10	0.018	ט	х
Nickel	6020	0.40	0.06	1.0	07/14/10	07/16/10	1.45		
Selenium	7742	1.0	0.2	2.0	07/14/10	07/16/10	0.2	ט	
Zinc	6020	1.00	0.12	1.0	07/14/10	07/16/10	0.58	J	

% Solids:

0.0

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project No.:

ACOE - San Rafael Channel

Date Collected: 07/06/10

Date Received: 07/07/10

Project Name: NA Matrix:

WATER

Units: ug/L

N/A Basis:

Sample Name:

SRC-2010-06

Lab Code:

K1006947-006

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.83	0.07	1.0	07/14/10	07/16/10	18.6		
Cadmium	6020	0.033	0.003	1.0	07/14/10	07/16/10	0.028	J	
Chromium	6020	0.33	0.05	1.0	07/14/10	07/16/10	2.96		
Copper	6020	0.167	0.007	1.0	07/14/10	07/16/10	6.830		
Lead	6020	0.033	0.015	1.0	07/14/10	07/16/10	3.510		
Nickel	6020	0.33	0.05	1.0	07/14/10	07/16/10	5.93		
Selenium	7742	1.0	0.2	2.0	07/14/10	07/16/10	0.2	υ	
Zinc	6020	0.83	0.10	1.0	07/14/10	07/16/10	9.39		

% Solids:

0.0

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project No.: ACOE - San Rafael Channel

Date Collected: 07/06/10

Project Name: NA

Date Received: 07/07/10

Matrix:

WATER

Units: ug/L

N/A Basis:

Sample Name:

SRC-2010-06

Lab Code:

K1006947-006 DISS

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	1.00	0.08	1.0	07/14/10	07/16/10	15.3		
Cadmium	6020	0.040	0.004	1.0	07/14/10	07/16/10	0.010	J	
Chromium	6020	0.40	0.06	1.0	07/14/10	07/16/10	0.08	J	
Copper	6020	0.200	0.008	1.0	07/14/10	07/16/10	1.400		
Lead	6020	0.040	0.018	1.0	07/14/10	07/16/10	0.081		х
Nickel	6020	0.40	0.06	1.0	07/14/10	07/16/10	1.14		
Selenium	7742	1.0	0.2	2.0	07/14/10	07/16/10	0.2	บ	
Zinc	6020	1.00	0.12	1.0	07/14/10	07/16/10	0.56	J	

% Solids:

0.0

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Pacific EcoRisk Laboratories Service Request: K1006947

ACOE - San Rafael Channel Project No.:

Date Collected: 07/06/10

Date Received: 07/07/10

Project Name: NA

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

SRC-2010-07

Lab Code:

K1006947-007

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.71	0.06	1.0	07/14/10	07/16/10	9.23		
Cadmium	6020	0.029	0.003	1.0	07/14/10	07/16/10	0.061		
Chromium	6020	0.29	0.04	1.0	07/14/10	07/16/10	4.35		
Copper	6020	0.143	0.006	1.0	07/14/10	07/16/10	12.1		
Lead	6020	0.029	0.013	1.0	07/14/10	07/16/10	8.590		
Nickel	6020	0.29	0.04	1.0	07/14/10	07/16/10	9.75		
Selenium	7742	1.0	0.2	2.0	07/14/10	07/16/10	0.2	Ū	
Zinc	6020	0.71	0.09	1.0	07/14/10	07/16/10	21.0		

% Solids:

0.0

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project No.:

ACOE - San Rafael Channel

Date Collected: 07/06/10

Project Name: NA

Date Received: 07/07/10

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

SRC-2010-07

Lab Code:

K1006947-007 DISS

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	1.00	0.08	1.0	07/14/10	07/16/10	8.77		
Cadmium	6020	0.040	0.004	1.0	07/14/10	07/16/10	0.029	J	
Chromium	6020	0.40	0.06	1.0	07/14/10	07/16/10	0.09	J	
Copper	6020	0.200	0.008	1.0	07/14/10	07/16/10	2.880		
Lead	6020	0.040	0.018	1.0	07/14/10	07/16/10	0.068		х
Nickel	6020	0.40	0.06	1.0	07/14/10	07/16/10	1.86		
Selenium	7742	1.0	0.2	2.0	07/14/10	07/16/10	0.2	บ	
Zinc	6020	1.00	0.12	1.0	07/14/10	07/16/10	3.94		

% Solids:

0.0

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project No.:

ACOE - San Rafael Channel

Date Collected: 07/06/10

Project Name: NA

Date Received: 07/07/10

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

SRC-2010-08

Lab Code:

K1006947-008

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.56	0.04	1.0	07/14/10	07/16/10	3.19		
Cadmium	6020	0.022	0.002	1.0	07/14/10	07/16/10	0.010	J	
Chromium	6020	0.22	0.03	1.0	07/14/10	07/16/10	0.21	J	
Copper	6020	0.111	0.004	1.0	07/14/10	07/16/10	0.602		
Lead	6020	0.022	0.010	1.0	07/14/10	07/16/10	0.640		х
Nickel	6020	0.22	0.03	1.0	07/14/10	07/16/10	2.53		
Selenium	7742	1.0	0.2	2.0	07/14/10	07/16/10	0.2	บ	
Zinc	6020	0.56	0.07	1.0	07/14/10	07/16/10	1.31		

% Solids:

0.0

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project No.:

ACOE - San Rafael Channel

Date Collected: 07/06/10

Project Name: NA

**Date Received:** 07/07/10

Matrix:

WATER

Units: ug/L

N/A Basis:

Sample Name:

SRC-2010-08

Lab Code:

K1006947-008 DISS

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.56	0.04	1.0	07/14/10	07/16/10	2.07		
Cadmium	6020	0.022	0.002	1.0	07/14/10	07/16/10	0.011	J	
Chromium	6020	0.22	0.03	1.0	07/14/10	07/16/10	0.05	J	
Copper	6020	0.111	0.004	1.0	07/14/10	07/16/10	0.562		
Lead	6020	0.022	0.010	1.0	07/14/10	07/16/10	0.036		х
Nickel	6020	0.22	0.03	1.0	07/14/10	07/16/10	2.10		
Selenium	7742	1.0	0.2	2.0	07/14/10	07/16/10	0.2	ซ	
Zinc	6020	0.56	0.07	1.0	07/14/10	07/16/10	1.31		

% Solids:

0.0

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project No.:

ACOE - San Rafael Channel

Date Collected:

Project Name: NA

Date Received:

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

Method Blank

Lab Code:

K1006947-MB

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.50	0.04	1.0	07/14/10	07/16/10	0.04	ט	
Cadmium	6020	0.020	0.002	1.0	07/14/10	07/16/10	0.005	J	
Chromium	6020	0.20	0.03	1.0	07/14/10	07/16/10	0.03	ט	
Copper	6020	0.100	0.004	1.0	07/14/10	07/16/10	0.007	J	
Lead	6020	0.020	0.009	1.0	07/14/10	07/16/10	0.041		
Nickel	6020	0.20	0.03	1.0	07/14/10	07/16/10	0.03	υ	
Selenium	7742	1.0	0.2	2.0	07/14/10	07/16/10	0.2	ט	
Zinc	6020	0.50	0.06	1.0	07/14/10	07/16/10	0.06	Ū	

% Solids:

0.0

- 5A -

#### SPIKE SAMPLE RECOVERY

Client:

/atrix:

Pacific EcoRisk Laboratories

Service Request: K1006947

?roject No.: ACOE - San Rafael Channel

Units: UG/L

Project Name: NA

 ${\tt Basis:} \quad {\tt N}/{\tt A}$ 

WATER

% Solids: 0.0

Sample Name:

SRC-2010-01S

Lab Code: K1006947-001S

Analyte	Control Limit %R	Spike Result	Sample Result	O	Spike Added	%R	Q	Method
Arsenic	50 - 147	6.82	4.86		3.33	58.9		6020
Cadmium	65 - 114	2.960	0.034		3.33	87.9		6020
Chromium	50 - 130	5.06	2.00		3.33	91.9		6020
Copper	50 - 120	5.880	3.430		3.33	73.6		6020
Lead	55 - 118	4.690	1.620		3.33	92.2		6020
Nickel	60 - 126	9.38	5.99		3.33	101.8		6020
Selenium	67 - 128	14.1	0.3	J	16.00	86.2		7742
Zinc	50 - 133	9.36	6.30		3.33	91.9		6020

- 6 -

#### **DUPLICATES**

Client:

fatrix:

Pacific EcoRisk Laboratories

K1006947 Service Request:

?roject No.: ACOE - San Rafael Channel

Units: UG/L

Project Name: NA

Basis:

WATER

% Solids:

0.0

N/A

Sample Name:

SRC-2010-01D

Lab Code:

K1006947-001D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic	20	4.86		4.75		2.3		6020
Cadmium		0.034		0.033	J	3.0		6020
Chromium	20	2.00		1.95		2.5		6020
Copper	20	3.430		3.430		0.0		6020
Lead	20	1.620	<del></del>	1.640		1.2		6020
Nickel	20	5.99		6.08		1.5		6020
Selenium		0.3	J	0.3	J	0.0		7742
Zinc	20	6.30		6.41		1.7		6020

-7-

#### LABORATORY CONTROL SAMPLE

Client:

Pacific EcoRisk Laboratories

Service Request: K1006947

Project No.: ACOE - San Rafael Channel

Project Name: NA

Aqueous LCS Source:

CAS MIXED

Solid LCS Source:

	Aqueous	: ug/L		Solid: mg/kg							
Analyte	True	Found	%R	True	Found	С	Limits	₽R			
Arsenic	2	1.99	99.5		1						
Cadmium	2	1.960	98.0								
Chromium	2	1.96	98.0								
Copper	2	1.950	97.5								
Lead	2	1.970	98.5								
Nickel	2	2.10	105.0								
Selenium	10	9.1	91.0								
Zinc	2	2.01	100.5								

## **Appendix C**

**Analytical Chemistry Laboratory Data Report Submitted by CalScience Environmental Laboratories, Inc.** 





July 29, 2010

Additional requested analytes have been added to the original report.

Jeff Cotsifas Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912

Subject: Calscience Work Order No.: 10-07-1713

Client Reference: ACOE (San Rafael Channel)

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 7/23/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc.

Danillejone.

Danielle Gonsman

Project Manager

CA-ELAP ID: 1230 • NELAP ID: 03220CA • CSDLAC ID: 10109 • SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 . TEL:(714) 895-5494 . FAX: (714) 894-7501





#### **CASE NARRATIVE**

Calscience Work Order No.: 10-07-1713
Project Name: ACOE (San Rafael Channel)

Provided below is a narrative of our analytical effort, including any unique features or anomalies encountered as part of the analysis of the marine sediment samples.

#### Sample Condition on Receipt

Four sediment samples, housed 8oz glass containers, were received for this project on July 23, 2010. The samples were transferred to the laboratory in an ice-chest with wet ice, following strict chain-of-custody (COC) procedures. The temperature of the samples upon receipt at the laboratory was 1.1°C. All samples were logged into the Laboratory Information Management System (LIMS), given laboratory identification numbers, and then stored under refrigeration pending sediment chemistry testing.

The glass container for sample SRC-2010-8-4 was received broken, but the sample was transferred to a new glass container.

#### Tests Performed

Trace Metals by EPA 6020
Chlorinated Pesticides by EPA 8081A
PCB Aroclors by EPA 8082
PAHs by EPA 8270C SIM
Organotins by Krone et. al.
Total Solids by SM 2540 B
TOC by EPA 9060A

#### Data Summary

All sample concentrations and reporting limits were dry weight corrected.

All samples were homogenized prior to preparation/analysis.

#### Holding times

According to the client, as referenced on the COC, the samples were stored frozen prior to 6/24/10 and remained in that condition until received by Calscience on 7/23/10. In accordance with the project SAP, the holding time is extended beyond the EPA recommended extraction/analysis time period, and therefore not in violation of the holding time rules.

#### Calibration

Frequency and control criteria for initial and continuing calibration verifications were met.





#### Calscience Work Order No. 10-07-1713 Page 2 of 2



#### Reporting Limits

The Method Detection Limits were met. All sample results were evaluated to the MDL, and where applicable, "J" flags were reported.

#### Blanks

Concentrations of target analytes in the method blank were found to be below reporting limits for all testing.

#### <u>Laboratory Control Samples</u>

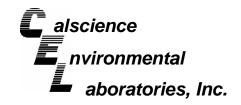
A Laboratory Control Sample (LCS) analysis was performed for each test and all parameters were within the specified control limits.

#### Matrix Spikes

Matrix spike analyses were performed at the required frequencies, and all parameters were within control limits for each method with the following exceptions.

The MS and/or MSD recoveries for Chromium, Copper, Lead and Nickel by EPA 6020 were out of the acceptance range due to matrix interference. However, since the associated PDS/PDSD and LCS/LCSD recoveries were in control, the data are released with no further action.

The matrix spike recovery for the Organotin, Tributyltin, was outside the established control limits. Yet the results are released with no further clarification since the matrix spike duplicate and corresponding LCS/LCSD recoveries were in control.


#### Surrogates

Surrogate recoveries for all applicable tests and samples were within the established control limits.

#### Acronyms

LCS/LCSD- Laboratory Control Sample/Laboratory Control Sample Duplicate PDS/PDSD- Post Digestion Spike/Post Digestion Spike Duplicate MS/MSD- Matrix Spike/Matrix Spike Duplicate RPD- Relative Percent Difference







Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

10-07-1713 N/A EPA 9060A

07/23/10

Project: ACOE (San Rafael Channel)

Page 1 of 1

Flujeci. ACOL (San	ivalaci Chamilei)						ГС	ige i oi i
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SRC-2010-8-1		10-07-1713-1-A	06/10/10 11:55	Solid	TOC 5	N/A	07/28/10 15:30	A0728TOCL1
-Results	s are reported on a dry weight	basis.						
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Carbon, Total Organic	2.7	0.11	1		%			
SRC-2010-8-2		10-07-1713-2-A	06/10/10 12:45	Solid	TOC 5	N/A	07/28/10 15:30	A0728TOCL1
-Results	s are reported on a dry weight	basis.						
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Carbon, Total Organic	9.5	0.12	1		%			
SRC-2010-8-3		10-07-1713-3-A	06/10/10 13:30	Solid	TOC 5	N/A	07/28/10 15:30	A0728TOCL1
-Results	s are reported on a dry weight	basis.						
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Carbon, Total Organic	7.6	0.11	1		%			
SRC-2010-8-4		10-07-1713-4-A	06/10/10 11:40	Solid	TOC 5	N/A	07/28/10 15:30	A0728TOCL1
-Results	s are reported on a dry weight	basis.						
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Carbon, Total Organic	3.8	0.083	1		%			
Method Blank		099-06-013-510	N/A	Solid	TOC 5	N/A	07/28/10 15:30	A0728TOCL1
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Carbon, Total Organic	ND	0.050	1		%			





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: 07/23/10 10-07-1713 N/A

SM 2540 B

Project: ACOE (San Rafael Chann	el)
---------------------------------	-----

Page	1	of	1
,	•	•	•

1 TOJOOL: 7100L (Gail 116	araci Orianner)							190 1 01 1
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SRC-2010-8-1		10-07-1713-1-A	06/10/10 11:55	Solid	N/A	07/24/10	07/24/10 16:00	A0724TSB1
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Solids, Total	47.4	0.100	1		%			
SRC-2010-8-2		10-07-1713-2-A	06/10/10 12:45	Solid	N/A	07/24/10	07/24/10 16:00	A0724TSB1
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Solids, Total	42.6	0.100	1		%			
SRC-2010-8-3		10-07-1713-3-A	06/10/10 13:30	Solid	N/A	07/24/10	07/24/10 16:00	A0724TSB1
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Solids, Total	43.9	0.100	1		%			
SRC-2010-8-4		10-07-1713-4-A	06/10/10 11:40	Solid	N/A	07/24/10	07/24/10 16:00	A0724TSB1
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Solids, Total	60.3	0.100	1		%			
Method Blank		099-05-019-1,442	N/A	Solid	N/A	07/24/10	07/24/10 16:00	A0724TSB1
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Solids, Total	ND	0.100	1		%			
<u>Parameter</u> Solids, Total				Qual				





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912

Dibutyltin Monobutyltin

Tripentyltin

Date Received:
Work Order No:
Preparation:

EPA 3545

Method: Units:

Tetrabutyltin

Tributyltin

Organotins by Krone et al.

ug/kg

6.3

6.3

ND

ND

Project: ACOE (San Rafael Channel)

Page 1 of 2

0.75

0.71

1

07/23/10

10-07-1713

	<u>.</u>										_
Client Sample Nu	ımber		ab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Bat	ch ID
SRC-2010-8-1		10	-07-1713-	1-A	06/10/10 11:55	Solid	GC/MS Y	07/23/10	07/24/10 12:19	100723	L18
Comment(s):	-Results were evaluated to	the MDL, conce	ntrations >	= to the N	/IDL but < RL,	, if found, ar	e qualified with	a "J" flag.			
	-Results are reported on a	dry weight basis.									
Parameter	Result	RL MD	L DF	Qual	Parameter			Result R	L MDL	. DF	Qual

Surrogates: REC (%) Control Qual Limits

102 50-130

ND

6.3

6.3

2.1

SRC-2010-8-2	10-07-1713-2-A	06/10/10 12:45	Solid	GC/MS Y	07/23/10	07/24/10 12:53	100723L18
--------------	----------------	-------------------	-------	---------	----------	-------------------	-----------

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

1

-Results are reported on a dry weight basis.

Result RL MDL DF Qual RL**MDL** DF Qual <u>Parameter</u> <u>Parameter</u> Result 7.0 1.4 1 7.0 1 Dibutyltin 16 Tetrabutyltin ND 0.84 2.3 1 1 Monobutyltin ND 7.0 Tributyltin 7.2 7.0 0.78

 Surrogates:
 REC (%)
 Control Limits

 Tripentyltin
 105
 50-130

SRC-2010-8-3 10-07-1713-3-A 06/10/10 Solid GC/MS Y 07/23/10 07/24/10 100723L18 13:30 13:27

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-Results are reported on a dry weight basis.

DF **MDL** DF <u>Parameter</u> Result RL MDL Qual <u>Parameter</u> Result RL Qual 6.8 1.4 1 6.8 0.82 1 Dibutvltin Tetrabutyltin ND ND 6.8 2.2 1 Tributyltin 23 6.8 0.76 1 Monobutyltin

Surrogates: REC (%) Control Qual Limits

Tripentyltin 105 50-130

RL - Reporting Limit , 7440

DF - Dilution Factor , Qual - Qualifiers





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation:

10-07-1713 **EPA 3545** 

07/23/10

Method: Units:

Organotins by Krone et al.

ug/kg

Project: ACOE (San Rafael Channel)

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SRC-2010-8-4	10-07-1713-4-A	06/10/10 11:40	Solid	GC/MS Y	07/23/10	07/24/10 14:00	100723L18

-Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag. Comment(s):

-Results are reported on a dry weight basis.

<u>Parameter</u> Dibutyltin Monobutyltin Result 32 ND

Result

114

0.99 1.6

DF 1 1

<u>Parameter</u> Tetrabutyltin Tributyltin

Result ND 18

RL **MDL** 5.0 0.59 0.55

DF 1 1

Qual

Qual

Surrogates: Tripentyltin

**REC (%)** Control Limits 104

Qual

50-130

RL

5.0

5.0

Method Blank 099-07-016-765	N/A Sol	olid GC/MS Y 07/23/10	07/24/10 100723L18 11:46
-----------------------------	---------	-----------------------	-----------------------------

Qual

-Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag. Comment(s):

<u>DF</u>

1

1

<u>Parameter</u> Dibutyltin Monobutyltin

3.0 ND 3.0 ND **REC (%)** Control

RL

0.60 0.97 Qual

**MDL** 

<u>Parameter</u> Tetrabutyltin Tributyltin

Result ND ND

RL

3.0

3.0

**MDL** DF 0.36 0.33

1 1

FAX: (714) 894-7501

Surrogates: Tripentyltin

Limits

50-130

RL - Reporting Limit ,

DF - Dilution Factor Qual - Qualifiers





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation:

10-07-1713 **EPA 3545** 

Method: EPA 8270C SIM PAHs Units:

ug/kg

07/23/10

Project: ACOE (San Rafael Channel)

Page 1 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SRC-2010-8-1	10-07-1713-1-A	06/10/10 11:55	Solid	GC/MS BBB	07/23/10	07/24/10 21:00	100723L14

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-Results are reported on a dry weight basis.

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DF	Qual	<u>Parameter</u>	Result	<u>RL</u>	MDL	<u>DF</u>	Qual
Acenaphthene	13	21	3.2	1	J	Chrysene	80	21	3.2	1	
Acenaphthylene	15	21	3.1	1	J	Dibenz (a,h) Anthracene	13	21	2.2	1	J
Anthracene	16	21	2.8	1	J	Fluoranthene	150	21	3.3	1	
Benzo (a) Anthracene	41	21	4.3	1		Fluorene	17	21	2.9	1	J
Benzo (a) Pyrene	110	21	2.7	1		Indeno (1,2,3-c,d) Pyrene	86	21	2.8	1	
Benzo (b) Fluoranthene	84	21	3.3	1		Naphthalene	30	21	3.5	1	
Benzo (g,h,i) Perylene	140	21	2.7	1		Phenanthrene	41	21	4.5	1	
Benzo (k) Fluoranthene	67	21	4.1	1		Pyrene	320	21	3.5	1	
Surrogates:	REC (%)	Control	Qua	<u>al</u>		Surrogates:	REC (%)	Control	Q	<u>ual</u>	
		<u>Limits</u>						<u>Limits</u>			
2-Fluorobiphenyl	52	14-146				Nitrobenzene-d5	83	18-162			
p-Terphenyl-d14	65	34-148									

SRC-2010-8-2	10-07-1713-2-A	06/10/10 12:45	Solid	GC/MS BBB	07/23/10	07/24/10 21:26	100723L14
--------------	----------------	-------------------	-------	-----------	----------	-------------------	-----------

-Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-Results are reported on a dry weight basis.

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DF	<u>Qual</u>
Acenaphthene	69	23	3.5	1		Chrysene	170	23	3.5	1	
Acenaphthylene	65	23	3.4	1		Dibenz (a,h) Anthracene	28	23	2.5	1	
Anthracene	39	23	3.1	1		Fluoranthene	290	23	3.7	1	
Benzo (a) Anthracene	110	23	4.7	1		Fluorene	130	23	3.3	1	
Benzo (a) Pyrene	160	23	3.0	1		Indeno (1,2,3-c,d) Pyrene	100	23	3.1	1	
Benzo (b) Fluoranthene	150	23	3.6	1		Naphthalene	36	23	3.9	1	
Benzo (g,h,i) Perylene	170	23	3.1	1		Phenanthrene	130	23	5.1	1	
Benzo (k) Fluoranthene	130	23	4.5	1		Pyrene	530	23	3.8	1	
Surrogates:	REC (%)	Control	Qual			Surrogates:	REC (%)	Control	Qι	ıal	
		<u>Limits</u>						<u>Limits</u>			
2-Fluorobiphenyl	65	14-146				Nitrobenzene-d5	55	18-162			
p-Terphenyl-d14	69	34-148									

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

10-07-1713 **EPA 3545** 

EPA 8270C SIM PAHs

ug/kg

07/23/10

Project: ACOE (San Rafael Channel)

Page 2 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SRC-2010-8-3	10-07-1713-3-A	06/10/10 13:30	Solid	GC/MS BBB	07/23/10	07/24/10 21:51	100723L14

Units:

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-Results are reported on a dry weight basis.

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DF	Qual	<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DF	Qual
Acenaphthene	18	23	3.4	1	J	Chrysene	210	23	3.4	1	
Acenaphthylene	13	23	3.3	1	J	Dibenz (a,h) Anthracene	26	23	2.4	1	
Anthracene	45	23	3.0	1		Fluoranthene	370	23	3.6	1	
Benzo (a) Anthracene	140	23	4.6	1		Fluorene	42	23	3.2	1	
Benzo (a) Pyrene	190	23	2.9	1		Indeno (1,2,3-c,d) Pyrene	120	23	3.0	1	
Benzo (b) Fluoranthene	190	23	3.5	1		Naphthalene	22	23	3.8	1	J
Benzo (g,h,i) Perylene	190	23	3.0	1		Phenanthrene	150	23	4.9	1	
Benzo (k) Fluoranthene	170	23	4.4	1		Pyrene	400	23	3.7	1	
Surrogates:	REC (%)	Control Limits	<u>Qu</u>	<u>al</u>		Surrogates:	REC (%)	Control Limits	<u>Qı</u>	<u>ual</u>	
2-Fluorobiphenyl	64	14-146				Nitrobenzene-d5	66	18-162			
p-Terphenyl-d14	54	34-148									

SRC-2010-8-4 10-07-1713-4-A	06/10/10 Solid 11:40	GC/MS BBB 07/23/10	07/25/10 100723L14 17:02
-----------------------------	-------------------------	--------------------	-----------------------------

-Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-Results are reported on a dry weight basis.

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	Result	<u>RL</u>	MDI	L <u>DF</u>	<u>Qual</u>
Acenaphthene	29	17	2.5	1		Chrysene	350	17	2.5	1	
Acenaphthylene	9.6	17	2.4	1	J	Dibenz (a,h) Anthracene	30	17	1.8	1	
Anthracene	74	17	2.2	1		Fluoranthene	570	17	2.6	1	
Benzo (a) Anthracene	290	17	3.4	1		Fluorene	32	17	2.3	1	
Benzo (a) Pyrene	290	17	2.1	1		Indeno (1,2,3-c,d) Pyrene	140	17	2.2	1	
Benzo (b) Fluoranthene	210	17	2.6	1		Naphthalene	19	17	2.7	1	
Benzo (g,h,i) Perylene	210	17	2.2	1		Phenanthrene	410	17	3.6	1	
Benzo (k) Fluoranthene	210	17	3.2	1		Pyrene	820	17	2.7	1	
Surrogates:	REC (%)	Control	Qua	<u>al</u>		Surrogates:	<b>REC (%)</b>	Control	<u>(</u>	<u>Qual</u>	
-	, ,	<u>Limits</u>						<u>Limits</u>			
2-Fluorobiphenyl	28	14-146				Nitrobenzene-d5	40	18-162			
p-Terphenyl-d14	35	34-148									

RL - Reporting Limit ,

DF - Dilution Factor , Qual - Qualifiers



Units:



Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received:
Work Order No:
Preparation:
Method:

07/23/10 10-07-1713 EPA 3545

EPA 8270C SIM PAHs

ug/kg

Project: ACOE (San Rafael Channel)

Page 3 of 3

Client Sample Number				Sample umber		Date/Time Collected	Matrix	Instrument	Date Prepar		ite/Time nalyzed	QC Bat	ch ID
Method Blank			099	-12-471-5	5	N/A	Solid	GC/MS BBB	07/23/1	10 0	7/24/10 16:42	100723	L14
Comment(s): -Results were	e evaluated to th	e MDL, c	oncentr	ations >=	to the I	MDL but < RL,	if found, a	e qualified wit	n a "J" flag	<b>J</b> .			
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
Acenaphthene	ND	10	1.5	1		Chrysene			ND	10	1.5	1	
Acenaphthylene	ND	10	1.5	1		Dibenz (a,h)	Anthracen	е	ND	10	1.1	1	
Anthracene	ND	10	1.3	1		Fluoranthen	е		ND	10	1.6	1	
Benzo (a) Anthracene	ND	10	2.0	1		Fluorene			ND	10	1.4	1	
Benzo (a) Pyrene	ND	10	1.3	1		Indeno (1,2,	3-c,d) Pyre	ne	ND	10	1.3	1	
Benzo (b) Fluoranthene	ND	10	1.5	1		Naphthalene	•		ND	10	1.7	1	
Benzo (g,h,i) Perylene	ND	10	1.3	1		Phenanthre	ne		ND	10	2.2	1	
Benzo (k) Fluoranthene	ND	10	1.9	1		Pyrene			ND	10	1.6	1	
<u>Surrogates:</u>	REC (%)	Control Limits	<u>C</u>	<u>Qual</u>		Surrogates:			REC (%)	Contro Limits	<u> Q</u>	ual	
2-Fluorobiphenyl	118	14-146				Nitrobenzen	e-d5		127	18-162	!		
p-Terphenyl-d14	115	34-148											





Pacific Ecorisk Date Received: 07/23/10 2250 Cordelia Road Work Order No: 10-07-1713 Fairfield, CA 94534-1912 Preparation: EPA 3545 Method: **EPA 8082** Units: ug/kg Page 1 of 2

Lab Sample

50-130

Project: ACOE (San Rafael Channel)

Date repared	Date/Time Analyzed	QC Batch ID

50-130

109

Client Sample Nu	ımber				mber		Collected	Matrix	Instrument	Prepar		alyzed	QC Bate	ch ID
SRC-2010-8-1				10-07	7-1713-1	I-A	06/10/10 11:55	Solid	GC 58	07/23/1		24/10 5:31	100723	L13
Comment(s):	-Results are reporte	ed on a dr	y weight b	asis.										
	-Results were evalu	uated to th	e MDL, co	oncentra	ations >=	to the N	MDL but < RL,	if found, a	re qualified wit	h a "J" flag	J.			
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
Aroclor-1016		ND	21	4.3	1		Aroclor-1248			ND	21	4.2	1	
Aroclor-1221		ND	21	4.2	1		Aroclor-1254			ND	21	4.2	1	
Aroclor-1232		ND	21	4.2	1		Aroclor-1260			ND	21	4.7	1	
Aroclor-1242		ND	21	4.2	1									
Surrogates:	!	REC (%)	Control Limits	Q	<u>ual</u>		Surrogates:			REC (%)	Control Limits	<u>Q</u>	<u>ual</u>	

Date/Time

Decachlorobiphenyl

Comment(s): -Results are reported on a dry weight basis.

97

2,4,5,6-Tetrachloro-m-Xylene

-Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

SPC-2010-9-2			10.07	1712 2	^	06/40/40 Solid CC E0	07/22	40 07	/24/10	100722	1 12
2,4,5,6-Tetrachloro-m-Xylene	65	50-130				Decachlorobiphenyl	78	50-130			
Surrogates:	REC (%)	Control Limits	<u>Qı</u>	<u>ıal</u>		Surrogates:	<u>REC (%)</u>	Control Limits	<u>Qu</u>	<u>al</u>	
Aroclor-1242	ND	23	4.7	1							
Aroclor-1232	ND	23	4.7	1		Aroclor-1260	ND	23	5.2	1	
Aroclor-1221	ND	23	4.7	1		Aroclor-1254	ND	23	4.7	1	
Aroclor-1016	ND	23	4.7	1		Aroclor-1248	ND	23	4.7	1	
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual

	SRC-2010-8-3	10-07-1713-3-A	06/10/10 13:30	Solid	GC 58	07/23/10	07/24/10 16:07	100723L13	
--	--------------	----------------	-------------------	-------	-------	----------	-------------------	-----------	--

Comment(s): -Results are reported on a dry weight basis.

-Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
Aroclor-1016	ND	23	4.6	1		Aroclor-1248	ND	23	4.6	1	
Aroclor-1221	ND	23	4.6	1		Aroclor-1254	ND	23	4.6	1	
Aroclor-1232	ND	23	4.6	1		Aroclor-1260	ND	23	5.1	1	
Aroclor-1242	ND	23	4.6	1							
Surrogates:	REC (%)	Control Limits	<u>Qı</u>	<u>ual</u>		Surrogates:	REC (%)	Control Limits	Qu	<u>al</u>	
2,4,5,6-Tetrachloro-m-Xylene	75	50-130				Decachlorobiphenyl	91	50-130			

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Page 2 of 2

50-130

112



## **Analytical Report**



 Pacific Ecorisk
 Date Received:
 07/23/10

 2250 Cordelia Road
 Work Order No:
 10-07-1713

 Fairfield, CA 94534-1912
 Preparation:
 EPA 3545

 Method:
 EPA 8082

 Units:
 ug/kg

Project: ACOE (San Rafael Channel)

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SRC-2010-8-4	10-07-1713-4-A	06/10/10 11:40	Solid	GC 58	07/23/10	07/24/10 16:25	100723L13

Comment(s): -Results are reported on a dry weight ba	asis.
------------------------------------------------------	-------

-Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DF	Qual	<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DF	Qual
Aroclor-1016	ND	17	3.3	1		Aroclor-1248	ND	17	3.3	1	
Aroclor-1221	ND	17	3.3	1		Aroclor-1254	ND	17	3.3	1	
Aroclor-1232	ND	17	3.3	1		Aroclor-1260	ND	17	3.7	1	
Aroclor-1242	ND	17	3.3	1							
Surrogates:	REC (%)	Control Limits	<u>Qı</u>	<u>ıal</u>		Surrogates:	REC (%)	Control Limits	Qu	<u>al</u>	
2,4,5,6-Tetrachloro-m-Xylene	85	50-130				Decachlorobiphenyl	126	50-130			

Method Blank	099-12-565-156	N/A	Solid	GC 58	07/23/10	07/24/10 15:13	100723L13
--------------	----------------	-----	-------	-------	----------	-------------------	-----------

Comment(s):	-Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.										
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	DF	Qual	<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
Aroclor-1016	ND	10	2.0	1		Aroclor-1248	ND	10	2.0	1	
Aroclor-1221	ND	10	2.0	1		Aroclor-1254	ND	10	2.0	1	
Aroclor-1232	ND	10	2.0	1		Aroclor-1260	ND	10	2.2	1	
Aroclor-1242	ND	10	2.0	1							
Surrogates:	<u>REC (%)</u>	Control Limits	Qua	<u>al</u>		Surrogates:	REC (%)	Control Limits	Qua	<u>al</u>	

Decachlorobiphenyl

RL - Reporting Limit ,

2,4,5,6-Tetrachloro-m-Xylene

DF - Dilution Factor , Qual - Qualifiers

50-130

115





Pacific Ecorisk 07/23/10 Date Received: 2250 Cordelia Road Work Order No: 10-07-1713 Fairfield, CA 94534-1912 Preparation: **EPA 3545** Method: **EPA 8081A** Units: ug/kg

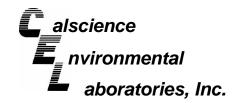
Project: ACOE (San Rafael Channel)

Page 1 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SRC-2010-8-1	10-07-1713-1-A	06/10/10 11:55	Solid	GC 41	07/23/10	07/26/10 12:40	100723L12

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-Results are rep	orted on a di	ry weight b	oasis.								
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DF	Qual	<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DF	Qual
Aldrin	ND	2.1	0.65	1		Endosulfan I	ND	2.1	0.75	1	
Alpha-BHC	ND	2.1	0.62	1		Endosulfan II	ND	2.1	0.37	1	
Beta-BHC	ND	2.1	0.54	1		Endosulfan Sulfate	1.2	2.1	0.55	1	J
Delta-BHC	ND	2.1	0.67	1		Endrin	ND	2.1	0.43	1	
Gamma-BHC	ND	2.1	0.48	1		Endrin Aldehyde	ND	2.1	0.41	1	
Chlordane	ND	21	8.5	1		Endrin Ketone	ND	2.1	0.63	1	
Dieldrin	1.8	2.1	0.48	1	J	Heptachlor	ND	2.1	0.47	1	
2,4'-DDD	ND	2.1	0.42	1		Heptachlor Epoxide	2.5	2.1	0.39	1	
2,4'-DDE	ND	2.1	0.38	1		Methoxychlor	ND	2.1	0.35	1	
2,4'-DDT	0.45	2.1	0.30	1	J	Toxaphene	ND	42	18	1	
4,4'-DDD	76	21	5.4	10		Alpha Chlordane	1.2	2.1	0.54	1	J
4,4'-DDE	16	2.1	0.63	1		Gamma Chlordane	2.8	2.1	0.54	1	
4,4'-DDT	44	21	6.9	10							
Surrogates:	REC (%)	Control Limits	Qua	<u> </u>		Surrogates:	REC (%)	Control Limits	<u>Qua</u>	<u>l</u>	
2,4,5,6-Tetrachloro-m-Xylene	98	50-130				Decachlorobiphenyl	94	50-130			


07/26/10 SRC-2010-8-2 Solid GC 41 100723L12 10-07-1713-2-A 06/10/10 07/23/10 13:09 12:45

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-Results are reported on a dry weight basis.

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	DF	Qual	<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
Aldrin	ND	2.3	0.73	1		Endosulfan I	ND	2.3	0.84	1	
Alpha-BHC	ND	2.3	0.69	1		Endosulfan II	ND	2.3	0.41	1	
Beta-BHC	ND	2.3	0.60	1		Endosulfan Sulfate	ND	2.3	0.62	1	
Delta-BHC	ND	2.3	0.75	1		Endrin	ND	2.3	0.47	1	
Gamma-BHC	ND	2.3	0.54	1		Endrin Aldehyde	ND	2.3	0.46	1	
Chlordane	170	23	9.4	1		Endrin Ketone	ND	2.3	0.71	1	
Dieldrin	ND	2.3	0.53	1		Heptachlor	ND	2.3	0.52	1	
2,4'-DDD	ND	2.3	0.47	1		Heptachlor Epoxide	ND	2.3	0.43	1	
2,4'-DDE	ND	2.3	0.42	1		Methoxychlor	ND	2.3	0.39	1	
2,4'-DDT	ND	2.3	0.33	1		Toxaphene	ND	47	20	1	
4,4'-DDD	15	2.3	0.61	1		Alpha Chlordane	10	2.3	0.61	1	
4,4'-DDE	13	2.3	0.71	1		Gamma Chlordane	11	2.3	0.61	1	
4,4'-DDT	ND	2.3	0.77	1							
Surrogates:	REC (%)	Control Limits	Qua	<u>al</u>		Surrogates:	REC (%)	Control Limits	Qual		
2,4,5,6-Tetrachloro-m-Xylene	73	50-130				Decachlorobiphenyl	61	50-130			

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers





 Pacific Ecorisk
 Date Received:
 07/23/10

 2250 Cordelia Road
 Work Order No:
 10-07-1713

 Fairfield, CA 94534-1912
 Preparation:
 EPA 3545

 Method:
 EPA 8081A

 Units:
 ug/kg

Project: ACOE (San Rafael Channel)

Page 2 of 3

Date/Time
Analyzed QC Batch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SRC-2010-8-3	10-07-1713-3-A	06/10/10 13:30	Solid	GC 41	07/23/10	07/26/10 13:37	100723L12

 $\label{lem:comment} \textbf{Comment}(s): \quad \textbf{-Results were evaluated to the MDL, concentrations} >= \textbf{to the MDL but} < \textbf{RL, if found, are qualified with a "J" flag.}$ 

-Results are reported on a dry weight basis.

-i repoi	ica on a ai	y weignt b	asis.								
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
Aldrin	ND	2.3	0.70	1		Endosulfan I	ND	2.3	0.81	1	
Alpha-BHC	ND	2.3	0.67	1		Endosulfan II	ND	2.3	0.40	1	
Beta-BHC	ND	2.3	0.58	1		Endosulfan Sulfate	ND	2.3	0.60	1	
Delta-BHC	ND	2.3	0.72	1		Endrin	ND	2.3	0.46	1	
Gamma-BHC	ND	2.3	0.52	1		Endrin Aldehyde	ND	2.3	0.45	1	
Chlordane	250	23	9.1	1		Endrin Ketone	ND	2.3	0.68	1	
Dieldrin	5.1	2.3	0.52	1		Heptachlor	ND	2.3	0.51	1	
2,4'-DDD	ND	2.3	0.46	1		Heptachlor Epoxide	ND	2.3	0.42	1	
2,4'-DDE	ND	2.3	0.41	1		Methoxychlor	ND	2.3	0.38	1	
2,4'-DDT	ND	2.3	0.32	1		Toxaphene	ND	46	19	1	
4,4'-DDD	29	4.6	1.2	2		Alpha Chlordane	18	2.3	0.59	1	
4,4'-DDE	21	4.6	1.4	2		Gamma Chlordane	36	4.6	1.2	2	
4,4'-DDT	7.1	2.3	0.75	1							
Surrogates:	REC (%)	Control Limits	Qual			Surrogates:	REC (%)	Control Limits	Qual		
2,4,5,6-Tetrachloro-m-Xylene	73	50-130				Decachlorobiphenyl	61	50-130			

SRC-2010-8-4 10-07-1713-4-A	06/10/10 Solid 11:40	d GC 41 07/23/10	07/26/10 100723L12 14:05
-----------------------------	-------------------------	------------------	-----------------------------

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-Results are reported on a dry weight basis.

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
Aldrin	ND	1.7	0.51	1		Endosulfan I	ND	1.7	0.59	1	
Alpha-BHC	ND	1.7	0.49	1		Endosulfan II	ND	1.7	0.29	1	
Beta-BHC	ND	1.7	0.42	1		Endosulfan Sulfate	ND	1.7	0.44	1	
Delta-BHC	ND	1.7	0.53	1		Endrin	ND	1.7	0.33	1	
Gamma-BHC	ND	1.7	0.38	1		Endrin Aldehyde	ND	1.7	0.32	1	
Chlordane	190	17	6.6	1		Endrin Ketone	ND	1.7	0.50	1	
Dieldrin	4.2	1.7	0.38	1		Heptachlor	ND	1.7	0.37	1	
2,4'-DDD	ND	1.7	0.33	1		Heptachlor Epoxide	ND	1.7	0.30	1	
2,4'-DDE	ND	1.7	0.29	1		Methoxychlor	ND	1.7	0.28	1	
2,4'-DDT	ND	1.7	0.23	1		Toxaphene	ND	33	14	1	
4,4'-DDD	29	8.3	2.1	5		Alpha Chlordane	16	1.7	0.43	1	
4,4'-DDE	14	8.3	2.5	5		Gamma Chlordane	23	8.3	2.1	5	
4,4'-DDT	ND	1.7	0.54	1							
Surrogates:	REC (%)	Control Limits	<u>Qu</u>	<u>al</u>		Surrogates:	REC (%)	Control Limits	<u>Qua</u>	<u>l</u>	
2,4,5,6-Tetrachloro-m-Xylene	84	50-130				Decachlorobiphenyl	53	50-130			

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

07/23/10



# **Analytical Report**

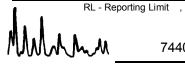


Pacific Ecorisk Date Received: 2250 Cordelia Road Fairfield, CA 94534-1912

50-130

105

Work Order No: 10-07-1713 Preparation: EPA 3545 Method: **EPA 8081A** Units: ug/kg


Page 3 of 3

50-130

101

Project: AC	OE (San Rafael Char	nnel)									Page	3 of	3
Client Sample Nu	mber		Lab Sa Num			Date/Time Collected	Matrix	Instrument	Date Prepa		Date/Time Analyzed	QC Bat	ch ID
Method Blank			099-12	2-858-7	0	N/A	Solid	GC 41	07/23/	10	07/26/10 12:12	100723	L12
Comment(s):	-Results were evaluated to the	e MDL, co	oncentrati	ons >=	to the N	MDL but < RL,	if found, ar	e qualified wit	h a "J" fla	g.			
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	<u>MDL</u>	<u>DF</u>	Qual
Aldrin	ND	1.0	0.31	1		Endosulfan	I		ND	1.0	0.36	1	
Alpha-BHC	ND	1.0	0.29	1		Endosulfan	II		ND	1.0	0.18	1	
Beta-BHC	ND	1.0	0.25	1		Endosulfan	Sulfate		ND	1.0	0.26	1	
Delta-BHC	ND	1.0	0.32	1		Endrin			ND	1.0	0.20	1	
Gamma-BHC	ND	1.0	0.23	1		Endrin Aldel	hyde		ND	1.0	0.20	1	
Chlordane	ND	10	4.0	1		Endrin Keto	ne		ND	1.0	0.30	1	
Dieldrin	ND	1.0	0.23	1		Heptachlor			ND	1.0	0.22	1	
2,4'-DDD	ND	1.0	0.20	1		Heptachlor E	Epoxide		ND	1.0	0.18	1	
2,4'-DDE	ND	1.0	0.18	1		Methoxychlo	or		ND	1.0	0.17	1	
2,4'-DDT	ND	1.0	0.14	1		Toxaphene			ND	20	8.5	1	
4,4'-DDD	ND	1.0	0.26	1		Alpha Chlore	dane		ND	1.0	0.26	1	
4,4'-DDE	ND	1.0	0.30	1		Gamma Chl	ordane		ND	1.0	0.26	1	
4,4'-DDT	ND	1.0	0.33	1									
Surrogates:	<u>REC (%)</u>	Control Limits	Qua	<u>al</u>		Surrogates:			REC (%)	Con Limi		<u>ual</u>	

Decachlorobiphenyl



2,4,5,6-Tetrachloro-m-Xylene

DF - Dilution Factor , Qual - Qualifiers

07/23/10



# **Analytical Report**



Pacific Ecorisk Date Received: 2250 Cordelia Road Work Order No: 10-07-1713 Fairfield, CA 94534-1912 Preparation: **EPA 3050B** Method: EPA 6020 Units:

mg/kg Page 1 of 2

Project: ACOE (San Rafael (	Jhannel)	
-----------------------------	----------	--

riojeci. Ac	OL (Sairi	Valaci Cila	illiel)							ray	<del>e</del> 1 01	
Client Sample Nu	mber			Lab Sample Number	!	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Ba	atch ID
SRC-2010-8-1				10-07-1713	-1-A	06/10/10 11:55	Solid	ICP/MS 04	07/23/10	07/23/10 19:15	10072	3L04
Comment(s):		e evaluated to the reported on a d	,		= to the	MDL but < RL,	if found, a	re qualified wit	h a "J" flag.			
<u>Parameter</u>	Result	RL	MDL	<u>DF</u>	Qual	<u>Parameter</u>	R	<u>esult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
Arsenic	17.1	0.211	0.107	1		Nickel	130	)	0.211	0.0347	1	В
Cadmium	1.11	0.211	0.00948	1		Selenium	0.	603	0.211	0.0728	1	
Chromium	111	0.211	0.0366	1		Silver	0.	763	0.211	0.00745	1	
Copper	75.0	0.211	0.0385	1	В	Zinc	23	7	2.11	0.559	1	В
Lead	126	0.211	0.0188	1								
SRC-2010-8-2				10-07-1713	-2-A	06/10/10 12:45	Solid	ICP/MS 04	07/23/10	07/23/10 19:19	10072	23L04
Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.												

Comment(s):	: -Results were evaluated to the MDL,	concentrations >= to the MDL but < RL,	if found, are qualified with a "J" flag.
-------------	---------------------------------------	----------------------------------------	------------------------------------------

-Results	are	reported	on	a dry	weight	basis.
----------	-----	----------	----	-------	--------	--------

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
Arsenic	8.59	0.235	0.119	1		Nickel	85.8	0.235	0.0386	1	В
Cadmium	1.03	0.235	0.0105	1		Selenium	0.528	0.235	0.0810	1	
Chromium	70.7	0.235	0.0408	1		Silver	0.316	0.235	0.00829	1	
Copper	79.2	0.235	0.0429	1	В	Zinc	358	2.35	0.622	1	В
l ead	86.5	0.235	0.0200	1							

SRC-2010-8-3 10-07-1713-3-A	06/10/10 Solid ICP/MS 04 07/23/10 07/23/10 100723L04 13:30 19:24
-----------------------------	---------------------------------------------------------------------

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-Results are reported on a dry weight basis.

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
Arsenic	10.5	0.228	0.116	1		Nickel	94.9	0.228	0.0375	1	В
Cadmium	1.13	0.228	0.0102	1		Selenium	0.462	0.228	0.0786	1	
Chromium	82.5	0.228	0.0396	1		Silver	0.499	0.228	0.00805	1	
Copper	115	0.228	0.0416	1	В	Zinc	392	2.28	0.603	1	В
l ead	227	0.228	0.0203	1							

RL - Reporting Limit ,

DF - Dilution Factor , Qual - Qualifiers





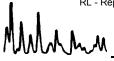
Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

07/23/10 10-07-1713 **EPA 3050B** EPA 6020

Units:

mg/kg Page 2 of 2

Project: ACOE (San Rafael Channel)


Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SRC-2010-8-4	10-07-1713-4-A	06/10/10 11:40	Solid	ICP/MS 04	07/23/10	07/23/10 19:29	100723L04

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-Results are reported on a dry weight basis.

	r (Courto di C	reported on a di	ry weight basis.								
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
Arsenic	5.88	0.166	0.0842	1		Nickel	56.5	0.166	0.0273	1	В
Cadmium	0.577	0.166	0.00745	1		Selenium	0.217	0.166	0.0572	1	
Chromium	47.8	0.166	0.0288	1		Silver	0.165	0.166	0.00586	1	J
Copper	39.5	0.166	0.0303	1	В	Zinc	201	1.66	0.439	1	В
Lead	131	0.166	0.0148	1							

Method Blank			09	6-10-002-	-1,785	N/A	Solid	ICP/MS 04	07/23/10	07/23/10 18:15	10072	3L04
Comment(s):	-Results wer	e evaluated to th	e MDL, concer	ntrations >	= to the N	MDL but < RL,	if found, are	e qualified with	h a "J" flag.			
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	Re	<u>sult</u>	RL	<u>MDL</u>	DF	Qual
Arsenic	ND	0.100	0.0507	1		Nickel	0.02	22	0.100	0.0164	1	J
Cadmium	ND	0.100	0.00449	1		Selenium	ND		0.100	0.0345	1	
Chromium	ND	0.100	0.0174	1		Silver	ND		0.100	0.00353	1	
Copper	0.0502	0.100	0.0183	1	J	Zinc	0.48	4	1.00	0.265	1	J
Lead	ND	0.100	0.00892	1								



RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

07/23/10 10-07-1713 EPA 7471A Total **EPA 7471A** 

Project: ACOE (San Rafael Channel)

Page 1 of 1

Project: ACOE (San	Rafael Channe	el)						F	Page 1 of 1
Client Sample Number		Lab Sam Numbe	•	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SRC-2010-8-1		10-07-1	713-1-A	06/10/10 11:55	Solid	Mercury	07/23/10	07/23/10 15:54	100723L07
Comment(s): -Results were	evaluated to the MDL		>= to the N	/IDL but < RL	, if found, a	are qualified with	n a "J" flag.		
Parameter	Result	RL	MDL	<u>1</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
lercury	1.54	0.0423	0.0274	1 1			mg/kg		
SRC-2010-8-2		10-07-1	713-2-A	06/10/10 12:45	Solid	Mercury	07/23/10	07/23/10 15:56	100723L07
Comment(s): -Results were			>= to the N	/IDL but < RL	, if found, a	are qualified with	n a "J" flag.		
-Results are re <u>Parameter</u>	eported on a dry weigh <u>Result</u>	RL	<u>MDL</u>	<u>]</u>	<u>DF</u>	Qual	<u>Units</u>		
Mercury	0.293	0.0470	0.0305	5 1			mg/kg		
SRC-2010-8-3		10-07-1	713-3-A	06/10/10 13:30	Solid	Mercury	07/23/10	07/23/10 15:59	100723L07
Comment(s): -Results were	evaluated to the MDL		>= to the N	/IDL but < RL	, if found, a	are qualified with	n a "J" flag.		
<u>Parameter</u>	Result	RL	<u>MDL</u>	1	<u>DF</u>	Qual	<u>Units</u>		
Mercury	0.332	0.0456	0.0296	3 1			mg/kg		
SRC-2010-8-4		10-07-1	713-4-A	06/10/10 11:40	Solid	Mercury	07/23/10	07/23/10 16:01	100723L07
Comment(s): -Results were -Results are re	evaluated to the MDL eported on a dry weigh		>= to the N	/IDL but < RL	, if found, a	are qualified with	n a "J" flag.		
<u>Parameter</u>	Result	RL	<u>MDL</u>	<u>1</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Mercury	0.262	0.0332	0.0215	5 1			mg/kg		
Method Blank		099-12-	452-138	N/A	Solid	Mercury	07/23/10	07/23/10 15:34	100723L07
Comment(s): -Results were	evaluated to the MDL Result	, concentrations <u>RL</u>	>= to the N MDL		, if found, a	are qualified with Qual	n a "J" flag. <u>Units</u>		
Mercury	ND	0.0200	0.0130	_	-	<u></u>	mg/kg		

DF - Dilution Factor

Qual - Qualifiers





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: 07/23/10 10-07-1713 EPA 3050B EPA 6020

## Project ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-07-1715-1	Sedimen	t ICP/MS 04	07/23/10		07/23/10	100723S04
						_
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Arsenic	107	109	80-120	2	0-20	
Cadmium	98	102	80-120	4	0-20	
Chromium	70	78	80-120	4	0-20	3
Copper	44	48	80-120	2	0-20	3
Lead	67	65	80-120	1	0-20	3
Nickel	76	81	80-120	3	0-20	3
Selenium	107	108	80-120	1	0-20	
Silver	103	107	80-120	4	0-20	
Zinc	4X	4X	80-120	4X	0-20	Q

MANA_



# **Quality Control - PDS / PDSD**



Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received Work Order No: Preparation: Method: 07/23/10 10-07-1713 EPA 3050B EPA 6020

Project: ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date	Analyzed	PDS / PDSD_Batch Number
10-07-1715-1	Sediment	ICP/MS 04	07/23/10	07	7/23/10	100723S04
<u>Parameter</u>	PDS %REC	PDSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Arsenic	99	96	75-125	3	0-20	
Cadmium	92	92	75-125	1	0-20	
Chromium	80	84	75-125	1	0-20	
Copper	57	63	75-125	3	0-20	
Lead	63	60	75-125	2	0-20	
Nickel	81	87	75-125	3	0-20	
Selenium	87	89	75-125	2	0-20	
Silver	97	98	75-125	1	0-20	
Zinc	4X	4X	75-125	4X	0-20	Q





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: 07/23/10 10-07-1713 N/A EPA 9060A

## Project ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	,	Date Analyzed	MS/MSD Batch Number
SRC-2010-8-1	Solid	TOC 5	N/A		07/28/10	A0728TOCS1
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Carbon, Total Organic	100	98	75-125	1	0-25	

Muha_



# **Quality Control - Duplicate**



Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

07/23/10 10-07-1713 N/A SM 2540 B

Project: ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
10-07-1714-1	Sediment	N/A	07/24/10	07/24/10	A0724TSD1
<u>Parameter</u>	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Solids, Total	54.5	54.9	1	0-25	







Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: 07/23/10 10-07-1713 EPA 7471A Total EPA 7471A

## Project ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-07-1715-1	Sediment	Mercury	07/23/10		07/23/10	100723S07
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Mercury	88	87	76-136	1	0-16	

MMM_





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: 07/23/10 10-07-1713 EPA 3545 Organotins by Krone

et al.

## Project ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-07-1715-1	Sediment	GC/MS Y	07/23/10		07/24/10	100723S18
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Tetrabutyltin Tributyltin	123 134	118 127	50-130 50-130	4 6	0-20 0-20	3

MMMM_





0-46

Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: 07/23/10 10-07-1713 EPA 3545 EPA 8270C SIM PAHs

## Project ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-07-1715-1	Sediment	GC/MS BBB	07/23/10		07/25/10	100723S14
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Acenaphthene	67	68	40-160	0	0-20	
Acenaphthylene	63	64	40-160	1	0-20	
Anthracene	43	45	40-160	4	0-20	
Benzo (a) Anthracene	46	48	40-160	3	0-20	
Benzo (a) Pyrene	52	53	40-160	2	0-20	
Benzo (b) Fluoranthene	57	54	40-160	3	0-20	
Benzo (g,h,i) Perylene	49	53	40-160	7	0-20	
Benzo (k) Fluoranthene	48	47	40-160	0	0-20	
Chrysene	46	47	40-160	1	0-20	
Dibenz (a,h) Anthracene	58	59	40-160	1	0-20	
Fluoranthene	44	48	40-160	5	0-20	
Fluorene	64	66	40-160	3	0-20	
Indeno (1,2,3-c,d) Pyrene	57	59	40-160	2	0-20	
2-Methylnaphthalene	69	67	40-160	2	0-20	
1-Methylnaphthalene	67	62	40-160	7	0-20	
Naphthalene	59	59	40-160	0	0-20	
Phenanthrene	61	61	40-160	0	0-20	

49

40-160

MMM_

Pyrene





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: 07/23/10 10-07-1713 EPA 3545 EPA 8082

## Project ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-07-1715-1	Sediment	GC 58	07/23/10		07/24/10	100723S13
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	<u>Qualifiers</u>
Aroclor-1016 Aroclor-1260	115 131	118 124	50-135 50-135	3 5	0-25 0-25	

MANA_





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: 07/23/10 10-07-1713 EPA 3545 EPA 8081A

## Project ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Matrix Instrument			Date Analyzed	MS/MSD Batch Number	
10-07-1715-1	Sediment	GC 41	07/23/10		07/27/10	100723S12	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Aldrin	71	69	50-135	3	0-25		
Alpha-BHC	88	86	50-135	3	0-25		
Beta-BHC	83	80	50-135	4	0-25		
Delta-BHC	88	86	50-135	3	0-25		
Gamma-BHC	79	76	50-135	4	0-25		
Dieldrin	83	79	50-135	4	0-25		
4,4'-DDD	85	83	50-135	2	0-25		
4,4'-DDE	87	84	50-135	3	0-25		
4,4'-DDT	106	101	50-135	5	0-25		
Endosulfan I	72	68	50-135	5	0-25		
Endosulfan II	78	75	50-135	4	0-25		
Endosulfan Sulfate	86	82	50-135	4	0-25		
Endrin	80	76	50-135	4	0-25		
Endrin Aldehyde	69	59	50-135	16	0-25		
Endrin Ketone	96	94	50-135	2	0-25		
Heptachlor	68	66	50-135	4	0-25		
Heptachlor Epoxide	73	71	50-135	3	0-25		
Methoxychlor	88	88	50-135	0	0-25		
Alpha Chlordane	76	73	50-135	4	0-25		
Gamma Chlordane	77	74	50-135	3	0-25		

MMMM_





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: N/A 10-07-1713 EPA 3050B EPA 6020

Project: ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrum		ate pared	Date Analyzed	LCS/LCSD Bate Number	ch
096-10-002-1,785	Solid	ICP/MS	04 07/2	23/10	07/23/10	100723L04	
<u>Parameter</u>	LCS 9	<u>6REC</u>	LCSD %REC	%REC	CL RPD	RPD CL	<u>Qualifiers</u>
Arsenic	99		98	80-12	.0 1	0-20	
Cadmium	96		96	80-12	0 0	0-20	
Chromium	94		94	80-12	0 0	0-20	
Copper	100	)	98	80-12	.0 2	0-20	
Lead	96		95	80-12	.0 1	0-20	
Nickel	100	)	97	80-12	.0 3	0-20	
Selenium	102	!	100	80-12	.0 2	0-20	
Silver	91		91	80-12	0 0	0-20	
Zinc	103	}	100	80-12	.0 2	0-20	

# alscience nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.



Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

10-07-1713 N/A

N/A

EPA 9060A

Project: ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File ID	LCS Batch Number
099-06-013-510	Solid	TOC 5	07/28/10	NONE	A0728TOCL1
<u>Parameter</u>		Conc Added	Conc Recovered	LCS %Rec	%Rec CL Qualifiers
Carbon, Total Organic		0.6	0.642	107	80-120

RPD - Relative Percent Difference ,
7440 Lincoln

CL - Control Limit





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: N/A 10-07-1713 EPA 7471A Total EPA 7471A

Project: ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyze	ed	LCS/LCSD Batcl Number	h
099-12-452-138	Solid	Mercury	07/23/10	07/23/1	)	100723L07	
<u>Parameter</u>	LCS %	6REC LCSD	%REC %F	REC CL	<u>RPD</u>	RPD CL	Qualifiers
Mercury	97	99	8	32-124	2	0-16	

MMM_





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

10-07-1713 EPA 3545

N/A

Organotins by Krone et al.

Project: ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	ch
099-07-016-765	Solid	GC/MS Y	07/23/10	07/24/10	100723L18	
<u>Parameter</u>	LCS %	REC LCSD	%REC %F	REC CL RPI	RPD CL	Qualifiers
Tetrabutyltin	95	99	;	50-130 4	0-20	
Tributyltin	108	117	!	50-130 8	0-20	







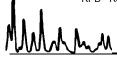
Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

10-07-1713 EPA 3545

N/A

EPA 8270C SIM PAHs

Project: ACOE (San Rafael Channel)


Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD I Number	
099-12-471-55	Solid	GC/MS BBB	07/23/10	07/24	/10	100723L	14
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Acenaphthene	88	87	48-108	38-118	1	0-11	
Acenaphthylene	84	84	40-160	20-180	0	0-20	
Anthracene	66	65	40-160	20-180	2	0-20	
Benzo (a) Anthracene	82	83	40-160	20-180	1	0-20	
Benzo (a) Pyrene	87	86	40-160	20-180	2	0-20	
Benzo (b) Fluoranthene	87	83	40-160	20-180	4	0-20	
Benzo (g,h,i) Perylene	73	73	40-160	20-180	0	0-20	
Benzo (k) Fluoranthene	81	82	40-160	20-180	1	0-20	
Chrysene	83	83	40-160	20-180	0	0-20	
Dibenz (a,h) Anthracene	79	79	40-160	20-180	0	0-20	
Fluoranthene	88	87	40-160	20-180	1	0-20	
Fluorene	91	90	40-160	20-180	1	0-20	
Indeno (1,2,3-c,d) Pyrene	84	84	40-160	20-180	0	0-20	
2-Methylnaphthalene	92	92	40-160	20-180	0	0-20	
1-Methylnaphthalene	89	87	40-160	20-180	2	0-20	
Naphthalene	88	89	40-160	20-180	1	0-20	
Phenanthrene	87	87	40-160	20-180	0	0-20	
Pyrene	83	83	40-160	20-180	0	0-16	

Total number of LCS compounds: 18

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass







Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

10-07-1713 EPA 3545 EPA 8082

N/A

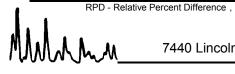
Project: ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bato Number	h
099-12-565-156	Solid	GC 58	07/23/10	07/24/10	100723L13	
Devenuetes	1.00.00	DEC LOSD	0/DEC 0/1		DDD CI	Ovalifiana
<u>Parameter</u>	LCS %	REC LCSD	<u>%REC</u> <u>%</u> 1	REC CL RPD	RPD CL	<u>Qualifiers</u>
Aroclor-1016	103	108		50-135 4	0-25	
Aroclor-1260	104	116	!	50-135 11	0-25	

# alscience nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.



Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:


10-07-1713 EPA 3545 EPA 8081A

N/A

Project: ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab	File ID	LCS Batch Number
099-12-858-70	Solid	GC 41	07/26/10	1007	2605	100723L12
<u>Parameter</u>	Conc Added	Conc Recovered	LCS %Rec	%Rec CL	ME_CL	<u>Qualifiers</u>
Aldrin	5.00	4.74	95	50-135	36-149	
Alpha-BHC	5.00	4.47	89	50-135	36-149	
Beta-BHC	5.00	4.52	90	50-135	36-149	
Delta-BHC	5.00	2.57	51	50-135	36-149	
Gamma-BHC	5.00	4.53	91	50-135	36-149	
Dieldrin	5.00	4.80	96	50-135	36-149	
4,4'-DDD	5.00	4.55	91	50-135	36-149	
4,4'-DDE	5.00	4.46	89	50-135	36-149	
4,4'-DDT	5.00	5.04	101	50-135	36-149	
Endosulfan I	5.00	4.73	95	50-135	36-149	
Endosulfan II	5.00	4.70	94	50-135	36-149	
Endosulfan Sulfate	5.00	4.29	86	50-135	36-149	
Endrin	5.00	5.01	100	50-135	36-149	
Endrin Aldehyde	5.00	4.58	92	50-135	36-149	
Endrin Ketone	5.00	4.83	97	50-135	36-149	
Heptachlor	5.00	4.98	100	50-135	36-149	
Heptachlor Epoxide	5.00	4.52	90	50-135	36-149	
Methoxychlor	5.00	4.82	96	50-135	36-149	
Alpha Chlordane	5.00	4.80	96	50-135	36-149	
Gamma Chlordane	5.00	4.59	92	50-135	36-149	

Total number of LCS compounds: 20
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass



CL - Control Limit



# **Glossary of Terms and Qualifiers**



Work Order Number: 10-07-1713

Qualifier *	<u>Definition</u> See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
Е	Concentration exceeds the calibration range.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.



# Pacific EcoRisk

ENVIRONMENTAL CONSULTING & TESTING

2250 Cordelia Rd., Fairfield, CA 94534 (707)207-7760

# Calscience CHAIN-OF-CUSTODY RECORD

Client Name:	Pacific Eco	Risk							RE	QUES	TED A	NALY	SIS		·	
Client Address:	2250 Cordelia Rd. Fairfield, CA 94534															
Sampled By:		Mike McElroy				† '										
Phone:	(707) 207-7			******											,	
FAX:	(707) 207-7	916														
Project Manager:	Jeff Cotsifa	 S			· ·-	List										
Project Name:	ACOE (Sar	Rafael Cha	ınnel)		***	yte										
PO Number:	16087		,			See Analyte List										
	Sample	Sample	Sample	C	ontainer	e A										
Client Sample ID	Date	Time	Matrix*	Number	Type	_ ՝ Տ՝										
SRC-2010-8-1	6/10/10	11:55	Sed	1	8oz glass	х										
SRC-2010-8-2	6/10/10	12:45	Sed	1	8oz glass	Х										
SRC-2010-8-3	6/10/10	13:30	Sed	1	8oz glass	х										
SRC-2010-8-4	6/11/10	11:40	Sed	1	8oz glass	х										
5			····													
8	ļ <u>.</u>															
				<u> </u>	-											
3	<u> </u>			<del>                                     </del>		<del></del>										
						<del> </del>										
Correct Containers:	Yes	No			<u></u>		RE	LIQUI	NSHE	D BY				l		1
Sample Temperature:	Ambient	Cold	Warm	Signature	1/2	(6)			Signa	turo:				<del></del>	· · · · · · · · ·	
Sample Preservative:	Yes	No		Signature	1				Sigira	ituie.						
Turnaround Time: Comments:	STD	Specify:		Print:	JERMY	LA	Wik	)	Print:							
Sample frozen prior to 6/24/10				Organizat	ion: PCTC				Orgai	nizatio	on:		·			
				DATE: 7	122/10	TIME	176	<del>)</del>	DATE	:				TIME		
								RECE	IVED	BY						
				Signature	Alous	<u> </u>	_		Signa	ture:						
				Print:	Noel G	m's			Print:							
				Organization: CALC			3NC	E	Orgai	nizatio	n:					
*MATRIX CODES (OFF. O. dia	(F184 F			DATE: O	7/23/10	TIME	103	O	DATE	:				TIME		

*MATRIX CODES: (<u>SED</u> = Sediment); (<u>FW</u> = Freshwater); (<u>WW</u> = Wastewater); (<u>STRMW</u> = Stormwater)

(Fed Ex)

# ANALYTE LIST

Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534



Project Proponent:	Pacific EcoRisk		
Project #:	16087	· 	
Site #:	SRC-2010-8-1, SRC-2010-	8-2, SRC-2010-8-3, and SRC-2010-8-4	

Standard Ocean Disposal List (SF Bay	)	
Solids, Total	160.3	
Solids, Volatile	160.4	-
Total Organic Carbon	ASTM D4129-82M	
Sulfides	9030M	
Particle Size	PSEP	
Ammonia as Nitrogen	350.3M	
Arsenic	6020	X
Cadmium	6020	X
Chromium	6020	X
Copper	6020	X
Lead	6020	X
Nickel	6020	X
Silver	6020	X
Zinc	6020	X
Mercury	7471A	X
Selenium	7740 - GFAA	X
2,4'-DDD	8081A	X
2,4'-DDE	8081A	X
2,4'-DDT	8081A	X
4,4'-DDD	8081A	X
4,4'-DDE	8081A	X
4,4'-DDT	8081A	X
Aldrin	8081A	X
alpha-BHC	8081A	X
alpha-Chlordane	8081A	X
beta-BHC	8081A	X
Chlordane	8081A	X
delta-BHC	8081A	X
Dieldrin	8081A	X
Endosulfan I	8081A	X
Endosulfan II	8081A	X
Endosulfan Sulfate	8081A	X
Endrin	8081A	X
Endrin Aldehyde	8081A	X
gamma-BHC (Lindane)	8081A	X
gamma-Chlordane	8081A	X
Heptachlor	8081A	X
Heptachlor Epoxide	8081A	X
Toxaphene	8081A	X
Aroclor 1016	8082	X
Aroclor 1221	8082	X
Aroclor 1232	8082	X
Aroclor 1242	8082	X
Aroclor 1248	8082	X
Aroclor 1254	8082	X
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	0002	Δ

4.1

(1713)
--------

		· · · · · · · · · · · · · · · · · · ·
Aroclor 1260	8082	X
Aroclor 1262	8082	
Aroclor 1268	8082	
Acenaphthene	8270C-SIM PAH	X
Acenaphthylene	8270C-SIM PAH	X
Anthracene	8270C-SIM PAH	X
Benz(a)anthracene	8270C-SIM PAH	X
Benzo(a)pyrene	8270C-SIM PAH	X
Benzo(b)fluoranthene	8270C-SIM PAH	X
Benzo(g,h,i)perylene	8270C-SIM PAH	X
Benzo(k)fluoranthene	8270C-SIM PAH	X
Chrysene	8270C-SIM PAH	X
Dibenz(a,h)anthracene	8270C-SIM PAH	X
Fluoranthene	8270C-SIM PAH	X
Fluorene	8270C-SIM PAH	X
Indeno(1,2,3-cd)pyrene	8270C-SIM PAH	X
Naphthalene	8270C-SIM PAH	X
Phenanthrene	8270C-SIM PAH	X
Pyrene	8270C-SIM PAH	X
Di-n-butyltin	Organotins	X
n-Butyltin	Organotins	X
Tetra-n-butyltin	Organotins	X
Tri-n-butyltin	Organotins	X
QA/QC		<u></u>

If you have any questions regarding this request as checked, please call Jeff Cotsifas at (707)207-7760



WORK ORDER #: 10-07- [1]

# SAMPLE RECEIPT FORM

Cooler ___ of ___ CLIENT: Pacific Ecorisk DATE: 07/23/10 TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature  $O \cdot G \circ C + 0.5 \circ C \circ C = 1 \cdot 1 \circ C$ **Sample** ☐ Blank ☐ Sample(s) outside temperature criteria (PM/APM contacted by: ). ☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling. ☐ Received at ambient temperature, placed on ice for transport by Courier. NC **Ambient Temperature**:  $\square$  Air ☐ Filter ☐ Metals Only ☐ PCBs Only Initial: **CUSTODY SEALS INTACT:** Initial: UC ☑ Not Present □ Cooler ☐ No (Not Intact) □ N/A ☑/Not Present Initial: N ☐ Sample □ No (Not Intact) **SAMPLE CONDITION:** Yes N/A No Chain-Of-Custody (COC) document(s) received with samples......  $\Box$ COC document(s) received complete.......  $\Box$ ☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels. ☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished. Sampler's name indicated on COC......  $\square$ . Sample container label(s) consistent with COC....... Sample container(s) intact and good condition.....  $\Box$ Proper containers and sufficient volume for analyses requested...... 

✓ Analyses received within holding time...... pH / Residual Chlorine / Dissolved Sulfide received within 24 hours...... Proper preservation noted on COC or sample container..... ☐ Unpreserved vials received for Volatiles analysis Volatile analysis container(s) free of headspace..... Tedlar bag(s) free of condensation..... □ **CONTAINER TYPE:** Solid: □4ozCGJ □8ozCGJ ☑16ozCGJ □Sleeve( ) □EnCores® □TerraCores® □ Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB □1AGBna₂ □1AGBs □500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □500PB □500PBna □250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □ □ Air: □Tedlar® □Summa® Other: □____ Trip Blank Lot#: Labeled/Checked by: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope Reviewed by: Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃ na: NaOH p: H₃PO₄ s: H₂SO₄ znna: ZnAc₂+NaOH f: Field-filtered Scanned by:

* Samples were foun per COC. (2)

SOP T100_090 (01/29/10)



WORK ORDER #: **10-07-** □ □ □ □

# SAMPLE ANOMALY FORM

SAMPLI	ES - CC	NTAIN	ERS & L	ABELS:			Comm	ents:		
□ Sample(s)/Container(s) NOT RECEIVED but listed on COC □ Sample(s)/Container(s) received but NOT LISTED on COC □ Holding time expired – list sample ID(s) and test □ Insufficient quantities for analysis – list test □ Improper container(s) used – list test □ Improper preservative used – list test □ No preservative noted on COC or label – list test & notify lab □ Sample labels illegible – note test/container type □ Sample label(s) do not match COC – Note in comments □ Sample ID □ Date and/or Time Collected □ Project Information								SRC-	2010-8-4 r (bottom)	broken.
				, leu						-
	•	ntainer(					<del></del>			
	Analys	•	9)							
	•		compro	<b>nised</b> – Note	a in comm	mente		····		
_			-	container	3 111 001111	HOHIO				
	Broken		• • • • • • • • • • • • • • • • • •							·
		t Label(s	s)							
		•	•	promised –	Note in a	comments				
	Flat		(-,	<b>p</b> . 000 ti			<del></del>			
		w in vol	ume							•
	•			d - duplicate	bag sul	omitted)		<del></del>		
				o Calscienc	-	-				
				o Client's To			-			
☐ Othe		``		•		0 /		··		
HEADSI	PACE -	- Contai	ners wit	h Bubble >	6mm o	or ¼ inch:				
Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Cont. received	Ana	ysis
										·
				·						
					<u> </u>			! <u></u>		
Comment	:s:									
*Transferr	ed at Clie	ent's requ	est.				Ir	nitial / Da	ite: NC C	7 /23/10





July 27, 2010

The original report has been revised/corrected.

Jeff Cotsifas Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912

Calscience Work Order No.: 10-07-1714

Client Reference: **ACOE (San Rafael Channel)** 

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 7/23/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Danille jones-

Laboratories, Inc. Danielle Gonsman

Project Manager

NELAP ID: 03220CA

**CSDLAC ID: 10109** 

SCAQMD ID: 93LA0830

FAX: (714) 894-7501

7440 Lincoln Way, Garden Grove, CA 92841-1427 . TEL:(714) 895-5494 .





### **CASE NARRATIVE**

Calscience Work Order No.: 10-07-1714

Project Name: ACOE (San Rafael Channel)

Provided below is a narrative of our analytical effort, including any unique features or anomalies encountered as part of the analysis of the marine sediment samples.

## Sample Condition on Receipt

One sediment sample, housed in an 8oz glass container, was received for this project on July 23, 2010. The sample was transferred to the laboratory in an ice-chest with wet ice, following strict chain-of-custody (COC) procedures. The temperature of the sample upon receipt at the laboratory was 1.1°C. The sample was logged into the Laboratory Information Management System (LIMS), given a laboratory identification number, and then stored under refrigeration pending sediment chemistry testing.

No sample receiving anomalies were noted.

#### **Tests Performed**

Trace Metals by EPA 6020
TPH-Diesel by EPA 8015B (M)
TPH-Motor Oil by EPA 8015B (M)
TPH-JP-4 by EPA 8015B (M)
TPH-Gasoline by EPA 8015B (M)
Methoxychlor by EPA 8081A
Phenol and Pentachlorophenol by EPA 8270C SIM
Total Solids by SM 2540 B

## Data Summary

All sample concentrations and reporting limits were dry weight corrected.

All samples were homogenized prior to preparation/analysis.

#### Holding times

According to the client, as referenced on the COC, the sample was stored frozen prior to 6/24/10 and remained in that condition until received by Calscience on 7/23/10. In accordance with the project SAP, the holding time is extended beyond the EPA recommended extraction/analysis time period, and therefore not in violation of the holding time rules.

### Calibration

Frequency and control criteria for initial and continuing calibration verifications were met.





## Calscience Work Order No. 10-07-1714 Page 2 of 2



## Reporting Limits

The Method Detection Limits were met. All sample results were evaluated to the MDL, and where applicable, "J" flags were reported.

## Blanks

Concentrations of target analytes in the method blank were found to be below reporting limits for all testing.

## <u>Laboratory Control Samples</u>

A Laboratory Control Sample (LCS) analysis was performed for each test and all parameters were within the specified control limits.

### Matrix Spikes

Matrix spike analyses were performed at the required frequencies, and all parameters were within control limits for each method with the following exceptions.

The matrix spike and/or matrix spike duplicate recoveries for Barium and Vanadium (by EPA 6020) were out of the acceptance ranges due to matrix interference. However, since the associated PDS/PDSD and LCS/LCSD recoveries were in control, the data are released with no further action.

Since the Manganese concentration found in the sample exceeded the matrix spike concentrations by four times or more, the percent recoveries and RPDs were out of range. Yet, the results are released since the corresponding LCS/LCSD recoveries and RPD value were within the established control limits.

## <u>Surrogates</u>

Surrogate recoveries for all applicable tests and samples were within the established control limits.

#### Acronyms

LCS/LCSD- Laboratory Control Sample/Laboratory Control Sample Duplicate PDS/PDSD- Post Digestion Spike/Post Digestion Spike Duplicate MS/MSD- Matrix Spike/Matrix Spike Duplicate RPD- Relative Percent Difference







Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

10-07-1714 N/A SM 2540 B

07/23/10

Project: ACOE (San Rafael Channel)

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SRC-2010-8-COMP	10-07-1714-1-A	06/10/10 11:55	Sediment	N/A	07/24/10	07/24/10 16:00	A0724TSB1

Comment(s): -Sample received after recommended holding time.

-Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

<u>Parameter</u> <u>Result</u> <u>RL</u> <u>MDL</u> <u>DF</u> <u>Qual</u> <u>Units</u>

Solids, Total 54.5 0.100 0.100 1 %

Method Blank	099-05-019-1,442	N/A	Solid	N/A	07/24/10	07/24/10 16:00	A0724TSB1		
Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.									

 Parameter
 Result
 RL
 MDL
 DF
 Qual
 Units

 Solids, Total
 ND
 0.100
 0.100
 1
 %

Mulling RL - Rep

DF - Dilution Factor ,

Qual - Qualifiers





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

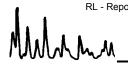
07/23/10 10-07-1714 **EPA 3550B** EPA 8015B (M)

Project: ACOE (San Rafael Channel)

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SRC-2010-8-COMP	10-07-1714-1-A	06/10/10 11:55	Sediment	GC 27	07/23/10	07/24/10 01:52	100723B26

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.


-Results are reported on a dry weight basis.

**MDL** DF <u>Units</u> <u>Parameter</u> Result Qual 46 TPH as Motor Oil 210 13 mg/kg **REC (%) Control Limits** MDL Surrogates: Qual

Decachlorobiphenyl 121 61-145

Method Blank		099-12-2	54-1,365	N/A	Solid	GC 27	07/23/10	07/23/10 22:00	100723B26
Comment(s): -Results were eva	aluated to the MDL	concentrations >	= to the MI	DL but < F	RL, if found, a	e qualified wit	h a "J" flag.		-
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
TPH as Motor Oil Surrogates:	ND <u>REC (%)</u>	25 Control Limits	7.0 <u>MDL</u>	1		<u>Qual</u>	mg/kg		

Decachlorobiphenyl 98 61-145



DF - Dilution Factor Qual - Qualifiers





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

07/23/10 10-07-1714 **EPA 3550B** EPA 8015B (M)

Project: ACOE (San Rafael Channel)

Page 1 of 1

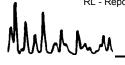
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SRC-2010-8-COMP	10-07-1714-1-A	06/10/10 11:55	Sediment	GC 27	07/23/10	07/24/10 01:52	100723B25

Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

-Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-Results are reported on a dry weight basis.

<u>Parameter</u> Result RL <u>MDL</u> <u>DF</u> Qual <u>Units</u> TPH as Diesel 9.2 8.8 mg/kg Surrogates: **REC (%) Control Limits MDL** Qual


61-145 Decachlorobiphenyl 121

Method Blank	099-12-275-3,578	N/A	Solid	GC 27	07/23/10	07/23/10	100723B25
						22:00	

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag. **Parameter** Result RL **MDL** <u>DF</u> Qual **Units** TPH as Diesel ND 5.0 4.8 mg/kg **REC (%)** Surrogates: **Control Limits** Qual MDL 61-145

Decachlorobiphenyl

98







Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

07/23/10 10-07-1714 **EPA 3550B** EPA 8015B (M)

Project: ACOE (San Rafael Channel)

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SRC-2010-8-COMP	10-07-1714-1-A	06/10/10 11:55	Sediment	GC 27	07/23/10	07/24/10 19:13	100723B27

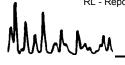
Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard.

Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard. -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-Results are reported on a dry weight basis.

<u>Parameter</u> Result RL <u>MDL</u> <u>DF</u> Qual <u>Units</u> TPH as JP4 9.2 8.8 mg/kg Surrogates: **REC (%) Control Limits MDL** Qual

61-145 Decachlorobiphenyl 122


Method Blank	099-12-293-7	N/A	Solid	GC 27	07/23/10	07/24/10	100723B27
						17:43	

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag. **Parameter** Result RL **MDL** <u>DF</u> Qual **Units** TPH as JP4 ND 5.0 4.8 mg/kg **REC (%)** Qual **Control Limits** Surrogates: MDL

Decachlorobiphenyl

98

61-145







Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

07/23/10 10-07-1714 **EPA 5030B** EPA 8015B (M)

Project: ACOE (San Rafael Channel)

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SRC-2010-8-COMP	10-07-1714-1-A	06/10/10 11:55	Sediment	GC 42	07/23/10	07/24/10 09:07	100723B02

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-Results are reported on a dry weight basis.

DF <u>Units</u> <u>Parameter</u> Result **MDL** Qual ND 0.92 TPH as Gasoline 0.77 mg/kg **Control Limits** Surrogates: **REC (%) MDL** Qual

1,4-Bromofluorobenzene 89 42-126

Method Blank	thod Blank		099-12-279-3,807		N/A Solid		07/23/10	07/23/10 18:29	100723B02
Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.									
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DI</u>	<u>E</u>	<u>Qual</u>	<u>Units</u>		

TPH as Gasoline ND 0.50 0.42 mg/kg Surrogates: **REC (%)** Control Limits MDL Qual

42-126 1,4-Bromofluorobenzene - FID 93

DF - Dilution Factor Qual - Qualifiers





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

10-07-1714 EPA 3545

07/23/10

EPA 8270C SIM ug/kg

Project: ACOE (San Rafael Channel)

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix Instrument		Date Prepared	Date/Time Analyzed	QC Batch ID	
SRC-2010-8-COMP	10-07-1714-1-A	06/10/10 11:55	Sediment	GC/MS MM	07/23/10	07/24/10 15:28	100723L15	

Units:

 $\label{lem:comment} \textbf{Comment}(s): \quad \textbf{-Results were evaluated to the MDL, concentrations} >= \textbf{to the MDL but} < \textbf{RL, if found, are qualified with a "J" flag.}$ 

-Results are reported on a dry weight basis.

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
Pentachlorophenol	ND	230	25	0.25		Phenol	ND	4.6	0.83	0.25	
Surrogates:	REC (%)	Control Limits	Qua	<u>ıl</u>		Surrogates:	REC (%)	Control Limits	Qua	<u>l</u>	
2,4,6-Tribromophenol	101	32-143				2-Fluorobiphenyl	90	14-146			
2-Fluorophenol	82	15-138				Nitrobenzene-d5	89	18-162			
p-Terphenyl-d14	72	34-148				Phenol-d6	87	17-141			

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, it found, are qualified with a 3 mag.											
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
Pentachlorophenol	ND	120	14	0.25		Phenol	ND	2.5	0.45	0.25	
Surrogates:	REC (%)	Control Limits	<u>Qua</u>	<u>l</u>		Surrogates:	REC (%)	Control Limits	<u>Qua</u>	<u>l</u>	
2,4,6-Tribromophenol	99	32-143				2-Fluorobiphenyl	98	14-146			
2-Fluorophenol	109	15-138				Nitrobenzene-d5	104	18-162			
p-Terphenyl-d14	95	34-148				Phenol-d6	107	17-141			

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers



#### **Analytical Report**



Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

10-07-1714 **EPA 3545 EPA 8081A** 

07/23/10

Project: ACOE (San Rafael Channel)

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SRC-2010-8-COMP	10-07-1714-1-A	06/10/10 11:55	Sediment	GC 41	07/23/10	07/26/10 14:33	100723L12

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-Results are reported on a dry weight basis.

DF <u>Units</u> <u>Parameter</u> Result **MDL** Qual ND Methoxychlor 1.8 0.31 ug/kg **REC (%) Control Limits** Surrogates: **MDL** Qual 2,4,5,6-Tetrachloro-m-Xylene 88 50-130

Decachlorobiphenyl 58 50-130

Method Blank	099-12-858-70	N/A	Solid	GC 41	07/23/10	07/26/10	100723L12
						12:12	

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag. <u>Parameter</u> Result RL **MDL** DF Qual **Units** Methoxychlor ND 1.0 0.17 ug/kg **Control Limits** Surrogates: **REC (%) MDL** Qual 2,4,5,6-Tetrachloro-m-Xylene 105 50-130

Decachlorobiphenyl 101 50-130

DF - Dilution Factor

Qual - Qualifiers



### **Analytical Report**



Pacific Ecorisk Date Received: 07/23/10 2250 Cordelia Road Work Order No: 10-07-1714 Fairfield, CA 94534-1912 Preparation: **EPA 3050B** Method: EPA 6020 Units: mg/kg

Project: ACOE (San Rafael Channel)

Date	Date/Time	
repared	Analyzed	QC Batch ID
		_

Page 1 of 1

Client Sample Number	Number	Collected	IVIAUIX	mstrument	Prepared	Analyzed	QC Balcii iD	
SRC-2010-8-COMP	10-07-1714-1-A	06/10/10 11:55	Sediment	ICP/MS 04	07/23/10	07/23/10 19:33	100723L04	
Comment(s): -Results were evaluated to the MDI	L, concentrations >= to the	MDL but < RL	., if found, an	e qualified with	n a "J" flag.			

Date/Time

Lab Sample

-Results are reported on a dry weight basis.

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
Barium	58.7	0.183	0.0409	1		Cobalt	11.0	0.183	0.0124	1	
Beryllium	0.276	0.183	0.0323	1		Vanadium	32.9	1.83	0.0415	1	В

Method Blank			09	6-10-002	1,785	N/A	Solid	ICP/MS 04	07/23/10	07/23/10 18:15	10072	23L04
Comment(s):	-Results were	e evaluated to th	ne MDL, conce	ntrations >	= to the N	MDL but < RL, if	found, are	qualified with	n a "J" flag.			
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	Res	ult	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
Barium	ND	0.100	0.0223	1		Cobalt	ND	(	0.100	0.00674	1	
Beryllium	ND	0.100	0.0176	1		Vanadium	0.062	22	1.00	0.0226	1	J

RL - Reporting Limit ,

DF - Dilution Factor , Qual - Qualifiers

Page 1 of 1



#### **Analytical Report**



 Pacific Ecorisk
 Date Received:
 07/23/10

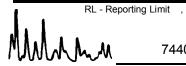
 2250 Cordelia Road
 Work Order No:
 10-07-1714

 Fairfield, CA 94534-1912
 Preparation:
 EPA 3050B

 Method:
 EPA 6020

 Units:
 mg/kg

Project: ACOE (San Rafael Channel)


Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SRC-2010-8-COMP	10-07-1714-1-A	06/10/10 11:55	Sediment	ICP/MS 04	07/23/10	07/23/10 19:33	100723L04

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

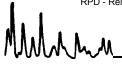
-Results are reported on a dry weight basis.

<u>Parameter</u> Result RL**MDL** <u>DF</u> Qual <u>Parameter</u> Result RL **MDL** <u>DF</u> Qual 241 4.59 1.34 1 25.1 45.9 6.77 1 J Manganese Boron

Method Blank			0	96-10-002	1,786	N/A	Solid	ICP/MS 04	07/23/10	07/23/10 18:15	10072	3L04
Comment(s):	-Results wer	e evaluated to the	he MDL, conce	entrations >	= to the N	/IDL but < RL, i	if found, ar	re qualified with	a "J" flag.			
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	Re	esult I	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
Manganese	ND	2.50	0.728	1		Boron	ND	2	25.0	3.69	1	



imit , DF - Dilution Factor , Qual - Qualifiers






Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: 07/23/10 10-07-1714 EPA 3050B EPA 6020

#### Project ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-07-1715-1	Sedimen	ICP/MS 04	07/23/10		07/23/10	100723S04
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Destina	00	70	00.400	0	0.00	2
Barium	66	79	80-120	6	0-20	3
Beryllium	99	104	80-120	5	0-20	
Cobalt	89	95	80-120	5	0-20	
Vanadium	79	85	80-120	3	0-20	3
Manganese	4X	4X	80-120	4X	0-20	Q
Boron	89	92	80-120	2	0-20	





# **Quality Control - PDS / PDSD**



Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received Work Order No: Preparation: Method: 07/23/10 10-07-1714 EPA 3050B EPA 6020

Project: ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da	ite Analyzed	PDS / PDSD Batch Number
10-07-1715-1	Sediment	ICP/MS 04	07/23/10		07/23/10	100723S04
<u>Parameter</u>	PDS %REC	PDSD %REC	%REC CL	<u>RPD</u>	RPD CI	_ Qualifiers
Barium	62	63	75-125	1	0-20	
Beryllium	88	84	75-125	4	0-20	
Cobalt	90	89	75-125	1	0-20	
Vanadium	91	93	75-125	1	0-20	
Manganese	4X	4X	75-125	4X	0-20	Q
Boron	78	82	75-125	4	0-20	



# **Quality Control - Duplicate**



Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

07/23/10 10-07-1714 N/A SM 2540 B

Project: ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
SRC-2010-8-COMP	Sediment	N/A	07/24/10	07/24/10	A0724TSD1
<u>Parameter</u>	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Solids, Total	54.5	54.9	1	0-25	







Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: 07/23/10 10-07-1714 EPA 3550B EPA 8015B (M)

#### Project ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
SRC-2010-8-COMP	Sedimen	t GC 27	07/23/10		07/24/10	100723S26
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	<u>Qualifiers</u>
TPH as Motor Oil	89	105	64-130	12	0-15	

All Marie





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: 07/23/10 10-07-1714 EPA 3550B EPA 8015B (M)

#### Project ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
SRC-2010-8-COMP	Sedime	nt GC 27	07/23/10		07/23/10	100723S25
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	<u>Qualifiers</u>
TPH as Diesel	90	82	64-130	9	0-15	

MMM_





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: 07/23/10 10-07-1714 EPA 3550B EPA 8015B (M)

#### Project ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
SRC-2010-8-COMP	Sedimen	t GC 27	07/23/10		07/24/10	100723S27
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as JP4	103	99	64-130	3	0-15	

MMM_





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: 07/23/10 10-07-1714 EPA 5030B EPA 8015B (M)

#### Project ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	А	Date nalyzed	MS/MSD Batch Number
10-07-1600-5	Solid	GC 42	07/23/10	0	7/24/10	100723S02
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	77	78	48-114	1	0-23	

MMM_





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: 07/23/10 10-07-1714 EPA 3545 EPA 8270C SIM

#### Project ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
SRC-2010-8-COMP	Sediment	GC/MS MM	07/23/10		07/24/10	100723S15	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
2,4,6-Trichlorophenol	69	73	40-160	6	0-20		
2,4-Dichlorophenol	66	68	40-160	3	0-20		
2-Methylphenol	66	69	40-160	5	0-20		
2-Nitrophenol	73	76	40-160	5	0-20		
4-Chloro-3-Methylphenol	76	80	40-160	5	0-20		
Acenaphthene	62	65	40-106	4	0-20		
Benzo (a) Pyrene	59	62	17-163	3	0-20		
Chrysene	46	50	17-168	4	0-20		
Di-n-Butyl Phthalate	56	59	40-160	4	0-20		
Dimethyl Phthalate	72	74	40-160	2	0-20		
Fluoranthene	43	46	26-137	3	0-20		
Fluorene	63	65	59-121	3	0-20		
Naphthalene	62	65	21-133	4	0-20		
Phenanthrene	58	62	54-120	5	0-20		
Phenol	88	91	40-160	4	0-20		
Pyrene	46	49	6-156	2	0-46		

Mulling.





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: 07/23/10 10-07-1714 EPA 3545 EPA 8081A

#### Project ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-07-1715-1	Sediment	GC 41	07/23/10		07/27/10	100723S12
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Aldrin	71	69	50-135	3	0-25	
Alpha-BHC	88	86	50-135	3	0-25	
Beta-BHC	83	80	50-135	4	0-25	
Delta-BHC	88	86	50-135	3	0-25	
Gamma-BHC	79	76	50-135	4	0-25	
Dieldrin	83	79	50-135	4	0-25	
4,4'-DDD	85	83	50-135	2	0-25	
4,4'-DDE	87	84	50-135	3	0-25	
4,4'-DDT	106	101	50-135	5	0-25	
Endosulfan I	72	68	50-135	5	0-25	
Endosulfan II	78	75	50-135	4	0-25	
Endosulfan Sulfate	86	82	50-135	4	0-25	
Endrin	80	76	50-135	4	0-25	
Endrin Aldehyde	69	59	50-135	16	0-25	
Endrin Ketone	96	94	50-135	2	0-25	
Heptachlor	68	66	50-135	4	0-25	
Heptachlor Epoxide	73	71	50-135	3	0-25	
Methoxychlor	88	88	50-135	0	0-25	
Alpha Chlordane	76	73	50-135	4	0-25	
Gamma Chlordane	77	74	50-135	3	0-25	

MMMM_





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: N/A 10-07-1714 EPA 3050B EPA 6020

Project: ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instr	ument	Date Prepare		Date Analyzed	LCS/LCSD Bato Number	h
096-10-002-1,785	Solid	ICP/I	MS 04	07/23/1	10 (	07/23/10	100723L04	
<u>Parameter</u>	LCS %	REC	LCSD %	REC	%REC CI	<u>RPD</u>	RPD CL	Qualifiers
Barium	90		90		80-120	0	0-20	
Beryllium	104		99		80-120	4	0-20	
Cobalt	99		98		80-120	1	0-20	
Vanadium	97		96		80-120	1	0-20	





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: N/A 10-07-1714 EPA 3050B EPA 6020

Project: ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bato Number	h
096-10-002-1,786	Solid	ICP/MS 04	07/23/10	07/23/10	100723L04	
<u>Parameter</u>	LCS %	REC LCSD	%REC %F	REC CL RPI	RPD CL	Qualifiers
Manganese	96	95	8	30-120 1	0-20	
Boron	98	99	8	30-120 1	0-20	





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

10-07-1714 EPA 3550B EPA 8015B (M)

N/A

Project: ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal <u>y</u>		LCS/LCSD Batcl Number	n
099-12-254-1,365	Solid	GC 27	07/23/10		/10	100723B26	
Parameter	LCS %	%REC LCSD	%REC %	REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Motor Oil	96	87	<u></u>	75-123	10	0-12	







Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

10-07-1714 EPA 3550B EPA 8015B (M)

N/A

Project: ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Matrix Instrument		Date Analyzed	LCS/LCSD Bat Number	ch
099-12-275-3,578	Solid	GC 27	07/23/10	07/23/10	100723B25	
D 4		/DEC 1000	V.DEQ	VEO 01 - DE	ND	0 115
<u>Parameter</u>	LCS 9	<u>6REC</u> <u>LCSD</u>	<u>%REC</u>	REC CL RF	<u>PD</u> RPD CL	<u>Qualifiers</u>
TPH as Diesel	94	93	7	5-123 1	0-12	

Mullina_





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

10-07-1714 EPA 3550B EPA 8015B (M)

N/A

Project: ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da ⁱ Analy		LCS/LCSD Bato Number	h
099-12-293-7	Solid	GC 27	07/23/10	07/24	/10	100723B27	
							_
<u>Parameter</u>	LCS %	6REC LCSD	%REC	6REC CL	RPD	RPD CL	Qualifiers
TPH as JP4	89	90		75-123	1	0-12	

MMM_





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method: N/A 10-07-1714 EPA 5030B EPA 8015B (M)

Project: ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyze	ed	LCS/LCSD Batcl Number	h
099-12-279-3,807	Solid	Solid GC 42		07/23/10		100723B02	
<u>Parameter</u>	LCS %	6REC LCSD	%REC %	REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	87	87		70-124	1	0-18	

MMM_





Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:

10-07-1714 EPA 3545 EPA 8270C SIM

N/A

Project: ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed <b>07/24/10</b>		LCS/LCSD I Numbe	
099-12-413-283	Solid	GC/MS MM	07/23/10			100723L	15
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
2,4,6-Trichlorophenol	91	92	40-160	20-180	2	0-20	
2,4-Dichlorophenol	96	96	40-160	20-180	0	0-20	
2-Methylphenol	100	100	40-160	20-180	0	0-20	
2-Nitrophenol	63	62	40-160	20-180	0	0-20	
4-Chloro-3-Methylphenol	113	112	40-160	20-180	1	0-20	
Acenaphthene	100	100	48-108	38-118	1	0-11	
Benzo (a) Pyrene	97	96	17-163	0-187	1	0-20	
Chrysene	92	92	17-168	0-193	1	0-20	
Di-n-Butyl Phthalate	87	89	40-160	20-180	2	0-20	
Dimethyl Phthalate	97	96	40-160	20-180	1	0-20	
Fluoranthene	89	90	26-137	8-156	1	0-20	
Fluorene	106	105	59-121	49-131	1	0-20	
Naphthalene	102	101	21-133	2-152	0	0-20	
Phenanthrene	88	88	54-120	43-131	1	0-20	
Phenol	119	120	40-160	20-180	1	0-20	
Pyrene	91	92	28-106	15-119	0	0-16	

Total number of LCS compounds: 16

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

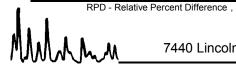
LCS ME CL validation result: Pass



# alscience nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.



Pacific Ecorisk 2250 Cordelia Road Fairfield, CA 94534-1912 Date Received: Work Order No: Preparation: Method:


10-07-1714 EPA 3545 EPA 8081A

N/A

Project: ACOE (San Rafael Channel)

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab	File ID	LCS Batch Number
099-12-858-70	Solid	GC 41	07/26/10	1007	2605	100723L12
<u>Parameter</u>	Conc Added	Conc Recovered	LCS %Rec	%Rec CL	ME_CL	Qualifiers
Aldrin	5.00	4.74	95	50-135	36-149	
Alpha-BHC	5.00	4.47	89	50-135	36-149	
Beta-BHC	5.00	4.52	90	50-135	36-149	
Delta-BHC	5.00	2.57	51	50-135	36-149	
Gamma-BHC	5.00	4.53	91	50-135	36-149	
Dieldrin	5.00	4.80	96	50-135	36-149	
4,4'-DDD	5.00	4.55	91	50-135	36-149	
4,4'-DDE	5.00	4.46	89	50-135	36-149	
4,4'-DDT	5.00	5.04	101	50-135	36-149	
Endosulfan I	5.00	4.73	95	50-135	36-149	
Endosulfan II	5.00	4.70	94	50-135	36-149	
Endosulfan Sulfate	5.00	4.29	86	50-135	36-149	
Endrin	5.00	5.01	100	50-135	36-149	
Endrin Aldehyde	5.00	4.58	92	50-135	36-149	
Endrin Ketone	5.00	4.83	97	50-135	36-149	
Heptachlor	5.00	4.98	100	50-135	36-149	
Heptachlor Epoxide	5.00	4.52	90	50-135	36-149	
Methoxychlor	5.00	4.82	96	50-135	36-149	
Alpha Chlordane	5.00	4.80	96	50-135	36-149	
Gamma Chlordane	5.00	4.59	92	50-135	36-149	

Total number of LCS compounds: 20
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass



ce, CL - Control Limit



# **Glossary of Terms and Qualifiers**



Work Order Number: 10-07-1714

Qualifier *	Definition See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
E	Concentration exceeds the calibration range.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for $\%$ moisture.



# Calscience CHAIN-OF-CUSTODY RECORD

													<u>, , , , , , , , , , , , , , , , , , , </u>	<u></u>		
Client Name:	Pacific Eco	Risk						-	REC	QUES	TED A	NALY	sis—			
Client Address:	2250 Corde							T	T							
	Fairfield, C.	A 94534				-										
Sampled By:	Mike McElr					<b>.</b>										
Phone:	(707) 207-7	(707) 207-7760				]										
FAX:	(707) 207-7916						1									
Project Manager:	Jeff Cotsifa	s				] _{tt} [						Ì				
Project Name:	ACOE (Sar	n Rafael Cha	nnel)			i <u>≅</u> g			]							
PO Number:	16087					analyte list										
	Sample	Sample	Sample	Co	ontainer											
Client Sample ID	Date	Time	Matrix*	Number	Туре	See										
1 SRC-2010-8-Comp	6/10/10	11:55	Sed	1	8oz glass	х										
2																
3																
4																
5																
6	<u> </u>					<del> </del>							<b></b>			
7												-				
8	·					-										
9 10						-						<del>                                     </del>				
Correct Containers:	Yes	No			<u> </u>		RE	LIQUI	NSHE	D BY			1			L
Sample Temperature:	Ambient	Cold	Warm					Т								
Sample Preservative:	Yes	No	4 2	Signature	120/	7			Signa	ture:						
Turnaround Time:	STD	Specify:		Print:	Jerem	4 /	Aur)	, )	Print:							
Comments: Sample frozen prior to 6/24/10						( 0	(017			l						
Sample trozen prior to 6/24/10				Organizati	on: POR_				Orgar	nizatio	n:					
				DATE: 7	125/10	TIME:	178	0	DATE	:				TIME		
								RECE	VED I	ВҮ						
				Signature	Alsur		<b>-</b>		Signa	ture:						
				Print:	Noel C	nuis	e		Print:							
				Organizati		CHEN	SC	-	Orgar	nizatio	n:					
				DATE:	7/23/10	TIME:	10	30	DATE	:				TIME	:	

#### ANALYTE LIST

Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534

Project Proponent:	Pacific EcoRisk		
Project #:	16087	<del></del>	(1714)
Site #:	SRC-	2010-8-Comp	
Standard Hamilton Wetlands I	List		
Barium	6020	X	
Beryllium	6020	X	
Boron	6010B	X	
Cobalt	6020	X	
Manganese	6020	X	
Vanadium	6020	X	
TPH Diesel / motor oil	8015	X	
TPH Gasoline / JP-4	8015B	X	
Pentachlorophenol	8270C	X	
Phenol	8270C	X	
Dichlorprop	8151A		
MCPA	8151A		
MCPP	8151A		
Methoxychlor	8081	X	
Dioxins (total TCDD TEO)	EPA 8290		

1.1 c c c



SAMPLE RECEIPT FORM Cooler ___ of ___ CLIENT: Pacific Ecorisk DATE: 07/23/10 TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature  $O \cdot 6 \, ^{\circ}\text{C} + 0.5 \, ^{\circ}\text{C} \, (\text{CF}) = 1 \cdot 1 \, ^{\circ}\text{C}$ ☐ Blank 12 Sample ☐ Sample(s) outside temperature criteria (PM/APM contacted by: _____). ☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling. ☐ Received at ambient temperature, placed on ice for transport by Courier. Initial: NC Ambient Temperature: 

Air ☐ Filter ☐ Metals Only ☐ PCBs Only **CUSTODY SEALS INTACT:** ☐ No (Not Intact) Not Present □ N/A ☐ Cooler Initial: Not Present □ Sample □ No (Not Intact) Initial: SAMPLE CONDITION: Yes No N/A COC document(s) received complete..... ☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels. ☐ No analysis requested. ☐ Not relinguished. ☐ No date/time relinquished. Sampler's name indicated on COC...... Sample container label(s) consistent with COC...... Sample container(s) intact and good condition......  $\Box$ Proper containers and sufficient volume for analyses requested...... П Analyses received within holding time...... pH / Residual Chlorine / Dissolved Sulfide received within 24 hours...... Proper preservation noted on COC or sample container...... □ ☐ Unpreserved vials received for Volatiles analysis Volatile analysis container(s) free of headspace...... □ Tedlar bag(s) free of condensation..... □ **CONTAINER TYPE:** Solid: 

| 40zCGJ | 80zCGJ | 160zCGJ | Sleeve (_____) | EnCores® | TerraCores® | _____ Water: □VOA □VOAh □VOAna2 □125AGB □125AGBh □125AGBp □1AGB □1AGBna2 □1AGBs

□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □500PB □500PBna

Air: □Tedlar[®] □Summa[®] Other: □ _____ Trip Blank Lot#:____ Labeled/Checked by:

Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃ na: NaOH p: H₃PO₄ s: H₂SO₄ znna: ZnAc₂+NaOH f: Field-filtered Scanned by:

□250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □

Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope

A Sample was frozen per OC. P

Reviewed by:



July 30, 2010 Service Request No: E1000811

**Bob Stearns** Calscience Environmental Laboratories, Incorporated 7440 Lincoln Way Garden Grove, CA 92841

**Laboratory Results for: ACOE (San Rafael Channel)** 

Dear Bob:

Enclosed are the results of the sample(s) submitted to our laboratory on July 24, 2010. For your reference, these analyses have been assigned our service request number E1000811.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the final complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 2959. You may also contact me via email at NBrown@caslab.com.

Respectfully submitted.

Columbia Analytical Services, Inc.

Nicole Brown Project Manager

Page 1 of





# Certificate of Analysis

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

An Employee Owned Company

#### COLUMBIA ANALYTICAL SERVICES, INC

Client:Calscience Environmental LaboratoryService Request No.:E1000811Project:ACOE (San Rafael Channel)Date Received:07/24/10

Sample Matrix: Sediment

#### **CASE NARRATIVE**

All analyses were performed in adherence to the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier IV. When appropriate to the method, method blank results have been reported with each analytical test.

#### Sample Receipt

One sediment sample was received for analysis at Columbia Analytical Services on 07/24/10.

The following discrepancies were noted upon initial sample inspection: no custody seals on cooler. The exceptions are also noted on the cooler receipt and preservation form included in this data package.

The sample was received at 2°C in good condition and is consistent with the accompanying chain of custody form. The sample was stored in a refrigerator at 4°C upon receipt at the laboratory.

#### **Data Validation Notes and Discussion**

#### **B** flags – Method Blanks

The Method Blank EQ1000358-01 contained low levels of 1234678-HpCDD, OCDD and OCDF below the Method Reporting Limit (MRL). The associated compounds in the samples are flagged with 'B' flags.

#### MS/MSD

EQ1000358: Laboratory Control Spike/Laboratory Control Spike Duplicate (LCS/LCSD) samples were analyzed and reported in lieu of an MS/MSD for this extraction batch. The batch quality control criteria were met.

#### Y flags - Labeled Standards

Samples that had recoveries of labeled standards outside the acceptance limits are flagged with 'Y' flags on the Labeled Compound summary pages. In all cases, the signal-to-noise ratios are greater than 10:1, making these data acceptable.

Approved by_	Dat	te	08/02/10	

Xiangqiu Liang, Laboratory Director

#### C flags - 2378-TCDF Confirmation

Confirmation of the TCDF compound: When 2378-TCDF is detected on the DB-5 column, confirmation analyses are performed on a second column (DB-225.) The results from both the DB-5 column and the DB-225 column are included in this data package.

The valid result for the 2378-TCDF compound is reported from the confirmation column.

The confirmation results have been included on the Total TEQ summary pages.

#### K flags

EMPC - When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.

#### **Detection Limits**

Detection limits are calculated for each congener in each sample by measuring the height of the noise level for each quantitation ion for the associated labeled standard. The concentration equivalent to 2.5 times the height of the noise is then calculated using the appropriate response factor and the weight of the sample. The calculated concentration equals the detection limit.

#### The TEQ Summary results for each sample have been calculated by CAS/Houston to include:

- ➤ WHO-2005 TEFs, The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds (M. Van den Berg et al., Toxicological Sciences 93(2):223-241, 2006)
- > 2378-TCDF from the DB-225 column, when confirmation required
- Non-detected compounds are not included in the 'Total'

Approved by	Date	08/02/10

Client: Calscience Environmental Laboratories, Incorporated Service Request: E1000811

**Project:** ACOE (San Rafael Channel)

#### SAMPLE CROSS-REFERENCE

 SAMPLE#
 CLIENT SAMPLE ID
 DATE
 TIME

 E1000811-001
 SRC-2010-8-Comp
 6/10/10
 11:55

# Superset Summary

 Service Request:
 E1000811

 SuperSet Reference:
 10-0000150135 rev 00

8290/PCDD PCDF

**Calibrations:** 08/01/08 12/17/07

**Data Files:** 

Raw Data	Begin CCAL	Method Blank	Lab ID
P208830	P208826	P208830	EQ1000358-01
P208831	P208826	P208830	E1000811-001.R01
P208836	P208826	P208830	EQ1000358-02
P208837	P208826	P208830	EQ1000358-03
U137251	U137248	U137250	E1000811-001

# Laboratory Certifications 2010-2011

STATE/PROGRAM	AGENCY	CERTIFICATION ID	EXP DATE
ARIZONA	AZ-DHS	AZ0725	05/27/11
ARKANSAS	ADEQ	10-035-0	06/16/11
CALIFORNIA	CA-ELAP	2452	02/28/11
DOD ELAP	A2LA	2897.01	11/30/11
FLORIDA/NELAP	FL-DOHS	E87611	06/30/11
HAWAII	HI-DOH	N/A	06/30/11
ILLINOIS/NELAP	IL-EPA	002380	10/06/10
ISO 17025	A2LA	2897.01	11/30/11
LOUISIANA/NELAP	LELAP	03048	06/30/10
LOUISIANA/NELAP	LDHH	LA100032	12/31/10
MAINE	ME-DOHS	2010041	06/05/12
MICHIGAN	MIDEQ	9971	06/30/11
MINNESOTA	MDH	048-999-427	12/31/10
NEVADA	NDEP	TX014112010A	07/31/10
NEW JERSEY	NJDEP	TX008	06/30/11
NEW MEXICO	NMED-DWB	N/A	06/30/11
NEW YORK/NELAP	NY-DOH	11707	04/01/11
OKLAHOMA	OKDEQ	2009-25	08/31/10
OREGON/NELAP	ORELAP	TX200002-006	03/24/10
PENNSYLVANIA/NELAP	PLAP	002	06/30/11
TENNESSEE	TNDEC	04016	06/30/11
TEXAS/NELAP	TCEQ	T104704216-10-1	06/30/11
UTAH/NELAP	UTELCP	COLU2	06/30/10
SOIL IMPORT PERMIT	USDA	P330-09-00067	03/27/12
WASHINGTON/NELAP	WA-Ecology	C1855	11/14/10
WEST VIRGINIA	WVDEP	347	06/30/11

# Abbreviations, Acronyms & Definitions

Conc ConCentration

**Dioxin(s)** Polychlorinated dibenzo-p-dioxin(s)

**EDL** Estimated Detection Limit

**EMPC** Estimated Maximum Possible Concentration

**Flags** Data qualifiers

**Furan(s)** Polychlorinated dibenzofuran(s)

**g** Grams

**ICAL** Initial CALibration

**ID** IDentifier

**Ions** Masses monitored for the analyte during data acquisition

**L** Liter (s)

**LCS** Laboratory Control Sample

**DLCS** Duplicate Laboratory Control Sample

MB Method Blank

MCL Method Calibration LimitMDL Method Detection LimitMRL Method Reporting Limit

**mL** Milliliters

MS Matrix Spiked sample

**DMS** Duplicate Matrix Spiked sample

NO Number of peaks meeting all identification criteria

PCDD(s) Polychlorinated dibenzo-p-dioxin(s)
PCDF(s) Polychlorinated dibenzofuran(s)

ppb
 ppm
 parts per billion
 ppq
 parts per quadrillion
 ppt
 parts per trillion
 QA
 Quality Assurance
 QC
 Quality Control

**Ratio** Ratio of areas from monitored ions for an analyte

**% Rec.** Percent Recovery

RPD Relative Percent Difference
RRF Relative Response Factor

**RT** Retention Time

RRT Relative Retention Time
SDG Sample Delivery Group
S/N Signal-to-Noise ratio

TEF Toxicity Equivalence Factor
TEQ Toxicity Equivalence Quotient

# Data Qualifier Flags – Dioxin/Furans

- B Indicates the associated analyte is found in the method blank, as well as in the sample.
- C Confirmation of the TCDF compound: When 2378-TCDF is detected on the DB-5 column, confirmation analyses are performed on a second column (DB-225). The results from both the DB-5 column and the DB-225 column are included in this data package. The results from the DB-225 analyses should be used to evaluate the 2378-TCDF in the samples. The confirmed result should be used in determining the TEQ value for TCDF.
- E Indicates an estimated value used when the analyte concentration exceeds the upper end of the linear calibration range.
- J Indicates an estimated value used when the analyte concentration is below the method reporting limit (MRL) and above the estimated detection limit (EDL).
- K EMPC When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.
- U Indicates the compound was analyzed and not detected.
- Y Samples that had recoveries of labeled standards outside the acceptance limits are flagged with 'Y'. In all cases, the signal-to-noise ratios are greater than 10:1, making these data acceptable.
- ND Indicates concentration is reported as 'Not Detected.'
- S Peak is saturated; data not reportable.
- P Indicates chlorodiphenyl ether interference present at the retention time of the target compound.
- **Q** Lock-mass interference by chlorodiphenyl ether compounds.

# COLUMBIA ANALYTICAL SERVICES, INC. – Houston Data Processing/Form Production and Peer Review Signatures

First Le	vel - Data Processing	g - to be filled by person ge	enerating the f	orms
Date: 7/28/10	Analyst: (Q.C.	Samples:		
	d Lovel - Data Revie	$\mathbf{w}$ – to be filled by person of	loina peer rev	iew
Secon	id Level - Data Nevie	to be fined by person d		
Secon	Analyst: Mc	Samples:	<u> </u>	

# COLUMBIA ANALYTICAL SERVICES, INC. – Houston Data Processing/Form Production and Peer Review Signatures

SR# Unique ID [ 000 8	DB-	5 DB-225	SPB-Octyl
First Level - Data Processing - to be	e filled by per	son generating the	forms
Date: 7/28 (() Analyst: QC	Samples:	00 1	
10010			
Second Level - Data Review – to b	e filled by pe	rson doing peer rev	riew
Date: 07 29 10 Analyst: MC	Samples:	00	
		*	



# **Analytical Results**

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

An Employee Owned Company

Analytical Report

Calscience Environmental Laboratory **Client:** 

Service Request: E1000811 ACOE (San Rafael Channel) **Date Collected:** 6/10/10 1155 **Project:** Sediment **Date Received:** 7/24/10 **Sample Matrix:** 

SRC-2010-8-Comp Sample Name: Units: ng/Kg E1000811-001 Lab Code: Basis: Dry

Percent Solids: 55.1

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Date Analyzed:** 7/27/10 1050 **Analytical Method:** 8290 **Prep Method:** Method **Date Extracted:** 7/24/10 **Sample Amount:** 9.712g **Instrument Name:** E-HRMS-04 GC Column: DB-5

Blank File Name: P208830 **Data File Name:** P208831 **ICAL Date:** 08/01/08 Cal Ver. File Name: P208826

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	0.340	JK	0.0684	1.87	0.46	1.001	1	
1,2,3,7,8-PeCDD	1.71	J	0.0698	4.67	1.64	1.000	1	
1,2,3,4,7,8-HxCDD	2.05	J	0.0991	4.67	1.19	0.999	1	
1,2,3,6,7,8-HxCDD	6.13		0.0869	4.67	1.29	1.000	1	
1,2,3,7,8,9-HxCDD	3.05	J	0.0950	4.67	1.25	1.007	1	
1,2,3,4,6,7,8-HpCDD	109	В	0.151	4.67	1.02	1.000	1	
OCDD	771	В	0.171	9.34	0.89	1.000	1	
2,3,7,8-TCDF	1.94	C	0.0632	1.87	0.75	1.001	1	
1,2,3,7,8-PeCDF	0.633	J	0.0877	4.67	1.77	1.001	1	
2,3,4,7,8-PeCDF	1.22	J	0.0866	4.67	1.58	1.024	1	
1,2,3,4,7,8-HxCDF	4.20	J	0.199	4.67	1.20	1.000	1	
1,2,3,6,7,8-HxCDF	2.44	J	0.189	4.67	1.13	1.003	1	
1,2,3,7,8,9-HxCDF	ND	U	0.247	4.67			1	
2,3,4,6,7,8-HxCDF	0.984	J	0.212	4.67	1.13	1.018	1	
1,2,3,4,6,7,8-HpCDF	25.5		0.168	4.67	0.96	1.000	1	
1,2,3,4,7,8,9-HpCDF	2.79	J	0.228	4.67	0.97	1.034	1	
OCDF	102	В	0.127	9.34	0.85	1.004	1	
Total Tetra-Dioxins	1.61	J	0.0684	1.87	0.76		1	
Total Penta-Dioxins	7.17		0.0698	4.67	1.45		1	
Total Hexa-Dioxins	37.6		0.0869	4.67	1.29		1	
Total Hepta-Dioxins	209		0.151	4.67	1.02		1	
Total Tetra-Furans	23.4		0.0632	1.87	0.77		1	
Total Penta-Furans	43.1		0.0866	4.67	1.51		1	
Total Hexa-Furans	53.5		0.189	4.67	1.13		1	
Total Hepta-Furans	93.3		0.168	4.67	0.96		1	

Analytical Report

Calscience Environmental Laboratory **Client:** 

Service Request: E1000811 ACOE (San Rafael Channel) **Date Collected:** 6/10/10 1155 **Project: Date Received:** 7/24/10

Sediment **Sample Matrix:** 

SRC-2010-8-Comp Sample Name: Units: Percent E1000811-001 Lab Code: Basis: Dry Percent Solids: 55.1

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Date Analyzed:** 7/27/10 1050 8290 **Analytical Method: Prep Method:** Method **Date Extracted:** 7/24/10 **Sample Amount:** 9.712g **Instrument Name:** E-HRMS-04 GC Column: DB-5

**Data File Name:** P208831 Blank File Name: P208830 **ICAL Date:** 08/01/08 Cal Ver. File Name: P208826

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	603.785	60	40-135	0.78	1.008
3C-1,2,3,7,8-PeCDD	1000	699.664	70	40-135	1.59	1.168
3C-1,2,3,6,7,8-HxCDD	2500	2037.299	81	40-135	1.26	0.994
3C-1,2,3,4,6,7,8-HpCDD	2500	2036.527	81	40-135	1.06	1.068
BC-OCDD	5000	3034.342	61	40-135	0.90	1.149
2,3,7,8-TCDF	1000	542.613	54	40-135	0.78	0.980
C-1,2,3,7,8-PeCDF	1000	682.089	68	40-135	1.56	1.130
C-1,2,3,4,7,8-HxCDF	2500	1968.276	79	40-135	0.52	0.972
3C-1,2,3,4,6,7,8-HpCDF	2500	1802.968	72	40-135	0.44	1.044
Cl-2,3,7,8-TCDD	800	613.456	77	40-135	NA	1.009

Analytical Report

Client: Calscience Environmental Laboratory

Project: ACOE (San Rafael Channel)
Sample Matrix: Sediment

 Sample Name:
 SRC-2010-8-Comp
 Units: ng/Kg

 Lab Code:
 E1000811-001
 Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analytical Method:** 8290 **Prep Method:** Method

			Dilution		TEF - Adjusted	
Analyte Name	Result	DL	Factor	TEF	Concentration	
2,3,7,8-TCDD	0.340	0.0684	1	1	0.340	
1,2,3,7,8-PeCDD	1.71	0.0698	1	1	1.71	
1,2,3,4,7,8-HxCDD	2.05	0.0991	1	0.1	0.205	
1,2,3,6,7,8-HxCDD	6.13	0.0869	1	0.1	0.613	
1,2,3,7,8,9-HxCDD	3.05	0.0950	1	0.1	0.305	
1,2,3,4,6,7,8-HpCDD	109	0.151	1	0.01	1.09	
OCDD	771	0.171	1	0.0003	0.231	
2,3,7,8-TCDF	1.05	0.232	1	0.1	0.105	
1,2,3,7,8-PeCDF	0.633	0.0877	1	0.03	0.0190	
2,3,4,7,8-PeCDF	1.22	0.0866	1	0.3	0.366	
1,2,3,4,7,8-HxCDF	4.20	0.199	1	0.1	0.420	
1,2,3,6,7,8-HxCDF	2.44	0.189	1	0.1	0.244	
1,2,3,7,8,9-HxCDF	ND	0.247	1	0.1		
2,3,4,6,7,8-HxCDF	0.984	0.212	1	0.1	0.0984	
1,2,3,4,6,7,8-HpCDF	25.5	0.168	1	0.01	0.255	
1,2,3,4,7,8,9-HpCDF	2.79	0.228	1	0.01	0.0279	
OCDF	102	0.127	1	0.0003	0.0306	

Total TEQ 6.06

2005 WHO TEFs, ND = 0

Service Request: E1000811

**Date Received:** 7/24/10

**Date Collected:** 6/10/10 1155

Analytical Report

**Client:** Calscience Environmental Laboratory

Service Request: E1000811 ACOE (San Rafael Channel) **Project: Date Collected:** 6/10/10 1155 **Date Received:** 7/24/10

Sediment **Sample Matrix:** 

SRC-2010-8-Comp Sample Name: Units: ng/Kg E1000811-001 Lab Code: Basis: Dry Run Type: Reanalysis Percent Solids: 55.1

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method: Date Analyzed:** 7/27/10 1453 **Date Extracted:** 7/24/10 **Prep Method:** Method **Sample Amount:** 9.712g **Instrument Name:** E-HRMS-01

GC Column: DB-225 **Data File Name:** U137251 Blank File Name: U137250 **ICAL Date:** 12/17/07 Cal Ver. File Name: U137248

Ion Dilution Result Q **EDL** MRL Ratio RRT **Analyte Name Factor** 2,3,7,8-TCDF 1.05 J 0.232 1.87 0.76 1.001

Control Spike Conc. Ion **Labeled Compounds** %Rec Q Limits Ratio Conc.(pg) Found (pg) **RRT** 13C-2,3,7,8-TCDF 1000 672.054 67 40-135 0.79 1.060 37Cl-2,3,7,8-TCDD 800 635.335 79 40-135 NA 0.988

Analytical Report

Client:Calscience Environmental LaboratoryService Request:E1000811Project:ACOE (San Rafael Channel)Date Collected:NA

Project:ACOE (San Rafael Channel)Date Collected:NASample Matrix:SedimentDate Received:NA

 Sample Name:
 Method Blank
 Units:
 ng/Kg

 Lab Code:
 EQ1000358-01
 Basis:
 Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

 Analytical Method:
 8290
 Date Analyzed:
 7/27/10 1003

 Prep Method:
 Method
 Date Extracted:
 7/24/10

 Sample Amount:
 10.000g
 Instrument Name:
 E-HRMS-04

 GC Column:
 DB-5

 Data File Name:
 P208830
 Blank File Name:
 P208830

 ICAL Date:
 08/01/08
 Cal Ver. File Name:
 P208826

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	ND	U	0.0275	1.00			1	
1,2,3,7,8-PeCDD	ND	U	0.0421	2.50			1	
1,2,3,4,7,8-HxCDD	ND	U	0.0535	2.50			1	
1,2,3,6,7,8-HxCDD	ND	U	0.0469	2.50			1	
1,2,3,7,8,9-HxCDD	ND	U	0.0512	2.50			1	
1,2,3,4,6,7,8-HpCDD	0.188	JK	0.0760	2.50	0.80	1.001	1	
OCDD	0.612	J	0.117	5.00	0.84	1.000	1	
2,3,7,8-TCDF	ND	U	0.0673	1.00			1	
1,2,3,7,8-PeCDF	ND	U	0.0634	2.50			1	
2,3,4,7,8-PeCDF	ND	U	0.0626	2.50			1	
1,2,3,4,7,8-HxCDF	ND	U	0.0309	2.50			1	
1,2,3,6,7,8-HxCDF	ND	U	0.0293	2.50			1	
1,2,3,7,8,9-HxCDF	ND	U	0.0383	2.50			1	
2,3,4,6,7,8-HxCDF	ND	U	0.0329	2.50			1	
1,2,3,4,6,7,8-HpCDF	ND	U	0.111	2.50			1	
1,2,3,4,7,8,9-HpCDF	ND	U	0.150	2.50			1	
OCDF	0.152	J	0.0854	5.00	0.83	1.004	1	
Total Tetra-Dioxins	ND	_	0.0275	1.00			1	
Total Penta-Dioxins	ND	U	0.0421	2.50			1	
Total Hexa-Dioxins	ND		0.0469	2.50			1	
Total Hepta-Dioxins	ND	U	0.0760	2.50			1	
Total Tetra-Furans	0.325		0.0673	1.00	0.87		1	
Total Penta-Furans	ND		0.0626	2.50			1	
Total Hexa-Furans	ND	U	0.0293	2.50			1	
Total Hepta-Furans	ND	U	0.111	2.50			1	

Analytical Report

Calscience Environmental Laboratory **Client:** 

ACOE (San Rafael Channel) **Project:** 

Sediment **Sample Matrix:** 

Method Blank Sample Name: EQ1000358-01 Lab Code:

Service Request: E1000811 Date Collected: NA

Date Received: NA

Units: Percent Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analytical Method:** 8290 **Prep Method:** Method **Sample Amount:** 10.000g

P208830 **Data File Name: ICAL Date:** 08/01/08

**Date Analyzed:** 7/27/10 1003 **Date Extracted:** 7/24/10 **Instrument Name:** E-HRMS-04 GC Column: DB-5

Blank File Name: P208830 Cal Ver. File Name: P208826

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec	Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	741.337	74		40-135	0.78	1.008
13C-1,2,3,7,8-PeCDD	1000	793.512	79		40-135	1.59	1.168
13C-1,2,3,6,7,8-HxCDD	2500	1458.648	58		40-135	1.27	0.992
13C-1,2,3,4,6,7,8-HpCDD	2500	1428.835	57		40-135	1.05	1.068
3C-OCDD	5000	1928.878	39	Y	40-135	0.91	1.148
C-2,3,7,8-TCDF	1000	325.709	33	Y	40-135	0.78	0.980
3C-1,2,3,7,8-PeCDF	1000	438.886	44		40-135	1.56	1.130
3C-1,2,3,4,7,8-HxCDF	2500	1476.368	59		40-135	0.52	0.972
3C-1,2,3,4,6,7,8-HpCDF	2500	1273.910	51		40-135	0.45	1.044
7Cl-2,3,7,8-TCDD	800	747.209	93		40-135	NA	1.009



# **Accuracy and Precision**

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

An Employee Owned Company

QA/QC Report

**Client:** Calscience Environmental Laboratory

Service Request: E1000811 ACOE (San Rafael Channel) **Date Analyzed:** 7/27/10 **Project:** 

**Sample Matrix:** Sediment

#### **Lab Control Sample Summary**

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

8290 **Analytical Method:** Units: ng/Kg **Prep Method:** Method Basis: Dry

**Extraction Lot:** 115761

		Lab Control Sample EQ1000358-02 Spike			te Lab Contro EQ1000358-01 Spike		% Rec		RPD
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
2,3,7,8-TCDD	19.2	20.0	96	20.5	20.0	103	74 - 127	7	18
1,2,3,7,8-PeCDD	48.0	50.0	96	48.2	50.0	96	73 - 122	0	14
1,2,3,4,7,8-HxCDD	46.9	50.0	94	42.5	50.0	85	60 - 153	10	26
1,2,3,6,7,8-HxCDD	47.1	50.0	94	49.5	50.0	99	72 - 126	5	16
1,2,3,7,8,9-HxCDD	49.6	50.0	99	50.5	50.0	101	59 - 140	2	32
1,2,3,4,6,7,8-HpCDD	49.8	50.0	100	50.0	50.0	100	66 - 132	0	19
OCDD	108	100	108	107	100	107	73 - 140	1	28
2,3,7,8-TCDF	21.4	20.0	107	21.6	20.0	108	66 - 129	1	18
1,2,3,7,8-PeCDF	45.0	50.0	90	45.0	50.0	90	70 - 123	0	14
2,3,4,7,8-PeCDF	44.6	50.0	89	47.3	50.0	95	69 - 122	7	17
1,2,3,4,7,8-HxCDF	45.3	50.0	91	45.4	50.0	91	71 - 121	0	15
1,2,3,6,7,8-HxCDF	47.7	50.0	95	50.0	50.0	100	70 - 130	5	14
1,2,3,7,8,9-HxCDF	43.4	50.0	87	46.2	50.0	92	53 - 130	6	28
2,3,4,6,7,8-HxCDF	45.6	50.0	91	45.8	50.0	92	66 - 126	1	22
1,2,3,4,6,7,8-HpCDF	41.9	50.0	84	43.0	50.0	86	66 - 122	2	17
1,2,3,4,7,8,9-HpCDF	53.6	50.0	107	56.9	50.0	114	69 - 136	6	21
OCDF	105	100	105	109	100	109	66 - 146	4	24

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client: Calscience Environmental Laboratory

**Project:** ACOE (San Rafael Channel)

Sample Matrix: Sediment

Sample Name: Lab Control Sample Lab Code: EQ1000358-02

Service Request: E1000811

Date Collected: NA

Date Received: NA

Units: ng/Kg
Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.000g

Data File Name: P208836 ICAL Date: 08/01/08 Date Analyzed: 7/27/10 1457
Date Extracted: 7/24/10
Instrument Name: E-HRMS-04
GC Column: DB-5

Blank File Name: P208830 Cal Ver. File Name: P208826

Analyte Name	Result Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	19.2	0.0287	1.00	0.74	1.000	1	
1,2,3,7,8-PeCDD	48.0	0.0558	2.50	1.56	1.000	1	
1,2,3,4,7,8-HxCDD	46.9	0.114	2.50	1.25	0.998	1	
1,2,3,6,7,8-HxCDD	47.1	0.100	2.50	1.26	1.000	1	
1,2,3,7,8,9-HxCDD	49.6	0.110	2.50	1.24	1.008	1	
1,2,3,4,6,7,8-HpCDD	49.8	0.180	2.50	1.05	1.000	1	
OCDD	108	0.740	5.00	0.90	1.000	1	
2,3,7,8-TCDF	21.4	0.0228	1.00	0.75	1.001	1	
1,2,3,7,8-PeCDF	45.0	0.0293	2.50	1.52	1.000	1	
2,3,4,7,8-PeCDF	44.6	0.0290	2.50	1.51	1.023	1	
1,2,3,4,7,8-HxCDF	45.3	0.0683	2.50	1.19	1.000	1	
1,2,3,6,7,8-HxCDF	47.7	0.0649	2.50	1.20	1.003	1	
1,2,3,7,8,9-HxCDF	43.4	0.0847	2.50	1.24	1.036	1	
2,3,4,6,7,8-HxCDF	45.6	0.0727	2.50	1.22	1.017	1	
1,2,3,4,6,7,8-HpCDF	41.9	0.200	2.50	0.98	1.000	1	
1,2,3,4,7,8,9-HpCDF	53.6	0.272	2.50	1.00	1.034	1	
OCDF	105	0.247	5.00	0.89	1.004	1	
Total Tetra-Dioxins	19.2	0.0287	1.00	0.74		1	
Total Penta-Dioxins	48.0	0.0558	2.50	1.56		1	
Total Hexa-Dioxins	144	0.100	2.50	1.25		1	
Total Hepta-Dioxins	49.8	0.180	2.50	1.05		1	
Total Tetra-Furans	21.4	0.0228	1.00	0.75		1	
Total Penta-Furans	89.7	0.0290	2.50	1.52		1	
Total Hexa-Furans	182	0.0649	2.50	1.19		1	
Total Hepta-Furans	95.5	0.200	2.50	0.98		1	

Analytical Report

Client: Calscience Environmental Laboratory

**Project:** ACOE (San Rafael Channel)

Sample Matrix: Sediment

Sample Name: Lab Control Sample Lab Code: EQ1000358-02

Service Request: E1000811

Date Collected: NA

Date Received: NA
Units: Percent

Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.000g

Data File Name: P208836 ICAL Date: 08/01/08 **Date Analyzed:** 7/27/10 1457 **Date Extracted:** 7/24/10 **Instrument Name:** E-HRMS-04

GC Column: DB-5 Blank File Name: P208830 Cal Ver. File Name: P208826

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec	Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDD	1000	731.349	73		40-135	0.78	1.009	
13C-1,2,3,7,8-PeCDD	1000	751.458	75		40-135	1.57	1.168	
13C-1,2,3,6,7,8-HxCDD	2500	1449.284	58		40-135	1.25	0.992	
13C-1,2,3,4,6,7,8-HpCDD	2500	1368.915	55		40-135	1.05	1.068	
13C-OCDD	5000	1803.947	36	Y	40-135	0.91	1.148	
13C-2,3,7,8-TCDF	1000	625.312	63		40-135	0.78	0.980	
13C-1,2,3,7,8-PeCDF	1000	683.346	68		40-135	1.58	1.131	
13C-1,2,3,4,7,8-HxCDF	2500	1360.792	54		40-135	0.52	0.971	
13C-1,2,3,4,6,7,8-HpCDF	2500	1209.858	48		40-135	0.44	1.044	
37C1-2,3,7,8-TCDD	800	703.967	88		40-135	NA	1.009	

Analytical Report

Client: Calscience Environmental Laboratory

**Project:** ACOE (San Rafael Channel)

Sample Matrix: Sediment

Sample Name: Duplicate Lab Control Sample

**Lab Code:** EQ1000358-03

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

 Analytical Method:
 8290
 Date Analyzed:
 7/27/10 1546

 Prep Method:
 Method
 Date Extracted:
 7/24/10

 Sample Amount:
 10.000g
 Instrument Name:
 E-HRMS-04

 Data File Name:
 P208837
 Blank File Name:
 P208830

 ICAL Date:
 08/01/08
 Cal Ver. File Name:
 P208826

Ion Dilution Result O EDL MRL Ratio RRT **Analyte Name Factor** 2.3.7.8-TCDD 20.5 0.0348 1.00 0.76 1.001 48.2 0.0555 2.50 1.57 1.001 1 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 42.5 0.0655 2.50 1.26 0.999 1 49.5 2.50 1.25 1.000 1 1,2,3,6,7,8-HxCDD 0.0575 1,2,3,7,8,9-HxCDD 50.5 0.0628 2.50 1.25 1.008 1 1,2,3,4,6,7,8-HpCDD 50.0 0.158 2.50 1.05 1.000 1 OCDD 107 0.147 5.00 0.89 1.000 1 2,3,7,8-TCDF 0.0310 1.00 0.75 1.001 21.6 0.0293 2.50 1.51 1.000 1 1,2,3,7,8-PeCDF 45.0 0.0290 2.50 1.48 1.023 2,3,4,7,8-PeCDF 47.3 1 1,2,3,4,7,8-HxCDF 45.4 0.0675 2.50 1.20 1.000 1 1,2,3,6,7,8-HxCDF 50.0 0.0643 2.50 1.20 1.003 1 2.50 1.22 1,2,3,7,8,9-HxCDF 46.2 0.0838 1.036 1 2,3,4,6,7,8-HxCDF 45.8 0.0719 2.50 1.23 1.017 1 1,2,3,4,6,7,8-HpCDF 43.0 0.392 2.50 1.01 1.000 1 1,2,3,4,7,8,9-HpCDF 0.531 2.50 0.99 1.033 1 56.9 **OCDF** 109 0.116 5.00 0.88 1.004 1 **Total Tetra-Dioxins** 0.0348 1.00 0.76 20.5 1 Total Penta-Dioxins 48.2 0.0555 2.50 1.57 1 2.50 Total Hexa-Dioxins 143 0.0575 1.26 1 Total Hepta-Dioxins 50.0 1.05 1 0.1582.50 Total Tetra-Furans 21.6 0.0310 1.00 0.75 **Total Penta-Furans** 92.3 0.0290 2.50 1.51 1 Total Hexa-Furans 0.0643 2.50 1.20 1 187 Total Hepta-Furans 99.9 0.392 2.50 1.01

Service Request: E1000811

Units: ng/Kg

Basis: Dry

Date Collected: NA

Date Received: NA

Analytical Report

Client: Calscience Environmental Laboratory

**Project:** ACOE (San Rafael Channel)

Sample Matrix: Sediment

Sample Name: Duplicate Lab Control Sample

08/01/08

**Lab Code:** EQ1000358-03

**Service Request:** E1000811 **Date Collected:** NA

Date Collected: NA

Date Received: NA

Units: Percent
Basis: Dry

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: 8290
Prep Method: Method
Sample Amount: 10.000g

Data File Name: P208837

**ICAL Date:** 

Date Analyzed: 7/27/10 1546
Date Extracted: 7/24/10
Instrument Name: E-HRMS-04
GC Column: DB-5

Blank File Name: P208830 Cal Ver. File Name: P208826

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	746.431	75	40-135	0.77	1.009
13C-1,2,3,7,8-PeCDD	1000	852.804	85	40-135	1.58	1.168
13C-1,2,3,6,7,8-HxCDD	2500	1465.396	59	40-135	1.25	0.992
13C-1,2,3,4,6,7,8-HpCDD	2500	1448.541	58	40-135	1.05	1.068
3C-OCDD	5000	2006.913	40	40-135	0.91	1.148
C-2,3,7,8-TCDF	1000	635.440	64	40-135	0.77	0.980
3C-1,2,3,7,8-PeCDF	1000	754.715	75	40-135	1.58	1.131
3C-1,2,3,4,7,8-HxCDF	2500	1337.441	53	40-135	0.52	0.971
3C-1,2,3,4,6,7,8-HpCDF	2500	1243.719	50	40-135	0.44	1.044
7Cl-2,3,7,8-TCDD	800	746.156	93	40-135	NA	1.009



# **Chain of Custody**

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

An Employee Owned Company



## <u>Pacific EcoR</u>isk

**ENVIRONMENTAL CONSULTING & TESTIN** 

2250 Cordelia Rd., Fairfield, CA 94534 (707)207-7760

## **CAS CHAIN-OF-CUSTODY RECORD**

	Client Name:	Pacific Eco	acific EcoRisk						RE	QUES	TED A	NALY	'SIS			
	Client Address:	2250 Corde Fairfield, C														
	Sampled By:	Mike McElr														
	Phone:	(707) 207-7					TEQ)					:		_		
	FAX:	(707) 207-7	7916		***				1.							
	Project Manager:	Jeff Cotsifa	IS				ТСDD									
	Project Name:	ACOE (Sar	n Rafael Cha	nnel)			[al]									
	PO Number:	16087	· · · · · · · · · · · · · · · · · · ·				(total									
		Sample	Sample	Sample	Co	ontainer	Dioxins									
	Client Sample ID	Date	Time	Matrix*	Number	Type	음									
1	SRC-2010-8-Comp	6/10/10	11:55	Sed	1	8oz glass	Х			***************************************	***************************************					
2																
3													ļ			
4												ļ				
5							-					-				
6 7																
8																
9																
10																
	Correct Containers:	Yes	No					RELIQ	UINSHE	DBY				-		
	Sample Temperature:	Ambient	Cold	Warm	Signature	1/2 2	7		Signa	ture:						
	Sample Preservative: Turnaround Time:	Yes STD	No Specify:			135	and I		<del></del>							
	Comments:	0.0	opecity.		Print:	Dellemy	LA	WiN	Print:							
	Sample frozen prior to 6/24/10	Ja A	7			on: PCR			Organ	nizatio	n:					
	CASA DELIVERY	to CX	4Science	e LABS,	DATE: //	23-10	TIME:	1783	DATE	:				TIME		
	MS DANIElle &	Honsm	AL)			11		REC	EIVED I	BY						
	dgonsman @ CAISCI	ero lin	n		Signature:	Luda	Cu	S .	Signa	ture:						
					Print:	Gisela	_(r	ŬZ_	Print:							
	Please Invoice	LO CAI	Science.		Organizati	on: CAS-F	tous	ston	Orgar	nizatio	n:					
					DATE:	424/10		12:00p	MDATE	:				TIME		
	*MATRIX CODES: (SED = Sedime	ent); ( <b>FW</b> = F	Freshwater);	( <u>WW</u> = Waste	ewater); ( <b>STI</b>	<b>RMW</b> = Stormwa	iter)	200.		ha		000	0			
					60 x6 22	tyrofoam	(COO)	ex		ho		lal	_			
					bubble	¿ wrap, c	uet.	rce	7	73	75	555	Ŏ	noc	5	

## Columbia Analytical Services, Inc. Cooler Receipt Form

Client/Pr	ent/Project: Calscience/ ACOE (San Rafael Channel) Service Request: E1000811										
Received	1: 07/24/10; 1200	Opened (Date/Tin	ne): <u>7/24/10</u>	; 1200 By:	С	D for GC					
1. Sa	amples were receiv	ed via? $\square US M$	Iail <b>√</b> Fedex	UPS	□DHL □Couri	er Hand Delivered					
	•	ed in: (circle)			styrofoam coole	er $\square NA$					
	_	oresent on coolers?	Y		now many and whe						
	present, were custo		$\square$ Y $\square$ N		they signed and da						
4. Is	s shipper's air-bill f	•		•		793755501105					
	**	_									
5. To	5. Temperature of cooler(s) upon receipt (°C):										
		ain of Custody numl									
7. W	Vere custody papers	properly filled out	(ink, signed, etc	.)?		□NA ✓Y □N					
8. Pa	acking material use	ed: $\square$ Inserts $\checkmark$ B	ubble Wrap	Blue Ice  W	et Ice Sleeves	✓ Other plastic bag					
9. W	Vere the correct type	es of bottles used for	r the tests indica	ated?		✓Y □N					
D	oid all bottles arrive	in good condition (i	i.e. unbroken, o	ut of temp.)? Ind	icate in the table be	elow. ✓Y □N					
	Sample ID	Bottle Count	Bottle Type	Out of Temp	Broken	Initials					
10. W	Vere all hottle labels	s complete (i.e. analy	veie ID etc.)?			√y ∏n					
		and tags agree with		Indicate in the t	ahla halow	V T □N  VY □N					
	e ID on Bottle	Sample ID or			ID on Bottle	Sample ID on COC					
Sample	c 1D on Bottle	Sample 1D of	ii coc	Sample	ID on Bottle	Sample 1D on COC					
1.1 A	44:4:14 4:-		1								
11. A	damonai notes, dis	crepancies, and reso	orunons:								

### Sample Acceptance Policy

#### Custody Seals (desirable, mandatory if specified in SAP):

- ✓ On outside of cooler
- ✓ Seals intact, signed and dated

#### **Chain-of-Custody documentation (mandatory):**

- ✓ Properly filled out in ink & signed by the client
- ✓ Sign and date the coc for CAS/HOU upon cooler receipt
- ✓ Coc must list method number
- ✓ If no coc was submitted with the samples, complete a CAS/HOU coc for the client

#### Sample Integrity (mandatory):

- ✓ Sample containers must arrive in good condition (not broken or leaking)
- ✓ Sample IDs on the bottles must match the sample IDs on the coc
- ✓ The correct type of sample bottle must be used for the method requested
- ✓ The correct number of sample containers received must agree with the documentation on the coc
- ✓ The correct sample matrix must appear on the coc
- ✓ An appropriate sample volume or weight must be received.

#### Temperature Preservatives (varies by sample matrix):

- ✓ Agueous and Non-agueous samples must be shipped and stored cold, at 0 to 6°C
- ✓ Tissue samples must be shipped and stored frozen, at -20 to -10°C
- ✓ Air samples can be shipped and stored at ambient temperature, ~23°C
- ✓ The sample temperature must be recorded on the coc
- ✓ Notify a Project Chemist if any samples are outside the acceptance temperature or have compromised sample integrity the client must decide re: replacement sample submittal or continue with the analysis

#### **Cooler Receipt Form, CRF (mandatory):**

- ✓ Cooler receipt forms must be completed for each coc & SR#
- ✓ Sample integrity issues must be documented on the CRF
- ✓ A scan of the carrier and the airbill number must be recorded in CAS LIMS

#### Sample Integrity Issues/Resolutions (mandatory):

- ✓ Sample integrity issues are documented on the CRF and given to the Project Chemist for resolution with the client
- ✓ Client resolution is documented in writing (typically email or on the CRF) and filed in the project folder(s)

### **Service Request Summary**

Folder #: E1000811

Client Name: Calscience Environmental Laboratory

Project Name: ACOE (San Rafael Channel)

Project Number:

**Report To:** Bob Stearns

Calscience Environmental Laboratories, Incorporated

7440 Lincoln Way

Garden Grove, CA 92841

Phone Number: 714-895-5494

Cell Number:

Fax Number: 714-894-7501

E-mail: rstearns@calscience.com

Project Chemist: Nicole Brown
Originating Lab: HOUSTON
Logged By: CDONOVAN

Date Received: 7/24/10

Internal Due Date: 7/29/10

QAP: LAB QAP Qualifier Set: CAS Standard

Formset: CAS Standard

Merged?: N Report to MDL?: N,Y P.O. Number: 16087

EDD: Shaw View - ITEMS 6.5

_ 4 oz-Glass Jar WM CLEAR Teflon Liner Unpreserved

**Location:** E-WIC02-Box169

**RUSH** 

					S	VM
CAS Samp No	Client Samp No.	Matrix	Collect	ted	8290/ PCDD PCDF	CAS SOP/ Total Solids
E1000811-001	SRC-2010-8-Comp	Sediment	6/10/10	1155	IV	IV

## Preparation Information Benchsheet

Prep Run#:115761Prep WorkFlow:OrgExtDioxS(30)Status:Prepped

Team:Semivoa GCMS/AKODURPrep Method:MethodPrep Date/Time:7/24/10 01:00 PM

#	Lab Code	Client ID	B#	Method /Test	рН	Matrix	Amt. Ext.	Sample Description
1	E1000811-001	SRC-2010-8-Comp	.01	8290/PCDD PCDF		Sediment	9.712g	black, thick wet soil
2	EQ1000358-01	MB		8290/PCDD PCDF		Solid	10.000g	
3	EQ1000358-02	LCS		8290/PCDD PCDF		Solid	10.000g	
4	EQ1000358-03	DLCS		8290/PCDD PCDF		Solid	10.000g	
5	J1003350-009	SB-20 6-8'	.02	8290/PCDD PCDF		Soil	10.704g	orange, thick clay
6	J1003407-007	SB-10 0-2'	.02	8290/PCDD PCDF		Soil	11.835g	damp, grey soil with rock debris
7	J1003461-013	SB-30 14-16'	.02	8290/PCDD PCDF		Soil	10.456g	damp, brown soil

#### **Spiking Solutions**

Name:	8290 Matrix Work	ing Standard		Inventory ID	17186		Logbook Ref:	D11-21-5A			Expires On:	04/16/2011
EQ100035	58-02 100.00μL	EQ1000358-03	100.00µL									
Name:	8290/1613B Clean	up Working Standard		Inventory ID	19668		Logbook Ref:	D11-44-3A	/B		Expires On:	07/19/2011
E1000811 J1003461-	100.00μL	EQ1000358-01	100.00μL	EQ1000358	-02 10	00.00μL	EQ1000358-03	100.00μ	L J1003350-009 10	00.00µL	J1003407-007	⁷ 100.00μL
Name:	8290 Internal Worl	king Standard		Inventory ID	19669		Logbook Ref:	D11-43-5A	<b>L</b>		Expires On:	07/15/2011
E1000811 J1003461-	200.00μΕ	EQ1000358-01	200.00μL	EQ1000358	-02 20	00.00μL	EQ1000358-03	200.00μ	L J1003350-009 20	00.00µL	J1003407-007	⁷ 200.00μL
Preparat	ion Materials											
Carbon, Hig	h Purity	C2-41-5 (19649)		Ethyl Acetate EtOAc	99.9% Min	imum	C2-41-3 (19127)		Extraction Thimbles 43 x mm	:123	(1577)	
Glass Wool		C2-42-6 (19656)		Sulfuric Acid : H2SO4	Reagent Gi	rade	C2-40-2 (19147)		Dichloromethane (Methy Chloride) 99.9% MeCl2	lene	C2-42-4 (19654)	
Sodium Chle NaCl	oride Reagent Grade	C2-41-7 (19652)		Sodium Hydro Grade NaOH	xide Reag	ent	C2-40-5 (19149)		Sodium Sulfate Anhydro Reagent Grade Na2SO4	us	C2-43-1 (19711)	
	n-Tridecane)	C2-42-7 (19710)		Hexane (n-Hex	xane) 98.59	%	C2-42-3 (19653)		Nonane (n-Nonane) 99%		C2-33-001 (13944)	
Silica Gel R	eagent Grade	C2-38-6 (19140)		Toluene 99.9%	6 Minimun	ı	C2-42-5 (19655)					
Preparati	ion Steps											
Step:	Extraction	Step:	Acid Clean	Si	tep:	Silica Ge	l Clean	Step:	Final Volume			
Started:	7/24/10 13:00	Started:	7/26/10 09:37	Si	tarted:	7/26/10 1	1:45	Started:	7/27/10 06:05			
Finished:	7/25/10 09:10	Finished:	7/26/10 10:07		inished:	7/26/10 1		Finished:	7/27/10 08:15			
By:	CDONOVAN	By:	CDONOVAN	В	y:	CDONO	VAN	By:	CDONOVAN			

### Preparation Information Benchsheet

Prep Run#:115761Prep WorkFlow:OrgExtDioxS(30)Status:Prepped

Team:Semivoa GCMS/AKODURPrep Method:MethodPrep Date/Time:7/24/10 01:00 PM

## **Total Solids Report**

Sample ID	Tare (g)	Tare + Wet Wt.(g)	Tare + Dry Wt.(g)	% Total Solids
E1000811-001	13.121	22.367	18.217	55.1

Batch No.:	EQ1000358									
Comments:										



# Chromatograms and Selected Ion Monitoring

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130

www.caslab.com

An Employee Owned Company

#### Columbia Analytical Services, Inc. Sample Response Summary

CLIENT ID. SRC-2010-8-COMP

Run #11 Filename P208831 Processed: 28-JUL-10 11:09:05	Samp:	1 Inj: 1 LAB. ID: E10	Acquired 00811-001	: 27-JU	L-10	10:5	0:01
Tan	RT-1	Resp 1	Resp 2	Ratio	Meet	Mod.	? RRF
* -		4.504e+02	6.018e+02	0.75		no	0.831
		•	1	!	yes	-	
2 Unk 1,2,3,7,8-PeCDF	,	2.468e+02	1.392e+02	1.77	yes	no	0.840
3 Unk 2,3,4,7,8-PeCDF		4.610e+02	2.912e+02	1.58	yes	no	0.850
4 Unk 1,2,3,4,7,8-HxCDF		1.329e+03	1.112e+03	1.20	yes	no	1.072
5 Unk 1,2,3,6,7,8-HxCDF		7.899e+02	6.990e+02	1.13	yes	no	1.128
6 Unk 2,3,4,6,7,8-HxCDF		2.841e+02	2.524e+02	1.13	yes	no	1.006
7 Unk 1,2,3,7,8,9-HxCDF		*	*	*	no	no	0.864
8 Unk 1,2,3,4,6,7,8-HpCDF	38:49	5.735e+03	5.984e+03	0.96	yes	no	1.315
9 Unk 1,2,3,4,7,8,9-HpCDF	40:07	4.661e+02	4.800e+02	0.97	yes	no	0.970
10 Unk OCDF	42:51	1.238e+04	1.463e+04	0.85	yes	no	1.103
11 Unk 2,3,7,8-TCDD	29:04	7.294e+01	1.590e+02	0.46	no	no	0.916
12 Unk 1,2,3,7,8-PeCDD		4.751e+02	2.893e+02	1.64	yes	no	0.869
13 Unk 1,2,3,4,7,8-HxCDD	1	4.512e+02	3.799e+02	1.19	yes	no	0.925
14 Unk 1,2,3,6,7,8-HxCDD	!	1.594e+03	1.234e+03	1.29	yes	no	1.054
15 Unk 1,2,3,7,8,9-HxCDD		7.152e+02	5.739e+02	1.25	yes	no	0.966
16 Unk 1,2,3,4,6,7,8-HpCDD	1	1.761e+04	1.723e+04	1.02	yes	no	0.879
	42:42	8.333e+04	9.389e+04	0.89	yes	no	0.959
17 Olik OCDD	42:42	0.3336+04	9.3096+04	0.83	lyes	110	10.555
18 IS 13C-2,3,7,8-TCDF	28:13	5.324e+04	6.849e+04	0.78	yes	no	1.424
19 IS 13C-1,2,3,7,8-PeCDF		8.270e+04	5.302e+04	1.56	yes	no	1.263
20 IS 13C-1,2,3,4,7,8-HxCDF		8.712e+04	1.660e+05	0.52	yes	no	1.279
21 IS 13C-1,2,3,4,6,7,8-HpCDF		5.014e+04	1.134e+05	0.44	yes	no	0.902
22 IS 13C-2,3,7,8-TCDD		4.393e+04	5.662e+04	0.78	yes	no	1.057
23 IS 13C-1,2,3,7,8-PeCDD	1	5.908e+04	3.713e+04	1.59	yes	no	0.873
24 IS 13C-1,2,3,6,7,8-HxCDD	!	1.138e+05	9.057e+04	1.26	yes	no	0.997
25 IS 13C-1,2,3,4,6,7,8-HpCDD		8.776e+04	8.285e+04	1.06	yes	no	0.833
26 IS 13C-OCDD		1.062e+05	1.175e+05	0.90	yes	no	0.733
20 15 13C-0CDD	12.11	1.0020403	1.1756403	1 0.50	1 7 0 0	1110	10.755
27 RS/RT 13C-1,2,3,4-TCDD	28:48	6.926e+04	8.831e+04	0.78	yes	no	-
28 RS/RT 13C-1,2,3,7,8,9-HxCDD	37:09	5.596e+04	4.463e+04	1.25	yes	no	-
29 C/Up 37Cl-2,3,7,8-TCDD		9.501e+04	•	•	, -	no	0.983
		1	SUM AREA			•	1
30 Tot Total Tetra-Furans			1.269e+04		yes		0.831
31 Tot Total Tetra-Dioxins	25:59		7.952e+02	0.76	yes		0.916
32 Tot Total Penta-Furans	30:27		2.642e+04	1.51	yes		0.845
33 Tot Total Penta-Dioxins	31:47		3.207e+03	1.45	yes		0.869
34 Tot Total Hexa-Furans	35:09		2.976e+04	1.13	yes		1.018
35 Tot Total Hexa-Dioxins	35:39		1.626e+04	1.29	yes		0.982
36 Tot Total Hepta-Furans	!		3.868e+04	0.96	yes		1.143
37 Tot Total Hepta-Dioxins			6.705e+04	1.02	yes		0.879

---Sample Calculation---

OCDD =  $\frac{(8.333\text{e}+04 + 9.389\text{e}+04) \times 5000 \text{ pg}}{(1.062\text{e}+05 + 1.175\text{e}+05) \times (9.712\text{-g}) \times (400-55.1)/100 \times 0.96} = 771\text{gK}$ 

#### Columbia Analytical Services, Inc. Signal/Noise Height Ratio Summary

CLIENT ID. SRC-2010-8-COMP

Run #11 Filename P208831 Samp: 1 Inj: 1 Acquired: 27-JUL-10 10:50:01 Processed: 28-JUL-10 11:09:051 LAB. ID: E1000811-001

	Name	Signal 1	Noise 1	S/N Rat.1	Signal 2	Noise 2  S	/N Rat.2
		- J 1		,	1 - 3 - 1	•	,
1	2,3,7,8-TCDF	5.26e+04	7.40e+02	7.1e+01	7.31e+04	1.10e+03	6.6e+01
2	1,2,3,7,8-PeCDF	4.15e+04	2.17e+03	1.9e+01	2.56e+04	1.96e+03	1.3e+01
3	2,3,4,7,8-PeCDF	7.44e+04	2.17e+03	3.4e+01	4.93e+04	1.96e+03	2.5e+01
4	1,2,3,4,7,8-HxCDF	2.41e+05	3.50e+03	6.9e+01	2.04e+05	5.74e+03	3.5e+01
5	1,2,3,6,7,8-HxCDF	1.48e+05	3.50e+03	4.2e+01	1.33e+05	5.74e+03	2.3e+01
6	2,3,4,6,7,8-HxCDF	6.58e+04	3.50e+03	1.9e+01	5.31e+04	5.74e+03	9.3e+00
7	1,2,3,7,8,9-HxCDF	*	3.50e+03	*	*	5.74e+03	*
8	1,2,3,4,6,7,8-HpCDF	1.24e+06	3.51e+03	3.5e+02	1.28e+06	3.11e+03	4.1e+02
9	1,2,3,4,7,8,9-HpCDF	9.47e+04	3.51e+03	2.7e+01	9.26e+04	3.11e+03	3.0e+01
10	OCDF	2.09e+06	5.92e+02	3.5e+03	2.40e+06	1.77e+03	1.4e+03
		•	·				
11	2,3,7,8-TCDD	1.28e+04	7.56e+02	1.7e+01	2.50e+04	1.21e+03	2.1e+01
12	1,2,3,7,8-PeCDD	8.57e+04	1.20e+03	7.2e+01	5.19e+04	1.13e+03	4.6e+01
13	1,2,3,4,7,8-HxCDD	1.18e+05	2.33e+03	5.1e+01	9.94e+04	1.59e+03	6.3e+01
14	1,2,3,6,7,8-HxCDD	3.85e+05	2.33e+03	1.7e+02	2.88e+05	1.59e+03	1.8e+02
15	1,2,3,7,8,9-HxCDD	1.27e+05	2.33e+03	5.5e+01	1.08e+05	1.59e+03	6.8e+01
16	1,2,3,4,6,7,8-HpCDD	3.67e+06	1.78e+03	2.1e+03	3.57e+06	2.40e+03	1.5e+03
17	OCDD	1.48e+07	1.29e+03	1.2e+04	1.66e+07	1.48e+03	1.1e+04
18	13C-2,3,7,8-TCDF	7.13e+06	3.11e+03	2.3e+03	9.25e+06	2.76e+03	3.3e+03
19	13C-1,2,3,7,8-PeCDF	1.59e+07	1.32e+03	1.2e+04	1.02e+07	9.08e+02	1.1e+04
20	13C-1,2,3,4,7,8-HxCDF	1.74e+07	8.32e+02	2.1e+04	3.31e+07	1.18e+03	2.8e+04
21	13C-1,2,3,4,6,7,8-HpCDF	1.07e+07	5.72e+03	1.9e+03	2.43e+07	4.88e+03	5.0e+03
22	13C-2,3,7,8-TCDD	6.40e+06	4.54e+03	1.4e+03	8.21e+06	1.91e+03	4.3e+03
23	13C-1,2,3,7,8-PeCDD	1.10e+07	8.64e+02	1.3e+04	6.88e+06	1.14e+03	6.1e+03
24	13C-1,2,3,6,7,8-HxCDD	2.78e+07	2.81e+03	9.9e+03	2.19e+07	2.20e+03	1.0e+04
25	13C-1,2,3,4,6,7,8-HpCDD	1.89e+07	1.37e+03	1.4e+04	1.78e+07	1.16e+03	1.5e+04
26	13C-OCDD	1.87e+07	1.27e+03	1.5e+04	2.06e+07	1.80e+03	1.1e+04
						•	
27	13C-1,2,3,4-TCDD	1.08e+07	4.54e+03	2.4e+03	1.38e+07	1.91e+03	7.2e+03
28	13C-1,2,3,7,8,9-HxCDD	1.25e+07	2.81e+03	4.4e+03	9.90e+06	2.20e+03	4.5e+03
29	37Cl-2,3,7,8-TCDD	1.30e+07	1.34e+03	9.7e+03			

Columbia Analytical Services, Inc. 19408 Park Row, Suite 320

Houston, TX 77084

Office: (713) 266-1599. Fax: (713) 266-0130

## Columbia Analytical Services, Inc. Peak List Summary

CLIENT ID.

SRC-2010-8-COMP

Entry: 30 Totals Name: Total Tetra-Furans

Run: 11 File: P208831 Sample:1 Injection:1 Function:1

Mas	s: 303.9020 30	5.8990		Respon	nse:			
#	RT Resp	Resp	Ratio	Meet	Tot Resp	Name	Mod1?	Mod2
1	24:11 1.33e+02	1.72e+02	0.77	yes	3.05e+02		n	n
2	24:51 2.66e+02	3.89e+02	0.68	yes	6.54e+02		n	n
3	25:14 1.56e+03	2.15e+03	0.73	yes	3.71e+03		n	n
4	26:09 7.19e+02	9.67e+02	0.74	yes	1.69e+03		n	n
5	26:31 8.63e+02	1.19e+03	0.73	yes	2.05e+03		У	n
6	27:00 7.83e+02	1.02e+03	0.77	yes	1.81e+03		n	n
7	27:20 1.64e+02	2.28e+02	0.72	yes	3.92e+02		n	n
8	27:45 2.08e+02	3.05e+02	0.68	yes	5.14e+02		n	n
9	28:15 4.50e+02	6.02e+02	0.75	yes	1.05e+03	2,3,7,8-TCDF	n	n
10	28:45 1.47e+02	1.77e+02	0.83	yes	3.24e+02		n	n
11	28:59 8.94e+01	1.03e+02	0.87	yes	1.93e+02		n	n

SRC-2010-8-COMP

Entry: 31 Totals Name: Total Tetra-Dioxins

Sample:1 Injection:1 Function:1 Run: 11 File: P208831

Mas	s: 319.8	3970 321	L.8940		Respon	ise:			
#	RT	Resp	Resp	Ratio	Meet	Tot Resp	Name	Mod1?	Mod2
1	25:59 1	L.41e+02	1.85e+02	0.76	yes	3.26e+02		n	n
2	26:31 1	l.31e+02	1.88e+02	0.70	yes	3.19e+02		У	n
3	27:42 6	6.68e+01	8.33e+01	0.80	yes	1.50e+02		n	У

SRC-2010-8-COMP

Entry: 32 Totals Name: Total Penta-Furans

Run: 11 File: P208831 Sample:1 Injection:1 Function:2

Mas	s: 339.8600 3	41.8570		Respon	nse:			
#	RT Resp	Resp	Ratio	Meet	Tot Resp	Name	Mod1?	Mod2
1	30:27 8.30e+03	5.50e+03	1.51	yes	1.38e+04		n	n
2	31:40 3.82e+03	2.61e+03	1.46	yes	6.42e+03		n	n
3	31:50 3.99e+02	2.63e+02	1.52	yes	6.62e+02		n	n
4	32:11 7.55e+02	5.10e+02	1.48	yes	1.27e+03		n	n
5	32:17 3.74e+02	2.24e+02	1.67	yes	5.99e+02		n	n
6	32:34 2.47e+02	1.39e+02	1.77	yes	3.86e+02	1,2,3,7,8-PeCDF	n	n
7	32:51 5.73e+02	4.02e+02	1.42	yes	9.76e+02		n	n
8	33:19 4.61e+02	2.91e+02	1.58	yes	7.52e+02	2,3,4,7,8-PeCDF	n	n
9	33:30 9.48e+02	6.07e+02	1.56	yes	1.55e+03		n	n

SRC-2010-8-COMP

Entry: 33 Totals Name: Total Penta-Dioxins

Run: 11 File: P208831 Sample:1 Injection:1 Function:2

Mas	s: 355	.8550	357	.8520		Respon	nse:			
#	RT	R	esp	Resp	Ratio	Meet	Tot Resp	Name	Mod1?	Mod2
1							1.04e+03		n	n
2	32:33	2.30e	+02	1.43e+02	1.61	yes	3.73e+02		n	n
3	32:41	3.94e	+02	2.38e+02	1.66	yes	6.32e+02		n	n
4	33:08	1.71e	+02	1.07e+02	1.60	yes	2.78e+02		n	n
5	33:40	4.75e	+02	2.89e+02	1.64	yes	7.64e+02	1,2,3,7,8-PeCDD	n	n
6	34:08	6.84e	+01 4	4.78e+01	1.43	yes	1.16e+02		n	n

SRC-2010-8-COMP

Entry: 34 Totals Name: Total Hexa-Furans

Run: 11 File: P208831 Sample:1 Injection:1 Function:3

Mass	s: 373.8210 37	75.8180		Respo	nse:			
#	RT Resp	Resp	Ratio	Meet	Tot Resp	Name	Mod1?	Mod2
1	35:09 1.48e+03	1.32e+03	1.13	yes	2.80e+03		n	n
2	35:18 5.99e+03	5.14e+03	1.17	yes	1.11e+04		n	n
3	35:35 1.74e+02	1.36e+02	1.28	yes	3.10e+02		n	n
4	35:45 5.25e+03	4.53e+03	1.16	yes	9.78e+03		n	n
5	36:08 1.33e+03	1.11e+03	1.20	yes	2.44e+03	1,2,3,4,7,8-HxCDF	n	n
6	36:14 7.90e+02	6.99e+02	1.13	yes	1.49e+03	1,2,3,6,7,8-HxCDF	n	n
7	36:41 4.44e+02	3.81e+02	1.16	yes	8.24e+02		n	n
8	36:45 2.84e+02	2.52e+02	1.13	yes	5.37e+02	2,3,4,6,7,8-HxCDF	n	n
9	37:27 2.42e+02	2.08e+02	1.16	yes	4.50e+02		n	n

## Columbia Analytical Services, Inc. Peak List Summary

CLIENT ID.

SRC-2010-8-COMP

Entry: 35 Totals Name: Total Hexa-Dioxins

Run: 11 File: P208831 Sample:1 Injection:1 Function:3

Mas	s: 389	.8160	391.	8130		Respon	nse:			
#	RT	Re	esp	Resp	Ratio	Meet	Tot Resp	Name	Mod1?	Mod2
1	35:39	2.54e	+03 1	97e+03	1.29	yes	4.51e+03		n	n
2	36:07	3.69e-	+02 2	2.60e+02	1.42	yes	6.30e+02		n	n
3	36:19	3.33e-	+03 2	2.62e+03	1.27	yes	5.95e+03		n	n
4	36:28	1.26e-	+02 S	.63e+01	1.30	yes	2.22e+02		n	n
5	36:52	4.51e	F02 3	.80e+02	1.19	yes	8.31e+02	1,2,3,4,7,8-HxCDD	n	n
6	36:55	1.59e-	+03 1	23e+03	1.29	yes	2.83e+03	1,2,3,6,7,8-HxCDD	n	n
7	37:10	7.15e	+02 5	5.74e+02	1.25	yes	1.29e+03	1,2,3,7,8,9-HxCDD	n	n

## Columbia Analytical Services, Inc. Peak List Summary

CLIENT ID.

SRC-2010-8-COMP

Entry: 36 Totals Name: Total Hepta-Furans

Run: 11 File: P208831 Sample:1 Injection:1 Function:4

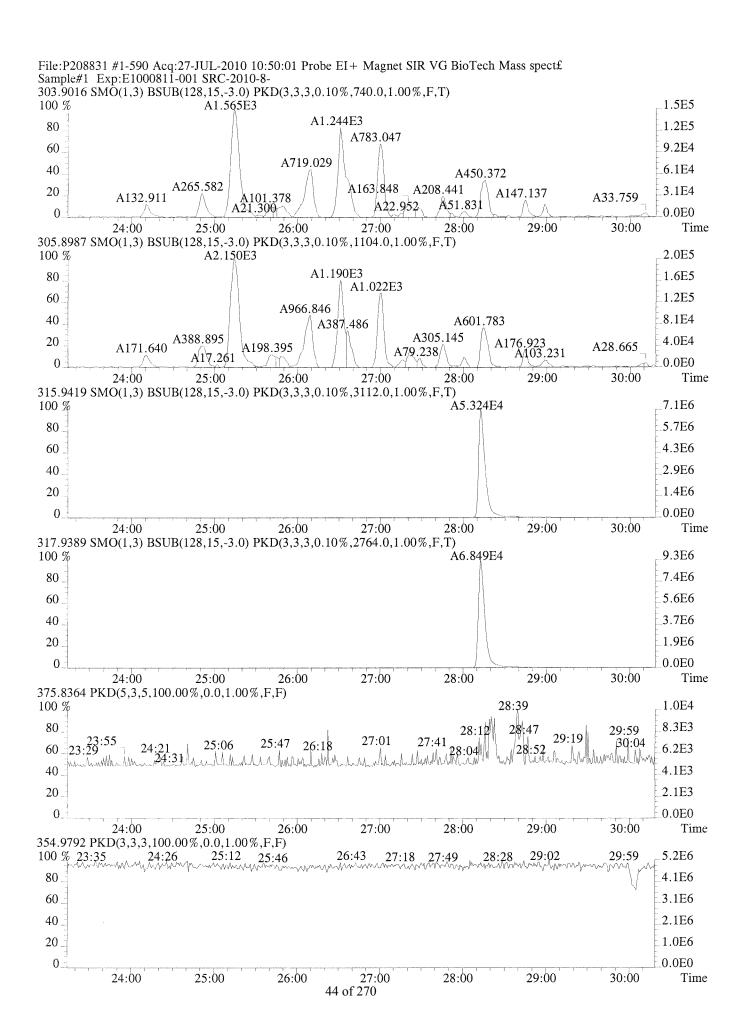
Mass	s: 407.	7820 40	9.7790		Respon	nse:			
#	RT	Resp	Resp	Ratio	Meet	Tot Resp	Name	Mod1?	Mod2
1	38:49	5.73e+03	5.98e+03	0.96	yes	1.17e+04	1,2,3,4,6,7,8-HpCDF	n	n
2	39:03	1.33e+02	1.47e+02	0.90	yes	2.81e+02		n	n
3	39:10	1.28e+04	1.30e+04	0.99	yes	2.57e+04		n	n
4	40:07	4.66e+02	4.80e+02	0.97	yes	9.46e+02	1,2,3,4,7,8,9-HpCDF	n	n

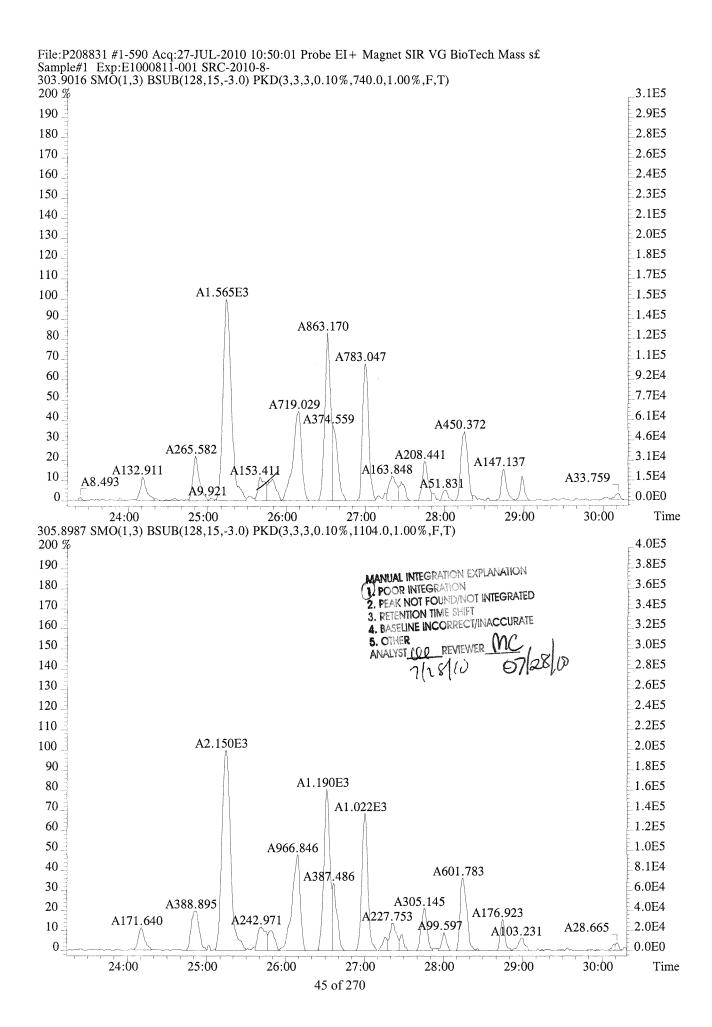
## Columbia Analytical Services, Inc.

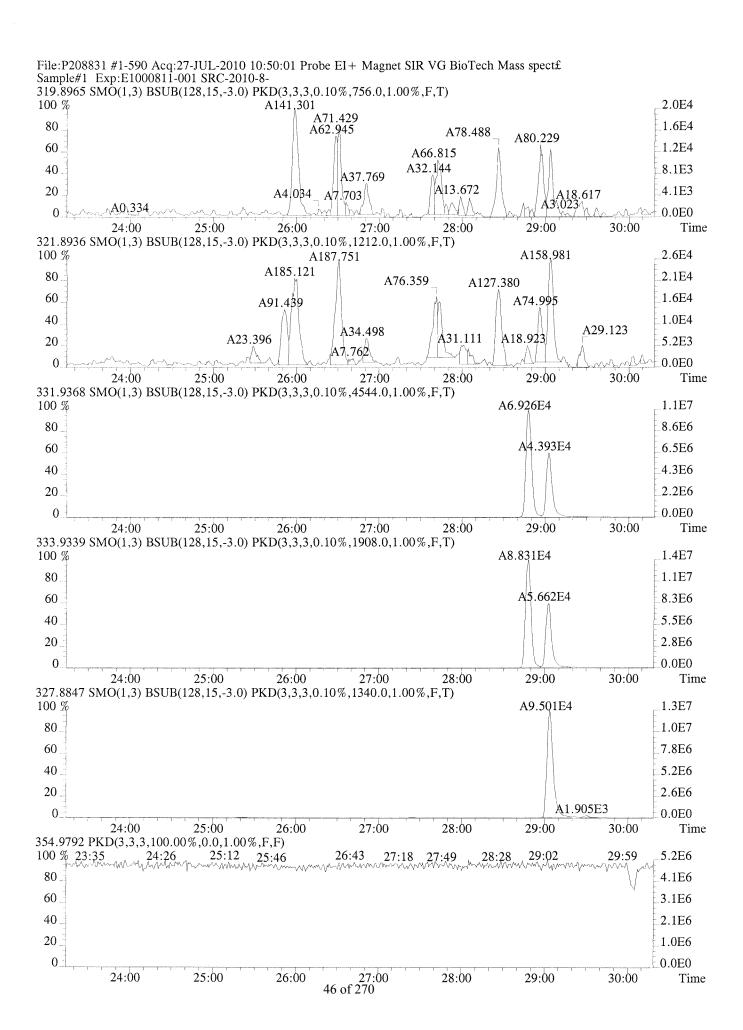
Peak List Summary

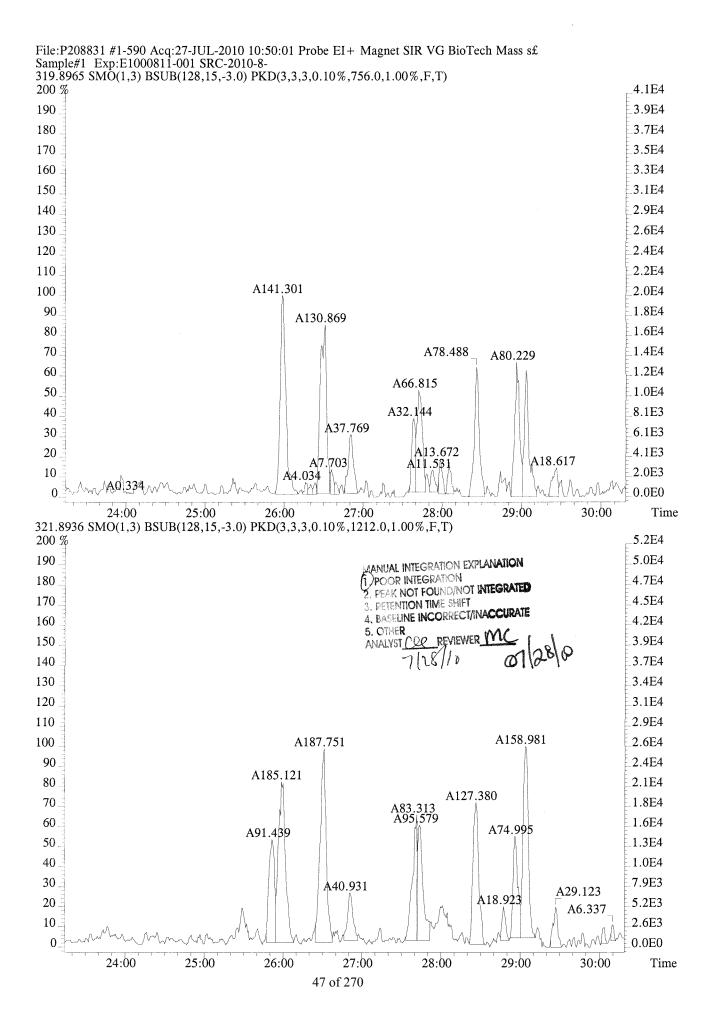
CLIENT ID.

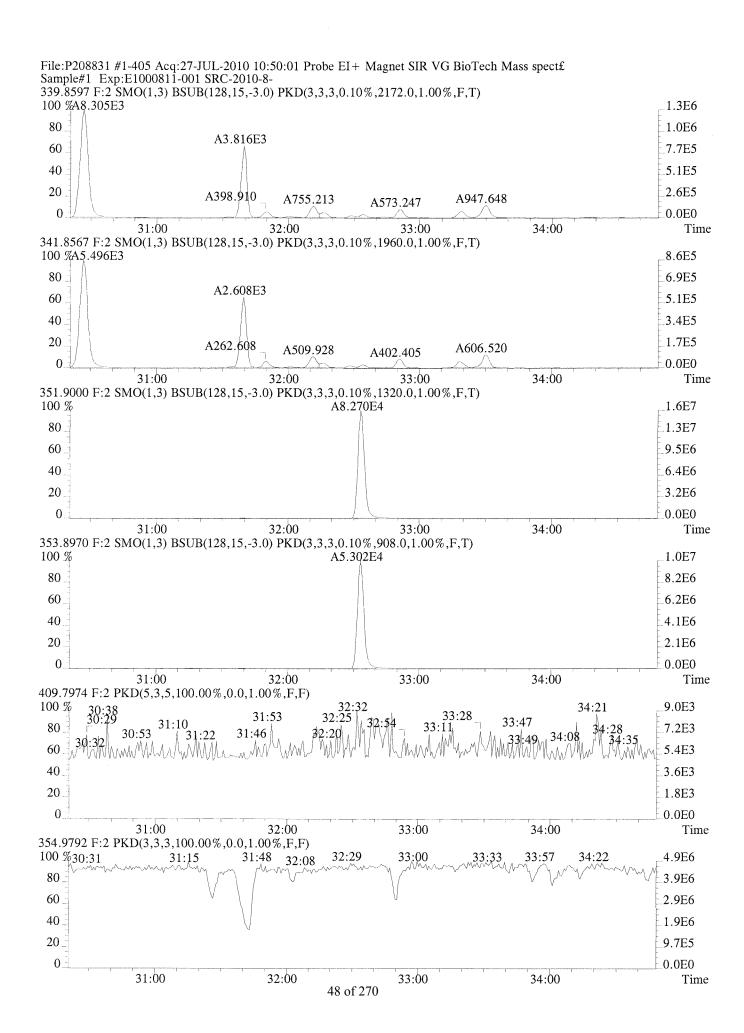
SRC-2010-8-COMP

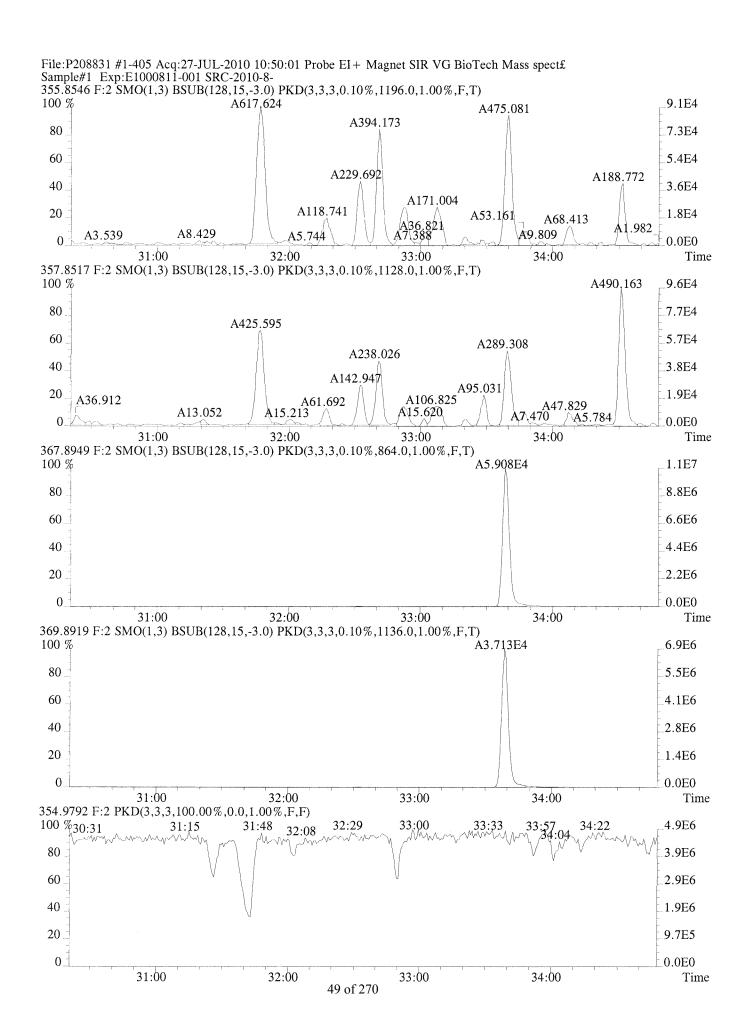

Entry: 37 Totals Name: Total Hepta-Dioxins

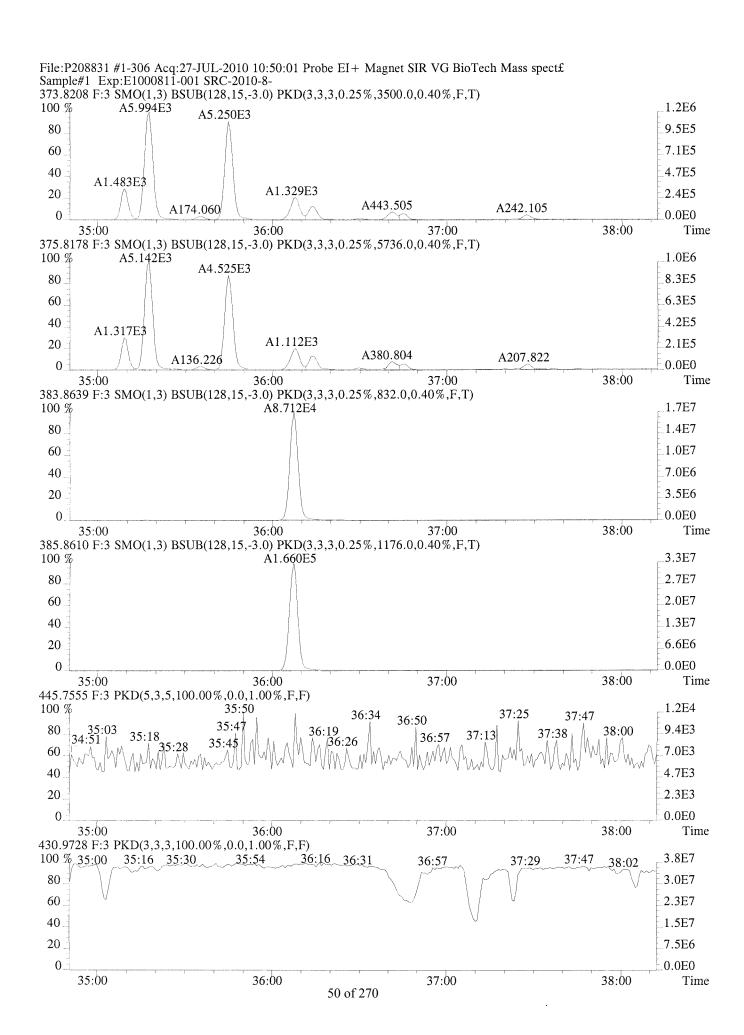

Run: 11 File: P208831 Sample:1 Injection:1 Function:4

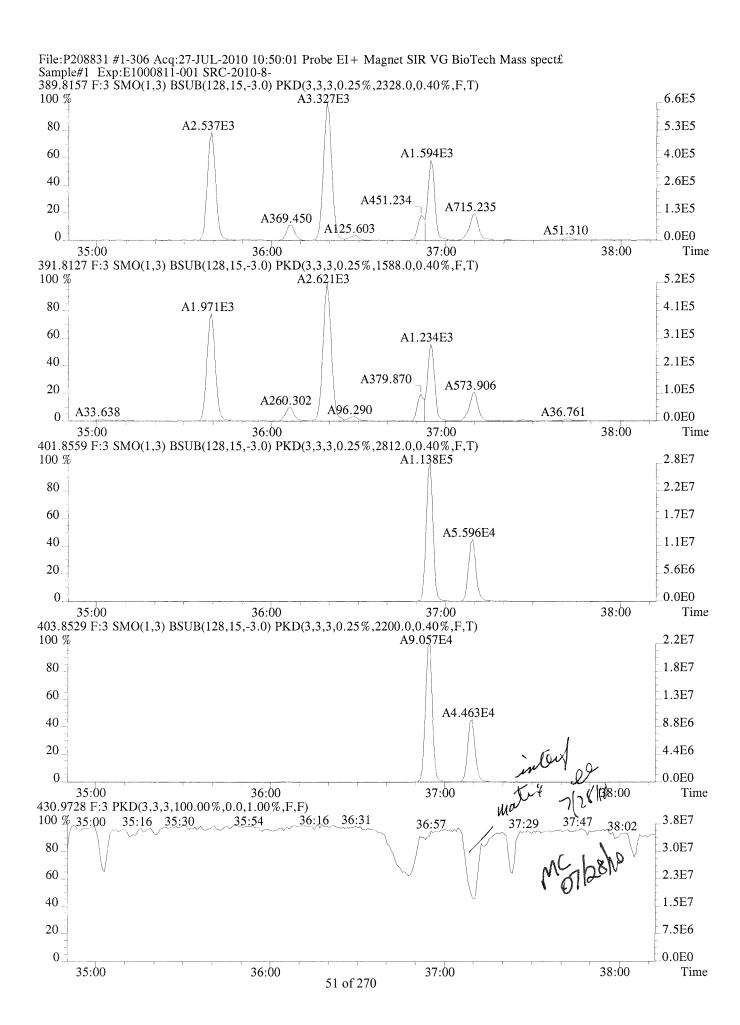

Acquired: 27-JUL-10 10:50:01 Processed: 28-JUL-10 11:09:05

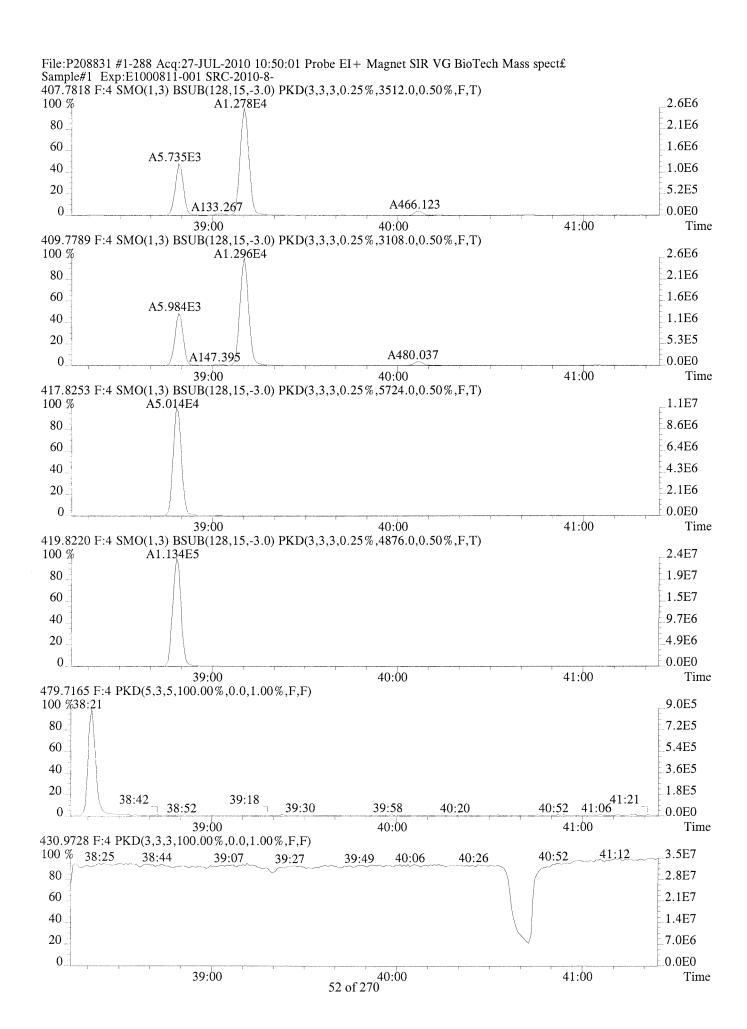

Mass: 423.7770 425.7740 Response:

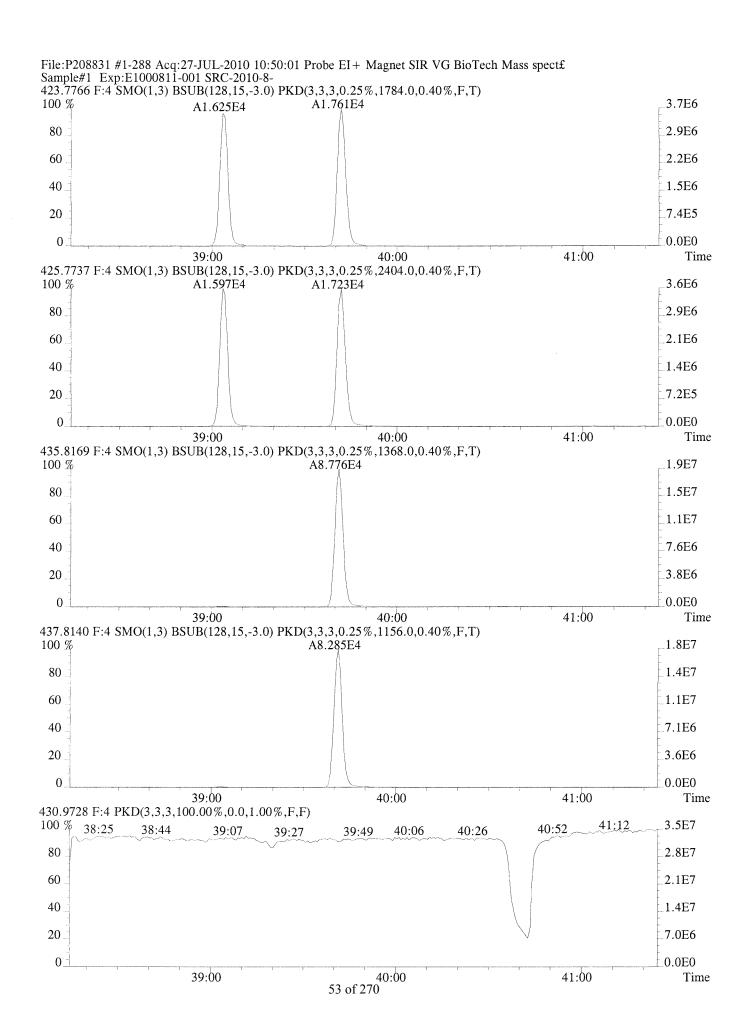

#	RT	Resp	Resp	Ratio	Meet	Tot Resp	Name	Mod1?	Mod2
1	39:04 1.	62e+04	1.60e+04	1.02	yes	3.22e+04		n	n
2	39:42 1.	76e+04	1.72e+04	1.02	yes	3.48e+04	1,2,3,4,6,7,8-HpCDD	n	n

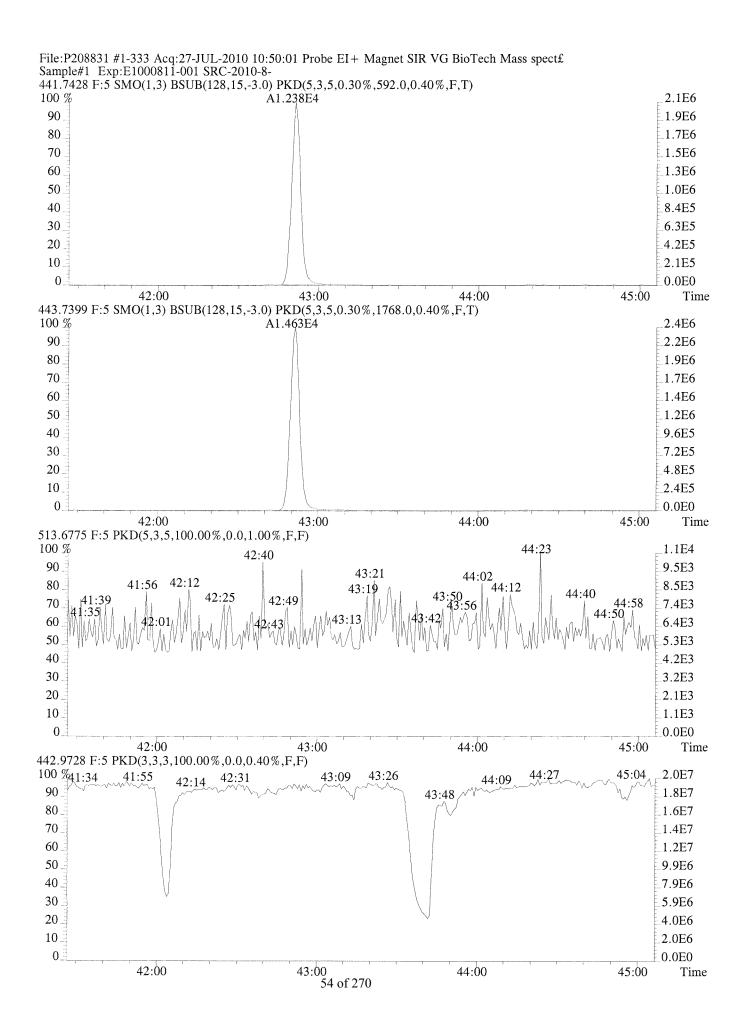


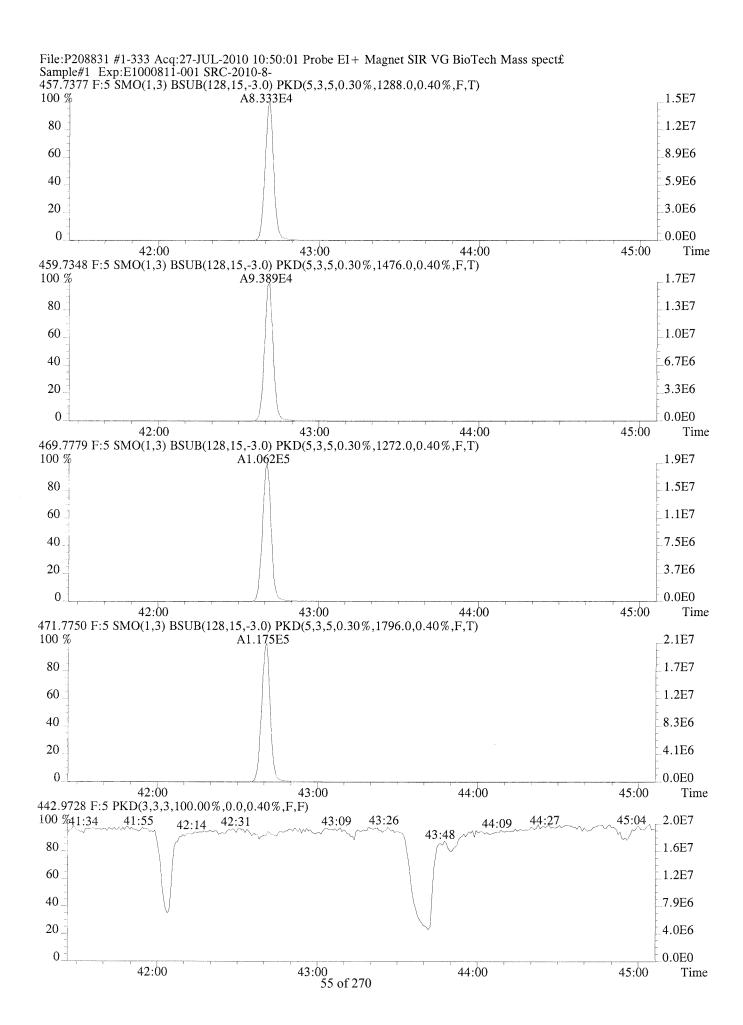














## Columbia Analytical Services, Inc. Sample Response Summary

Page 8 of 13 EPA SAMPLE NO. SRC-2010-8-CO_T

Samp: 1 Inj: 1 Acquired: 27-JUL-10 14:53:12

Processed:	28-JUL-10 11:41:00	Sample ID: E1000811-001		
Тур	Name RT-1	Resp 1 Resp 2	Ratio Meet	Mod?
1 Unk 2 IS 3 RS/RT 4 C/Up	2,3,7,8-TCDF   22:20 13C-2,3,7,8-TCDF   22:18 13C-1,2,3,4-TCDD   21:02 37C1-2,3,7,8-TCDD   20:47	1.371e+02   1.804e+02   2.426e+04   3.075e+04   2.905e+04   3.638e+04   3.925e+04	0.76   yes   0.79   yes   0.80   yes	n n  n n  n n  n
	Signal/Noise	Height Ratio Summary		
	Signal 1	Noise 1  S/N Rat.1 Signal 2	Noise 2  S/N	
	Name			

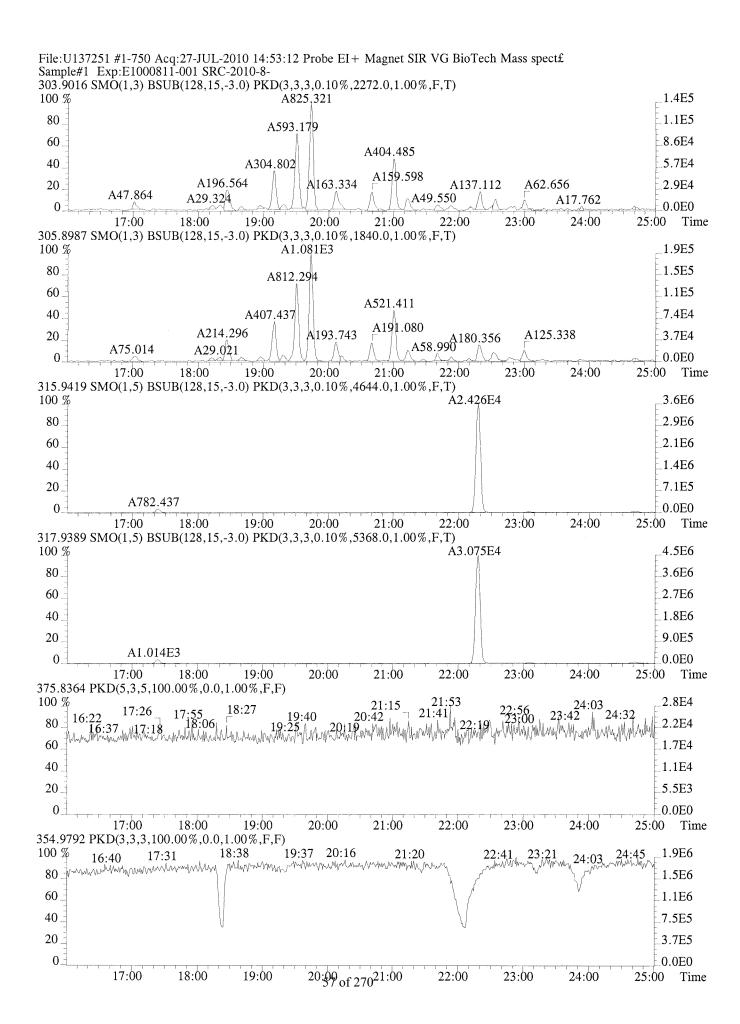
2,3,7,8-TCDF | 2.40e+04 | 2.27e+03 | 1.1e+01 | 2.76e+04 | 1.84e+03 | 1.5e+01

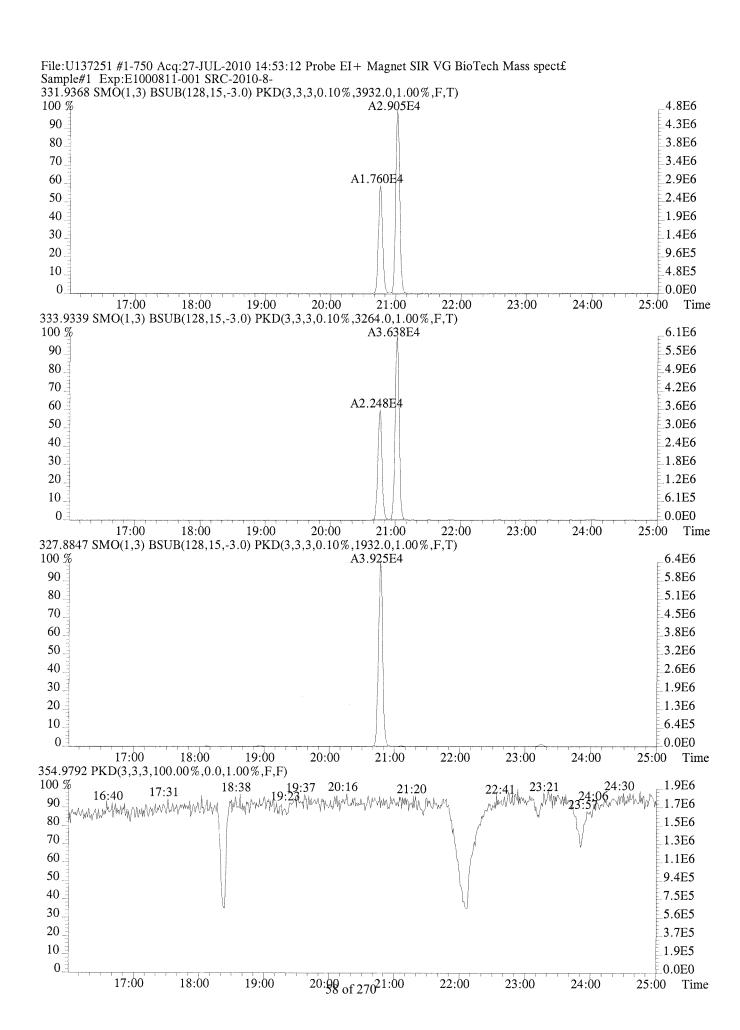
13C-2,3,7,8-TCDF 3.57e+06 4.64e+03 7.7e+02 4.50e+06 5.37e+03 8.4e+02

13C-1,2,3,4-TCDD | 4.81e+06 | 3.93e+03 | 1.2e+03 | 6.06e+06 | 3.26e+03 | 1.9e+03

37Cl-2,3,7,8-TCDD 6.40e+06 1.93e+03 3.3e+03

--- 2378-TCDF EDL Calculation---


 $EDL = \frac{(2.272e+03 + 1.840e+03) \times 1000 \times 2.5 \text{ pg}}{(3.572e+06 + 4.504e+06) \times (0.000 \text{ g}) \times (100 \times 1.02)} = 0.233 \text{ ng/s}$ 


Columbia Analytical Services, Inc. 19408 Park Row, Suite 320 Houston, TX 77084 Office(713)266-1599. Fax(713)266-0130

Run #8 Filename U137251

1

3





### Columbia Analytical Services, Inc. Sample Response Summary CLIENT ID.

METHOD BLANK

Run #10 Filename P208830 Samp: 1 Inj: 1 Acquired: 27-JUL-10 10:03:42 Processed: 28-JUL-10 10:57:24 LAB. ID: EQ1000358-01

Тур	Name I	RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?	RRF
1 Unk	2,3,7,8-TCDF   I		*	*	*	no	yes	0.831
2 Unk	1,2,3,7,8-PeCDF I	NotFnd	*	*	*	no	no	0.840
3 Unk	2,3,4,7,8-PeCDF I	NotFnd	*	*	*	no	no	0.850
4 Unk	1,2,3,4,7,8-HxCDF   I	NotFnd	*	*	*	no	yes	1.072
5 Unk	1,2,3,6,7,8-HxCDF 1	NotFnd	*	*	*	no	no	1.128
6 Unk	2,3,4,6,7,8-HxCDF 1	NotFnd	*	*	*	no	no	1.006
7 Unk	1,2,3,7,8,9-HxCDF 1	NotFnd	*	*	*	no	no	0.864
8 Unk	1,2,3,4,6,7,8-HpCDF	NotFnd	*	*	*	no	no	1.315
9 Unk	1,2,3,4,7,8,9-HpCDF	NotFnd	*	*	*	no	no	0.970
10 Unk	OCDF .	42:50	4.018e+01	4.829e+01	0.83	yes	no	1.103
11 Unk	2,3,7,8-TCDD 1	NotFnd	*	*	*	no	yes	0.916
12 Unk	1,2,3,7,8-PeCDD   1		*	*	*	no	no	0.869
13 Unk	1,2,3,4,7,8-HxCDD	NotFnd	*	*	*	no	no	0.925
14 Unk	1,2,3,6,7,8-HxCDD	NotFnd	*	*	*	no	no	1.054
15 Unk	1,2,3,7,8,9-HxCDD	NotFnd	*	*	*	no	no	0.966
16 Unk	1,2,3,4,6,7,8-HpCDD	39:43	7.486e+01	9.411e+01	0.80	no	yes	0.879
17 Unk	OCDD	42:41	1.414e+02	1.681e+02	0.84	yes	no	0.959
	·							
18 IS	13C-2,3,7,8-TCDF	28:14	4.127e+04	5.301e+04	0.78	yes	no	1.424
19 IS	13C-1,2,3,7,8-PeCDF	32:34	6.870e+04	4.398e+04	1.56	yes	no	1.263
20 IS	13C-1,2,3,4,7,8-HxCDF	36:07	1.204e+05	2.318e+05	0.52	yes	no	1.279
21 IS	13C-1,2,3,4,6,7,8-HpCDF	38:48	6.623e+04	1.481e+05	0.45	yes	no	0.902
22 IS	13C-2,3,7,8-TCDD	29:03	7.000e+04	8.929e+04	0.78	yes	no	1.057
23 IS	13C-1,2,3,7,8-PeCDD	33:39	8.644e+04	5.437e+04	1.59	yes	no	0.873
24 IS	13C-1,2,3,6,7,8-HxCDD	36:53	1.519e+05	1.196e+05	1.27	yes	no	0.997
25 IS	13C-1,2,3,4,6,7,8-HpCDD	39:41	1.138e+05	1.082e+05	1.05	yes	no	0.833
26 IS	13C-OCDD	42:40	1.254e+05	1.384e+05	0.91	yes	no	0.733
27 RS/R	T 13C-1,2,3,4-TCDD	28:49	8.998e+04	1.133e+05	0.79	yes	no	-
28 RS/R	T 13C-1,2,3,7,8,9-HxCDD	37:10	1.040e+05	8.257e+04	1.26	yes	no	-
29 C/Up	37Cl-2,3,7,8-TCDD	29:04	1.493e+05				no	0.983
				SUM AREA				
30 Tot	Total Tetra-Furans			2.543e+02	0.87	yes		0.831
31 Tot	Total Tetra-Dioxins	NotFnd		*	*	no	1	0.916
32 Tot	Total Penta-Furans			*	*	no		0.845
33 Tot	Total Penta-Dioxins	NotFnd		*	*	no		0.869
34 Tot	Total Hexa-Furans			*	*	no		1.018
35 Tot	Total Hexa-Dioxins			*	*	no		0.982
36 Tot	Total Hepta-Furans			*	*	no		1.143
37 Tot	Total Hepta-Dioxins	NotFnd		*	*	no	***************************************	0.879

Columbia Analytical Services, Inc. 19408 Park Row., Suite 320 Houston, TX 77084 Office(713)266-1599. Fax(713)266-0130

#### Columbia Analytical Services, Inc. Signal/Noise Height Ratio Summary CLIENT ID.

METHOD BLANK

Run #10 Filename P208830 Samp: 1 Inj: 1 Acquired: 27-JUL-10 10:03:42 Processed: 28-JUL-10 10:57:241 LAB. ID: EQ1000358-01

	Name	Signal 1	Noise 1	S/N Rat.1	Signal 2	Noise 2  S	/N Rat.2
1	2,3,7,8-TCDF	*	1.56e+03	*	*	1.31e+03	*
2	1,2,3,7,8-PeCDF	*	1.66e+03	*	*	2.06e+03	*
3	2,3,4,7,8-PeCDF	*	1.66e+03	*	*	2.06e+03	*
4	1,2,3,4,7,8-HxCDF	*	2.30e+03	*	*	1.51e+03	*
5	1,2,3,6,7,8-HxCDF	*	2.30e+03	*	*	1.51e+03	*
6	2,3,4,6,7,8-HxCDF	*	2.30e+03	*	*	1.51e+03	*
7	1,2,3,7,8,9-HxCDF	*	2.30e+03	*	*	1.51e+03	*
8	1,2,3,4,6,7,8-HpCDF	*	7.84e+03	*	*	2.89e+03	*
9	1,2,3,4,7,8,9-HpCDF	*	7.84e+03	*	*	2.89e+03	*
10	OCDF	6.49e+03	1.18e+03	5.5e+00	8.25e+03	2.30e+03	3.6e+00
	· ·	·		·	·		
11	2,3,7,8-TCDD	*	1.13e+03	*	*	1.30e+03	*
12	1,2,3,7,8-PeCDD	*	2.04e+03	*	*	1.66e+03	*
13	1,2,3,4,7,8-HxCDD	*	1.63e+03	*	*	2.96e+03	*
14	1,2,3,6,7,8-HxCDD	*	1.63e+03	*	*	2.96e+03	*
15	1,2,3,7,8,9-HxCDD	*	1.63e+03	*	*	2.96e+03	*
16	1,2,3,4,6,7,8-HpCDD	1.45e+04	3.50e+03	4.1e+00	2.06e+04	1.32e+03	1.6e+01
17	OCDD	2.77e+04	1.38e+03	2.0e+01	2.98e+04	2.75e+03	1.1e+01
18	13C-2,3,7,8-TCDF	5.56e+06	2.90e+03	1.9e+03	7.23e+06	1.96e+03	3.7e+03
19	13C-1,2,3,7,8-PeCDF	1.06e+07	1.36e+03	7.8e+03	6.80e+06	1.88e+03	3.6e+03
20	13C-1,2,3,4,7,8-HxCDF	2.47e+07	1.26e+03	2.0e+04	4.70e+07	1.72e+03	2.7e+04
21	13C-1,2,3,4,6,7,8-HpCDF	1.43e+07	4.96e+03	2.9e+03	3.18e+07	9.67e+03	3.3e+03
22	13C-2,3,7,8-TCDD	1.05e+07	4.36e+03	2.4e+03	1.34e+07	1.54e+03	8.7e+03
23	13C-1,2,3,7,8-PeCDD	1.54e+07	1.54e+03	1.0e+04	9.74e+06	9.92e+02	9.8e+03
24	13C-1,2,3,6,7,8-HxCDD	3.22e+07	2.17e+03	1.5e+04	2.56e+07	2.58e+03	9.9e+03
	13C-1,2,3,4,6,7,8-HpCDD	2.30e+07	2.92e+03	7.9e+03	2.19e+07	1.99e+03	1.1e+04
26	13C-OCDD	2.20e+07	6.92e+02	3.2e+04	2.41e+07	1.29e+03	1.9e+04
27	13C-1,2,3,4-TCDD	1.44e+07	4.36e+03	3.3e+03	1.81e+07	1.54e+03	1.2e+04
28	13C-1,2,3,7,8,9-HxCDD	2.21e+07	2.17e+03	1.0e+04	1.76e+07	2.58e+03	6.8e+03
29	37Cl-2,3,7,8-TCDD	2.02e+07	1.92e+03	1.1e+04			

19408 Park Row, Suite 320

Houston, TX 77084

Office: (713) 266-1599. Fax: (713) 266-0130

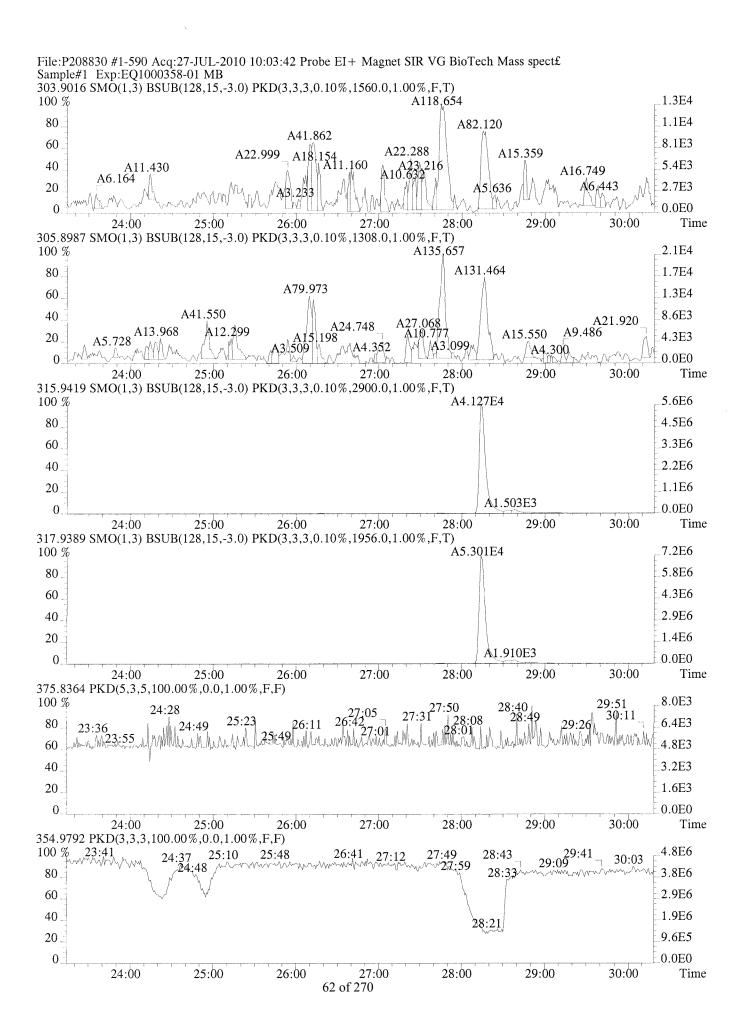
# Columbia Analytical Services, Inc. Peak List Summary

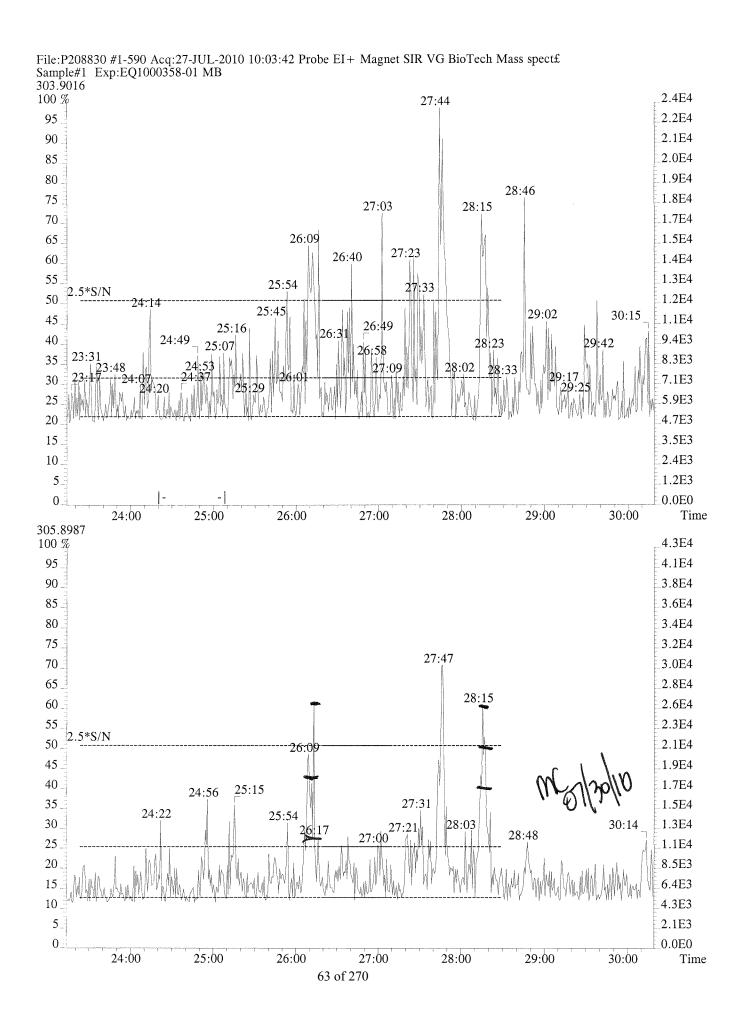
CLIENT ID.

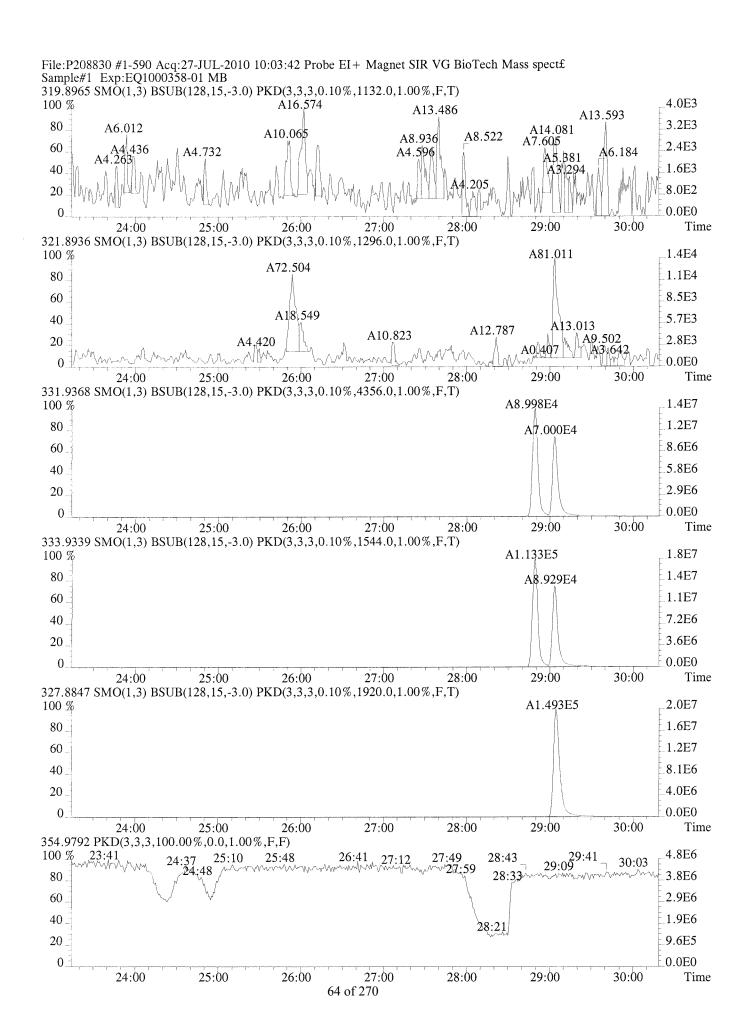
METHOD BLANK

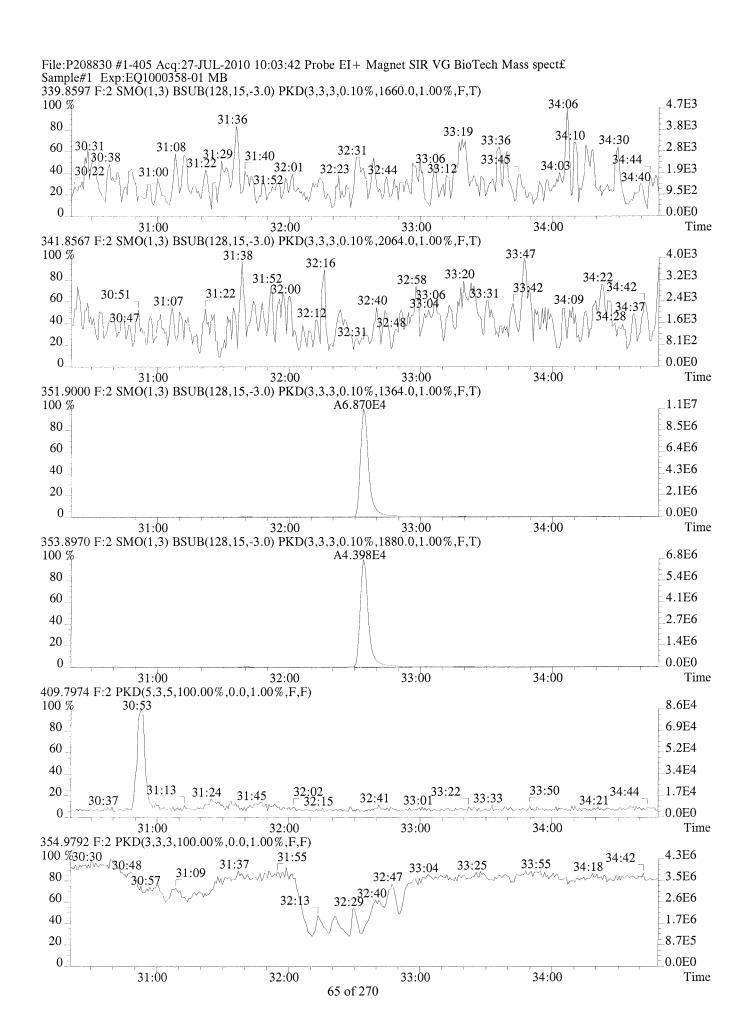
Entry: 30 Totals Name: Total Tetra-Furans

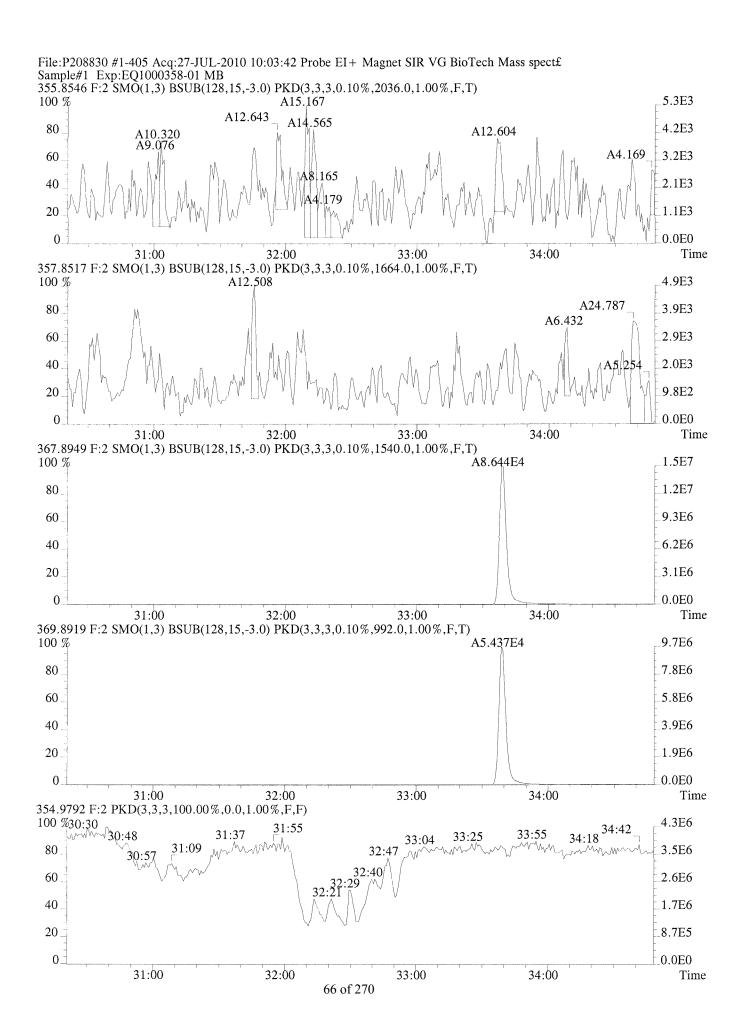
Run: 10 File: P208830 Sample:1 Injection:1 Function:1

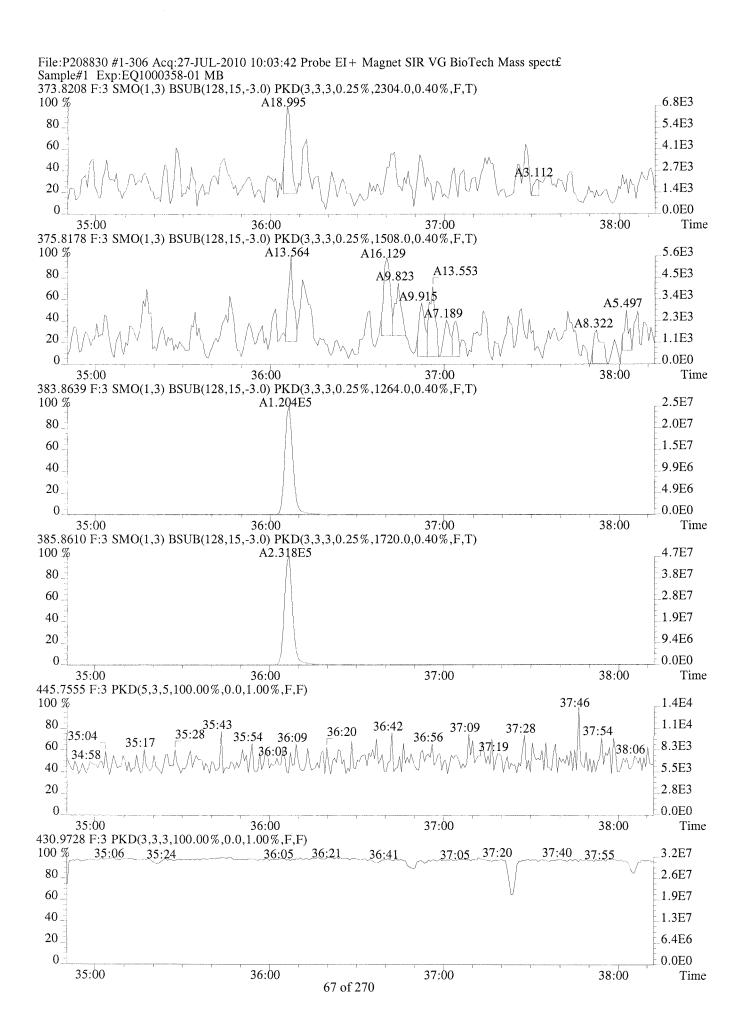

Acquired: 27-JUL-10 10:03:42 Processed: 28-JUL-10 10:57:24

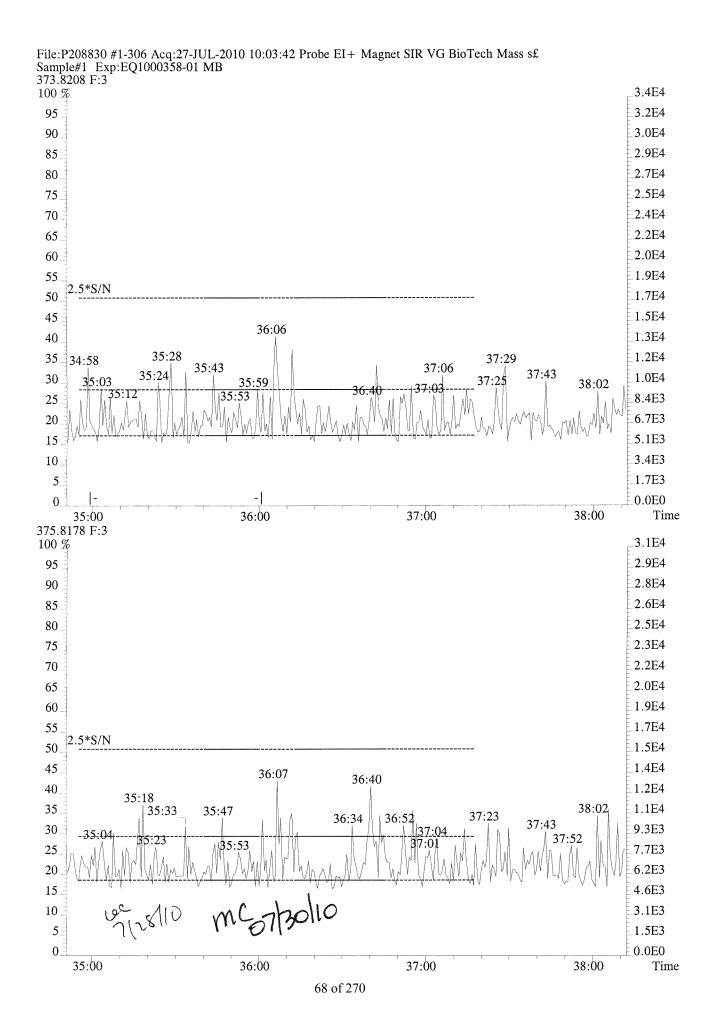

Mass: 303.9020 305.8990 Response:

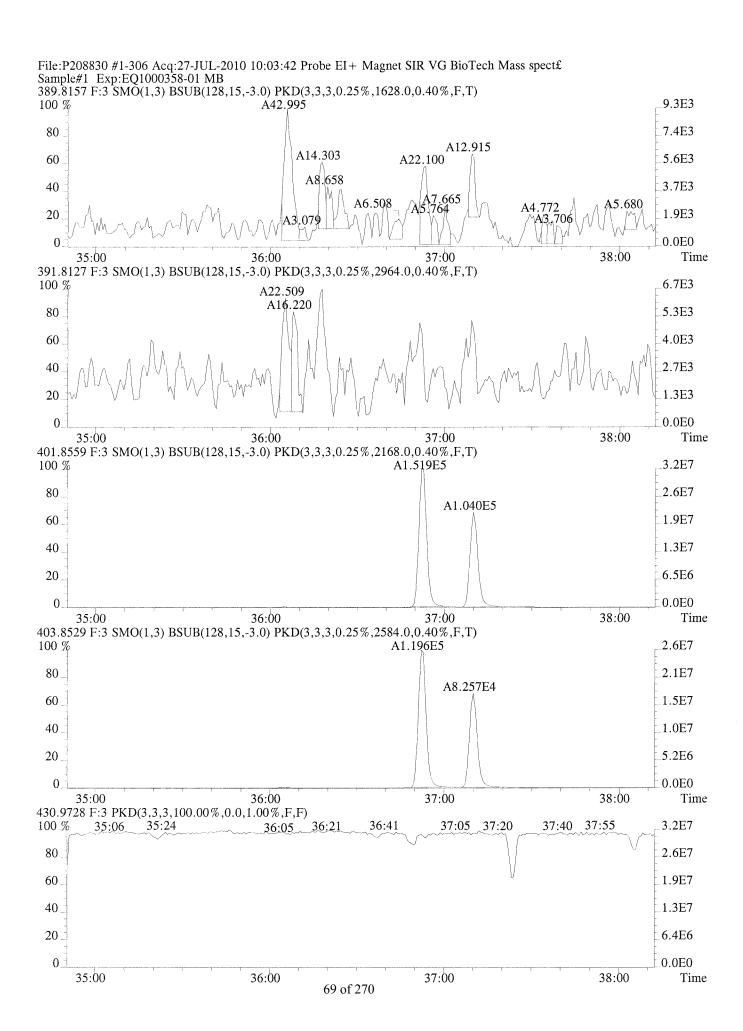

# RT Resp Resp Ratio Meet Tot Resp Name Mod1? Mod2

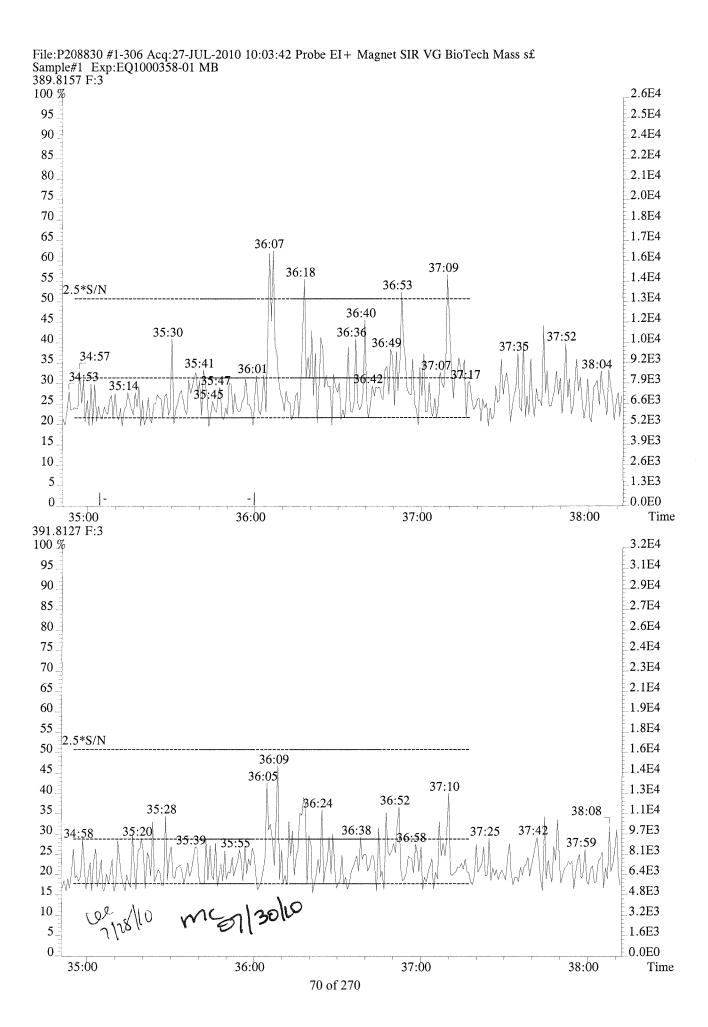

1 27:45 1.19e+02 1.36e+02 0.87 yes 2.54e+02 n n

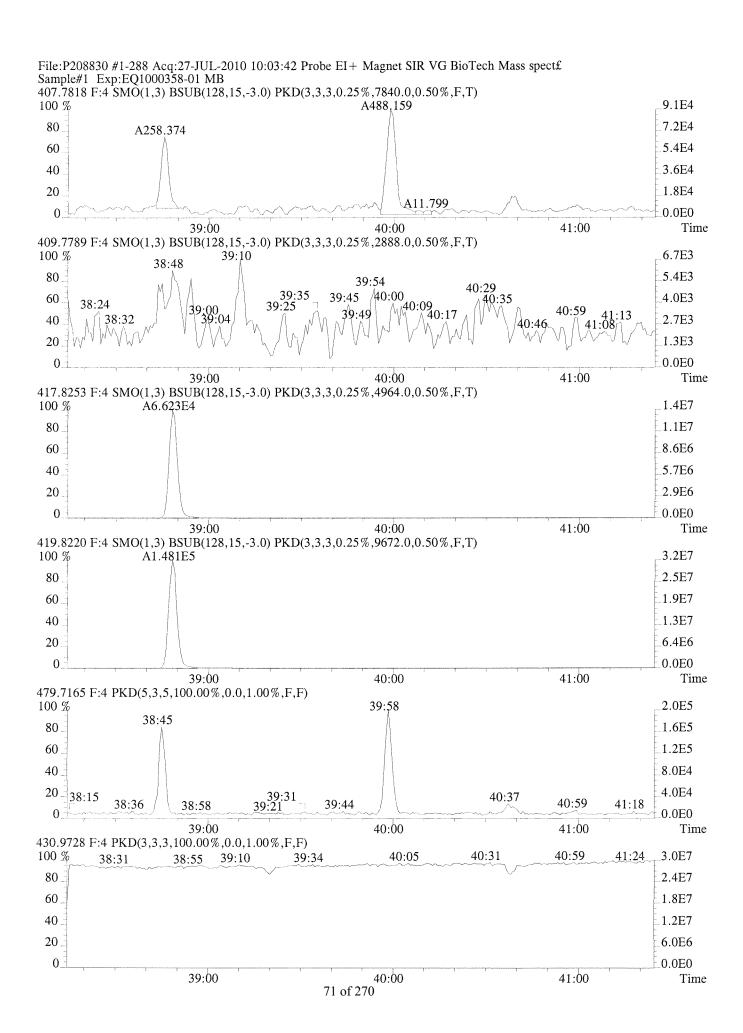

Columbia Analytical Services, Inc. 19408 Park Row, Suite 320 Houston, TX 77084 Office(713)266-1599. Fax(713)266-0130

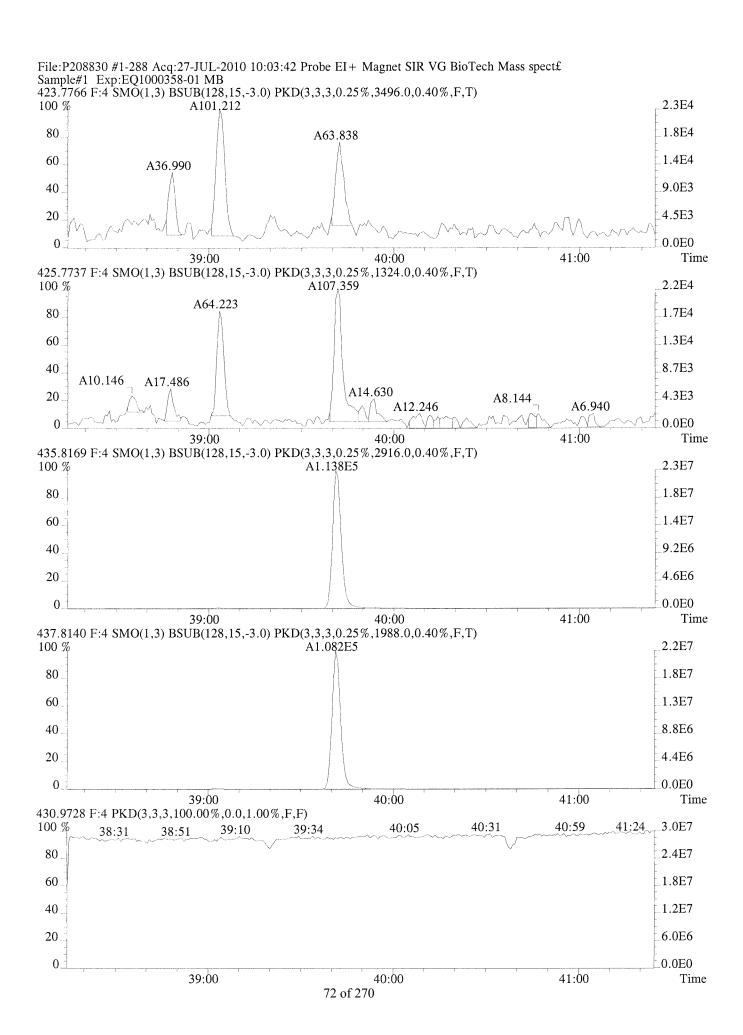


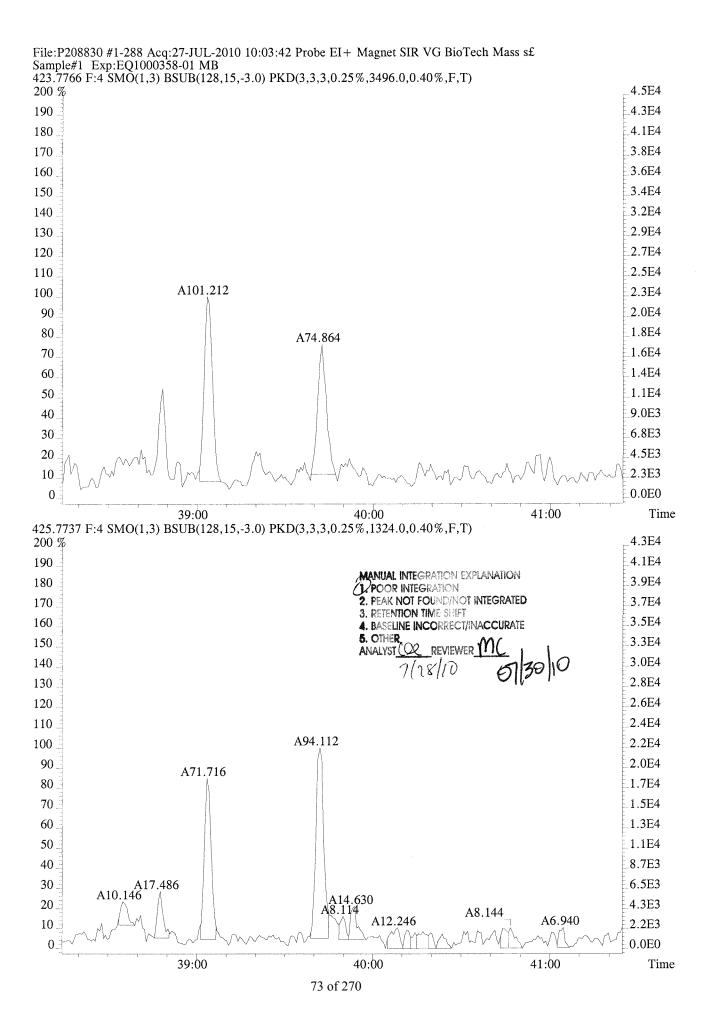



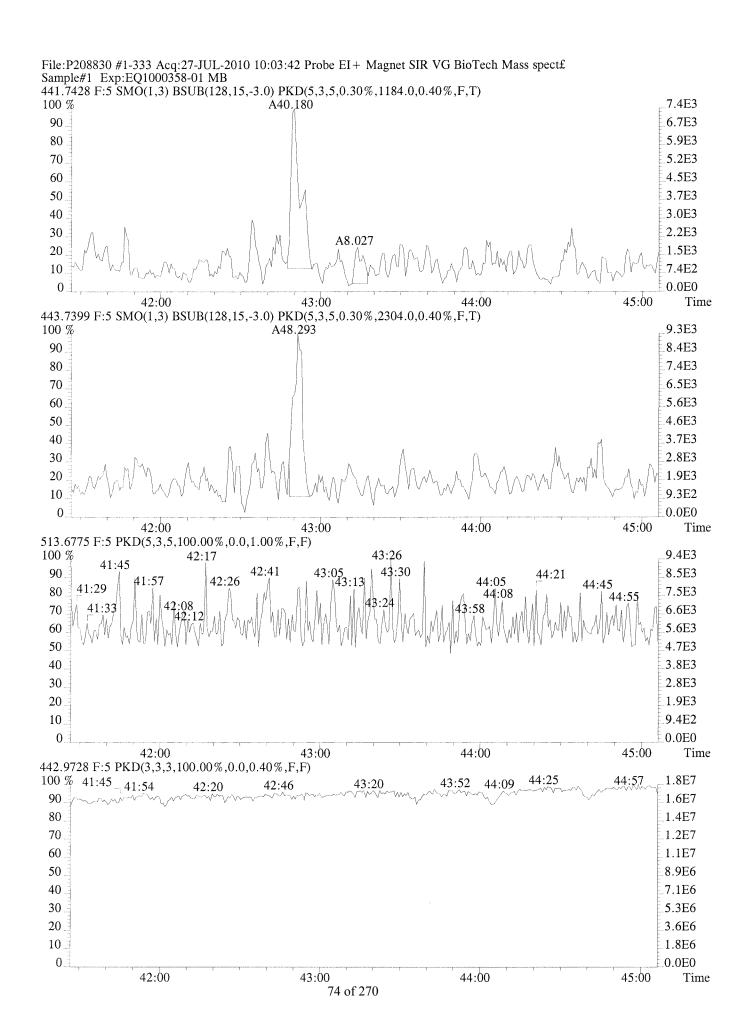



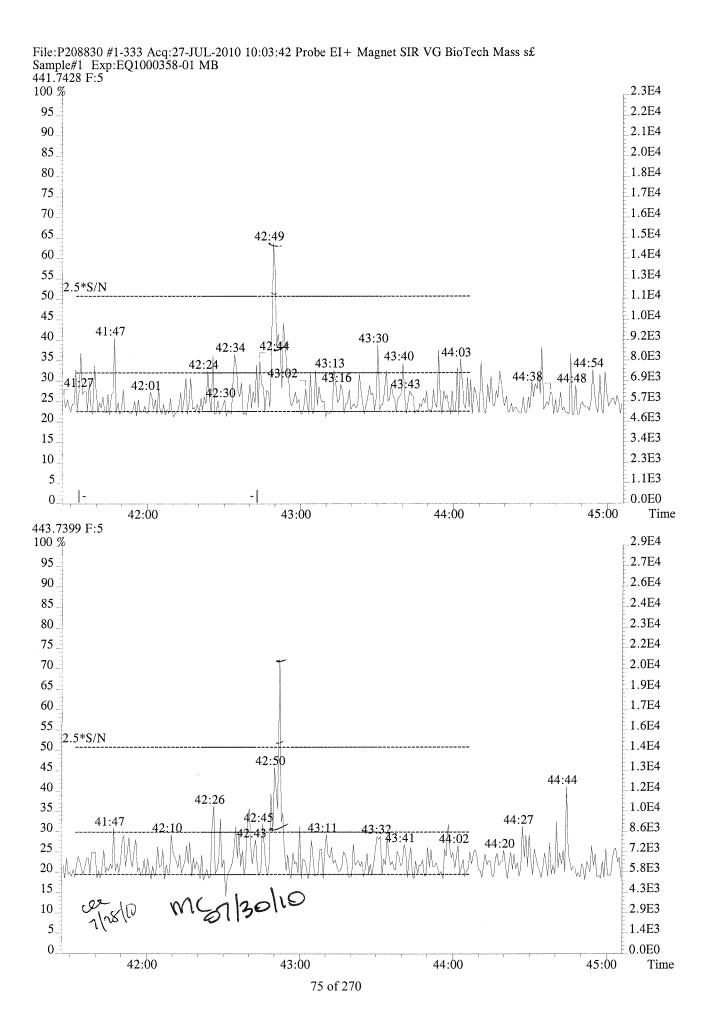



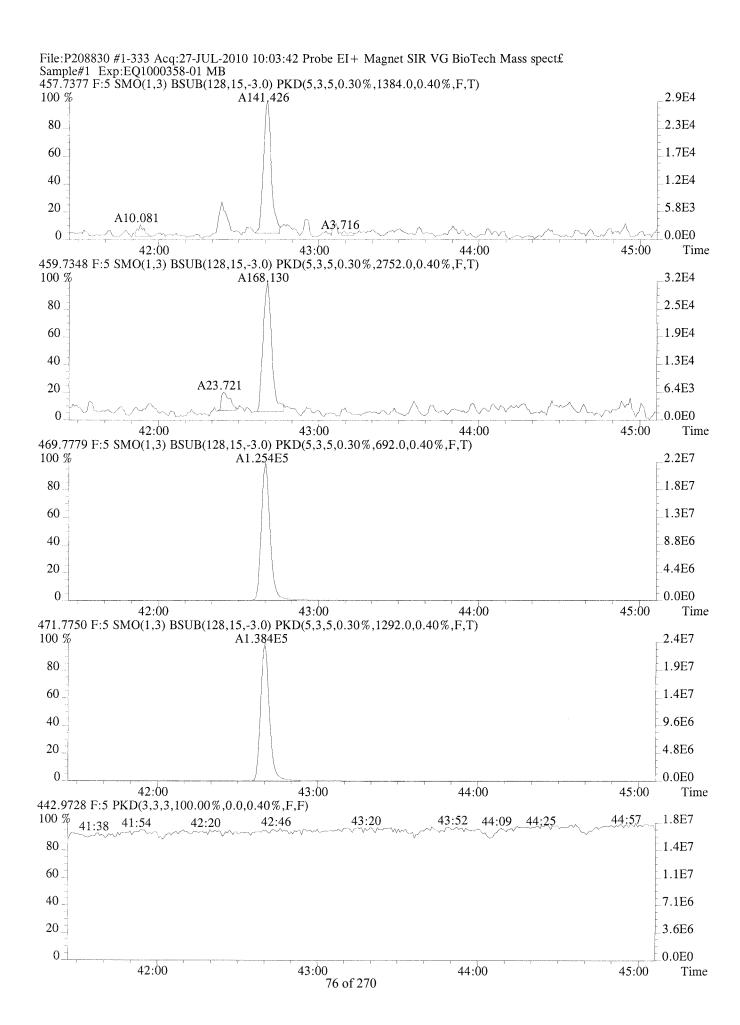













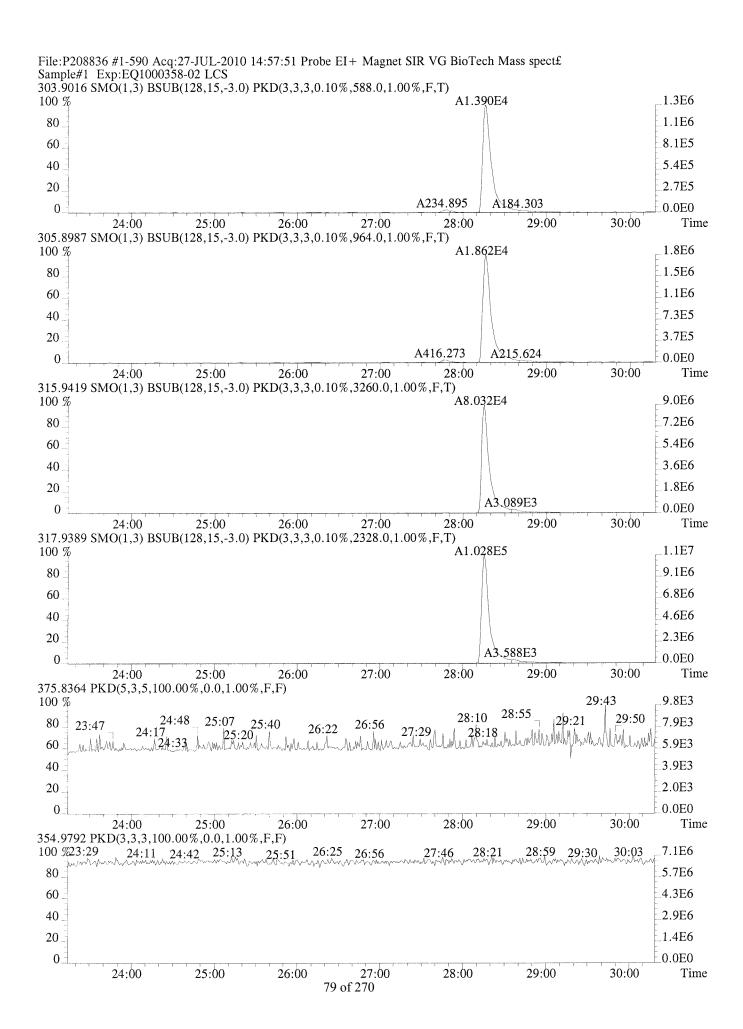

### Columbia Analytical Services, Inc. Sample Response Summary

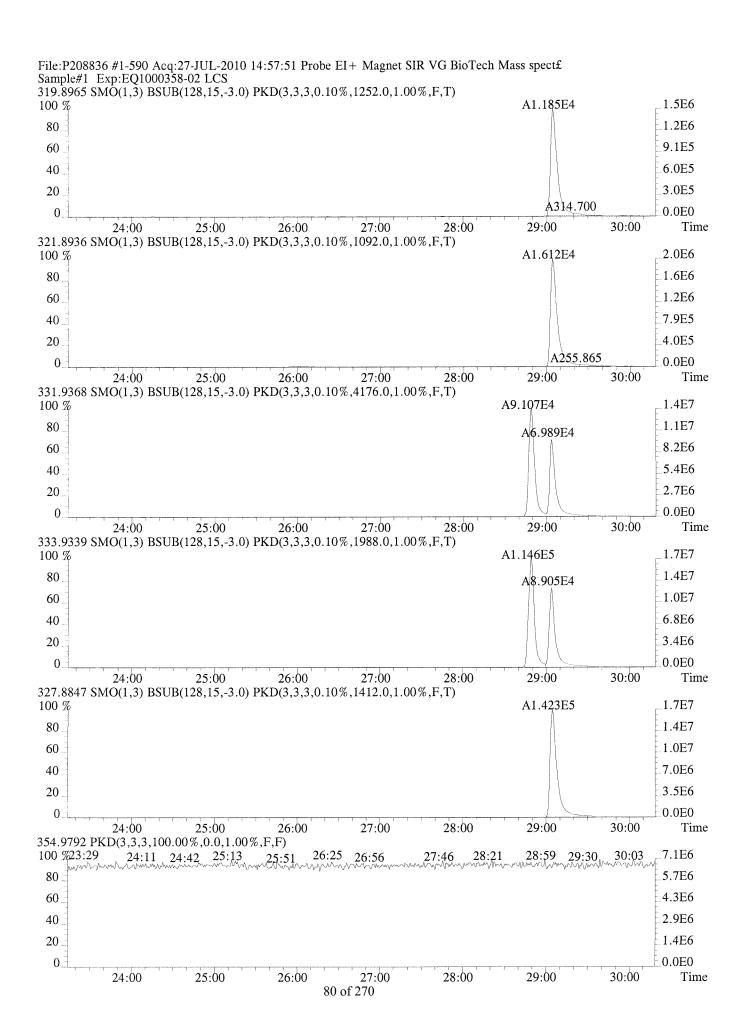
CLIENT ID. LCS

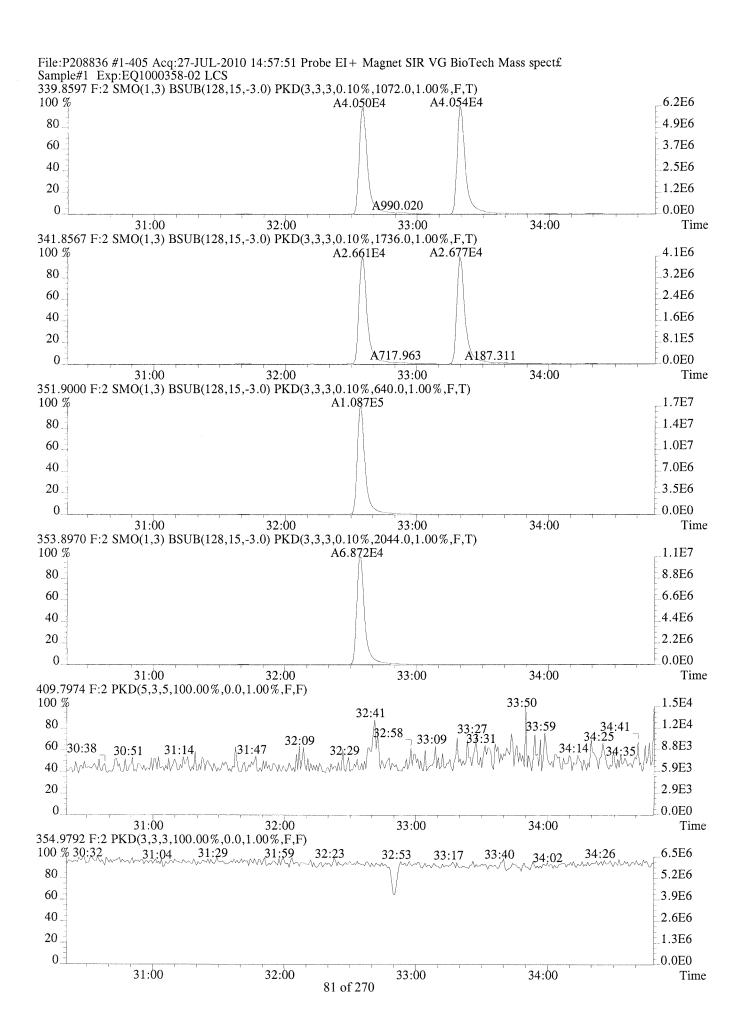
Filename P208836 Acquired: 27-JUL-10 14:57:51 Run #16 Samp: 1 Inj: 1 LAB. ID: EQ1000358-02 Processed: 28-JUL-10 12:27:31 Ratio Mod? RRF Resp 2 Meet Typ Name RT-1 Resp 1 0.831 1 Unk 2,3,7,8-TCDF 28:16 1.390e+04 1.862e+04 0.75 yes no 1.52 0.840 2 Unk 1,2,3,7,8-PeCDF 32:35 4.050e + 042.661e+04 yes no 0.850 3 Unk 2,3,4,7,8-PeCDF | 33:20 4.054e+04 2.677e+04 1.51 yes no 4 Unk 1,2,3,4,7,8-HxCDF | 36:07 3.643e+043.050e + 041.19 yes no 1.072 5 Unk 1,2,3,6,7,8-HxCDF | 36:14 4.046e+04 3.367e + 041.20 yes no 1.128 6 Unk 2,3,4,6,7,8-HxCDF | 36:43 3.475e+042.847e+04 1.22 yes no 1.006 7 Unk 1,2,3,7,8,9-HxCDF | 37:26 2.861e+04 2.312e+04 1.24 yes no 0.864 8 Unk 1,2,3,4,6,7,8-HpCDF | 38:50 2.363e+042.401e+04 0.98 yes no 1.315 1,2,3,4,7,8,9-HpCDF | 40:08 2.245e+04 2.251e+04 1.00 0.970 9 Unk yes no 10 Unk OCDF | 42:52 2.849e+043.211e+04 0.89 yes no 1.103 0.916 2,3,7,8-TCDD | 29:04 1.185e+04 1.612e+04 0.74 11 Unk yes no 1.56 0.869 12 Unk 1,2,3,7,8-PeCDD 33:40 3.424e+04 2.199e+04 yes no 1.25 0.925 13 Unk 1,2,3,4,7,8-HxCDD | 36:49 2.768e+04 2.208e+04 yes no 1.054 1,2,3,6,7,8-HxCDD 36:54 3.179e+04 2.514e+04 1.26 14 Unk yes no 15 Unk 1,2,3,7,8,9-HxCDD 37:11 3.032e+042.450e+04 1.24 yes nol 0.966 16 Unk 1,2,3,4,6,7,8-HpCDD | 39:43 2.027e+04 1.928e+041.05 yes no 0.879 17 Unk OCDD | 42:41 2.561e+04 2.847e+04 0.90 yes no 0.959 18 IS 13C-2,3,7,8-TCDF | 28:15 8.032e+04 1.028e+05 0.78 yes no 1.424 13C-1,2,3,7,8-PeCDF | 32:35 1.087e+05 6.872e+04 1.58 1.263 19 IS yes no 20 IS 13C-1,2,3,4,7,8-HxCDF | 36:07 1.186e+05 2.261e+05 0.52 yes no 1.279 21 IS 13C-1,2,3,4,6,7,8-HpCDF | 38:49 6.652e+04 1.496e+05 0.44 yes no 0.902 22 IS 13C-2,3,7,8-TCDD 29:04 6.989e + 048.905e+04 0.78 1.057 yes no 23 IS 13C-1,2,3,7,8-PeCDD | 33:39 8.232e+04 5.253e+04 1.57 0.873 ves no 13C-1,2,3,6,7,8-HxCDD | 36:53 1.590e+05 1.274e + 051.25 0.997 24 IS yes nol 13C-1,2,3,4,6,7,8-HpCDD 39:42 1.155e+05 1.103e+051.05 0.833 25 IS yes no 13C-OCDD | 42:41 1.248e + 051.372e+05 0.91 0.733 26 IS yes no 27 RS/RT 9.107e+04 0.79 13C-1,2,3,4-TCDD 28:49 1.146e+05 yes no 28 RS/RT 13C-1,2,3,7,8,9-HxCDD 37:11 1.107e+05 1.27 no 8.743e+04yes 29 C/Up 37Cl-2,3,7,8-TCDD 29:04 1.423e+05 nol 0.983 SUM AREA 30 Tot Total Tetra-Furans 28:16 3.252e+04 0.75 0.831 yes 31 Tot Total Tetra-Dioxins 29:04 0.74 0.916 2.797e+04 yes 0.845 Total Penta-Furans 32:35 1.52 32 Tot 1.344e+05yes Total Penta-Dioxins 33:40 5.623e+04 1.56 0.869 33 Tot yes Total Hexa-Furans 36:07 1.19 1.018 34 Tot 2.560e+05 yes 35 Tot Total Hexa-Dioxins 36:49 1.615e+05 1.25 yes 0.982 36 Tot Total Hepta-Furans 38:50 9.260e+040.98 yes 1.143 37 Tot Total Hepta-Dioxins 39:43 3.955e+04 1.05 0.879 yes

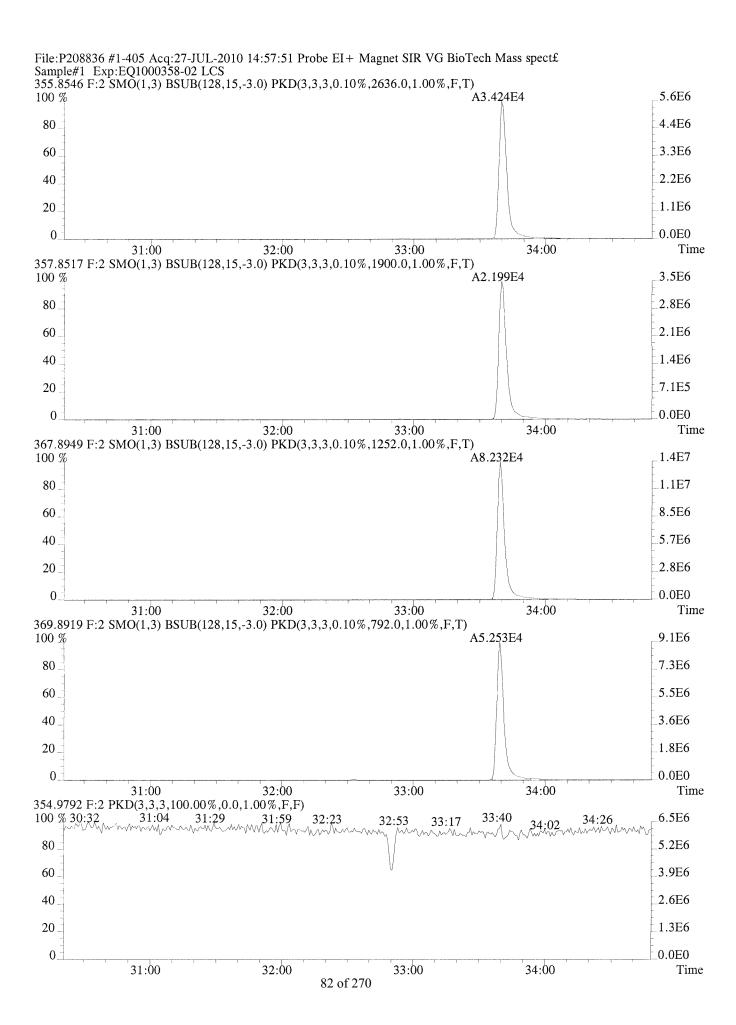
Columbia Analytical Services, Inc. 19408 Park Row., Suite 320 Houston, TX 77084 Office(713)266-1599. Fax(713)266-0130

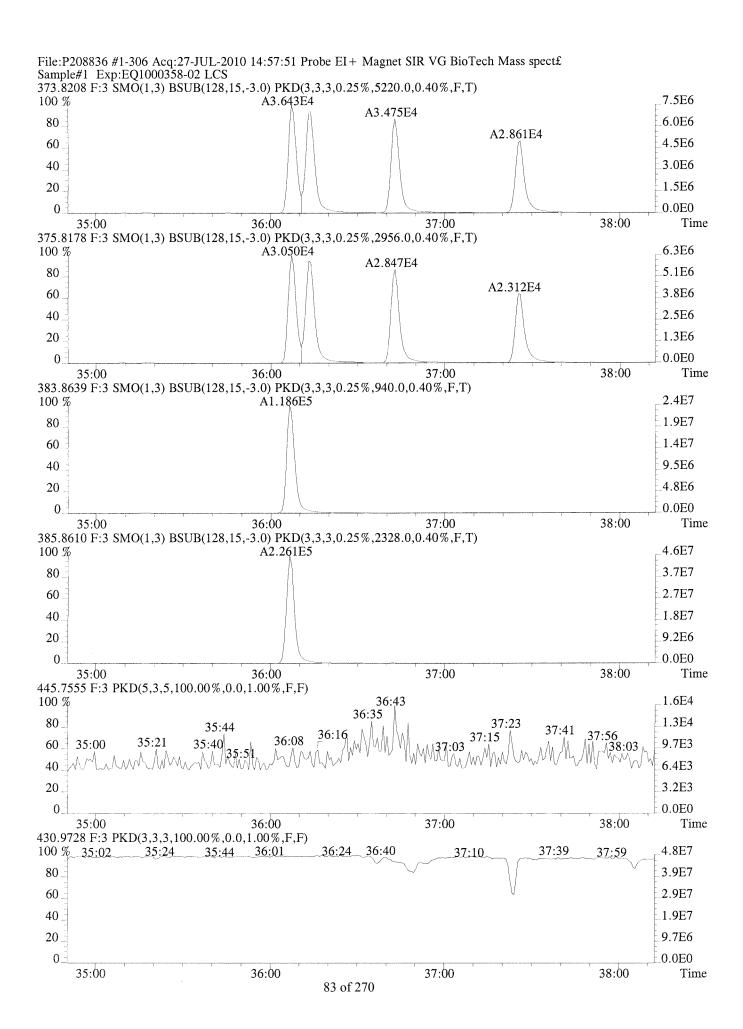
#### Columbia Analytical Services, Inc. Signal/Noise Height Ratio Summary

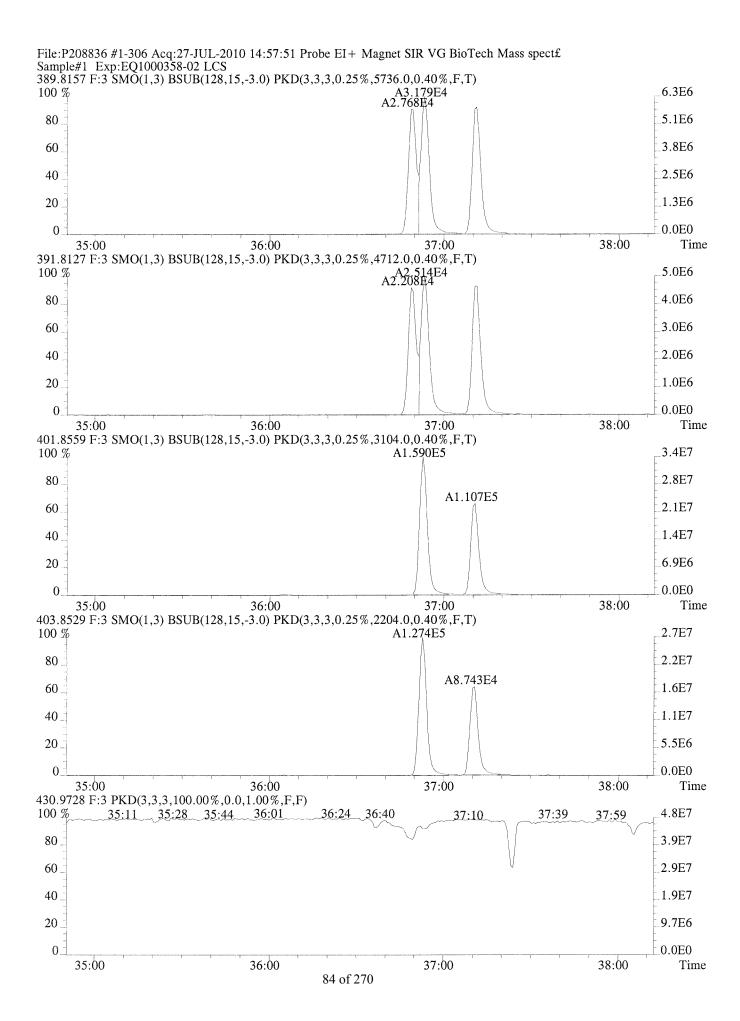

CLIENT ID. LCS

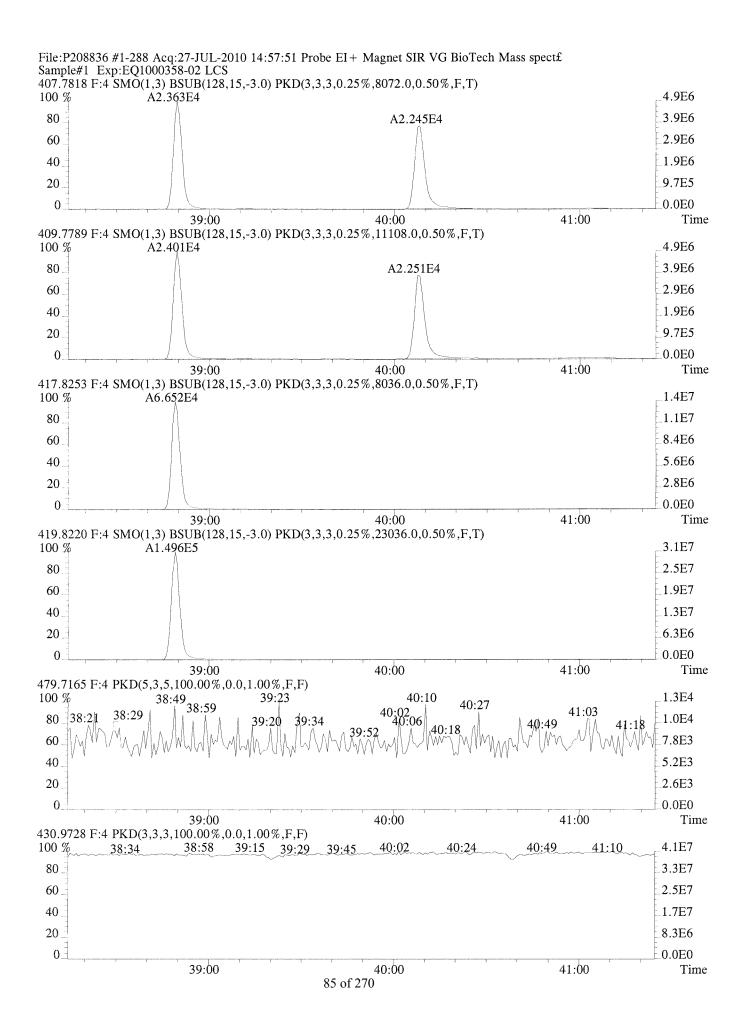

Run #16 Filename P208836 Samp: 1 Inj: 1 Acquired: 27-JUL-10 14:57:51 Processed: 28-JUL-10 12:27:311 LAB. ID: EQ1000358-02

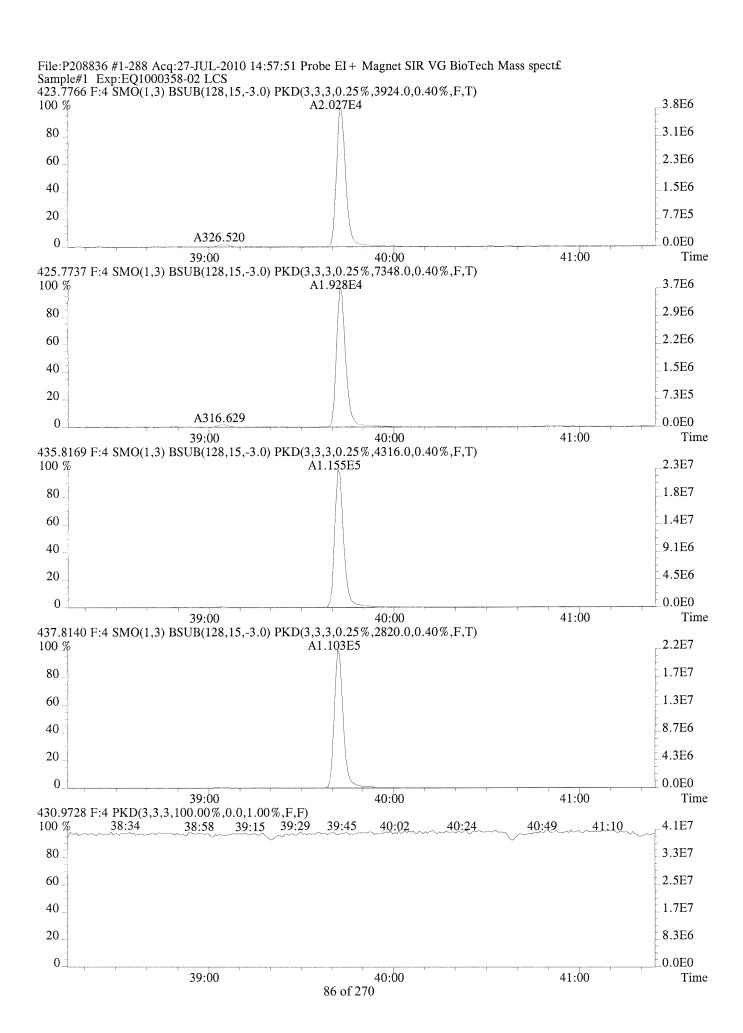

	Name	Signal 1	Noise 1	S/N Rat.1	Signal 2	Noise 2  S	/N Rat.2
1	2,3,7,8-TCDF	1.35e+06	5.88e+02	2.3e+03	1.83e+06	9.64e+02	1.9e+03
2	1,2,3,7,8-PeCDF	6.11e+06	1.07e+03	5.7e+03	4.03e+06	1.74e+03	2.3e+03
3	2,3,4,7,8-PeCDF	6.15e+06	1.07e+03	5.7e+03	4.06e+06	1.74e+03	2.3e+03
4	1,2,3,4,7,8-HxCDF	7.53e+06	5.22e+03	1.4e+03	6.32e+06	2.96e+03	2.1e+03
5	1,2,3,6,7,8-HxCDF	7.07e+06	5.22e+03	1.4e+03	5.98e+06	2.96e+03	2.0e+03
6	2,3,4,6,7,8-HxCDF	6.55e+06	5.22e+03	1.3e+03	5.46e+06	2.96e+03	1.8e+03
7	1,2,3,7,8,9-HxCDF	5.00e+06	5.22e+03	9.6e+02	4.03e+06	2.96e+03	1.4e+03
8	1,2,3,4,6,7,8-HpCDF	4.84e+06	8.07e+03	6.0e+02	4.86e+06	1.11e+04	4.4e+02
9	1,2,3,4,7,8,9-HpCDF	3.73e+06	8.07e+03	4.6e+02	3.76e+06	1.11e+04	3.4e+02
10	OCDF	4.53e+06	4.82e+03		5.03e+06	4.88e+03	1.0e+03
	'	,		'	'		
11	2,3,7,8-TCDD	1.51e+06	1.25e+03	1.2e+03	1.98e+06	1.09e+03	1.8e+03
12	1,2,3,7,8-PeCDD	5.56e+06	2.64e+03	2.1e+03	3.55e+06	1.90e+03	1.9e+03
13	1,2,3,4,7,8-HxCDD	5.73e+06	5.74e+03	1.0e+03	4.61e+06	4.71e+03	9.8e+02
14	1,2,3,6,7,8-HxCDD	6.31e+06	5.74e+03	1.1e+03	5.02e+06	4.71e+03	1.1e+03
15	1,2,3,7,8,9-HxCDD	5.81e+06	5.74e+03	1.0e+03	4.67e+06	4.71e+03	9.9e+02
16	1,2,3,4,6,7,8-HpCDD	3.82e+06	3.92e+03	9.7e+02	3.66e+06	7.35e+03	5.0e+02
17	OCDD	4.09e+06	5.25e+03	7.8e+02	4.63e+06	2.00e+04	2.3e+02
	·			•	·	•	
18	13C-2,3,7,8-TCDF	8.96e+06	3.26e+03	2.7e+03	1.14e+07	2.33e+03	4.9e+03
19	13C-1,2,3,7,8-PeCDF	1.74e+07	6.40e+02	2.7e+04	1.10e+07	2.04e+03	5.4e+03
20	13C-1,2,3,4,7,8-HxCDF	2.39e+07	9.40e+02	2.5e+04	4.58e+07	2.33e+03	2.0e+04
21	13C-1,2,3,4,6,7,8-HpCDF	1.40e+07	8.04e+03	1.7e+03	3.14e+07	2.30e+04	1.4e+03
22	13C-2,3,7,8-TCDD	9.76e+06	4.18e+03	2.3e+03	1.24e+07	1.99e+03	6.2e+03
23	13C-1,2,3,7,8-PeCDD	1.42e+07	1.25e+03	1.1e+04	9.11e+06	7.92e+02	1.1e+04
24	13C-1,2,3,6,7,8-HxCDD	3.43e+07	3.10e+03	1.1e+04	2.74e+07	2.20e+03	1.2e+04
25	13C-1,2,3,4,6,7,8-HpCDD	2.27e+07	4.32e+03	5.3e+03	2.17e+07	2.82e+03	7.7e+03
26	13C-OCDD	2.11e+07	3.12e+03	6.8e+03	2.33e+07	4.26e+03	5.5e+03
27	13C-1,2,3,4-TCDD	1.36e+07	4.18e+03	3.3e+03	1.69e+07		8.5e+03
28	13C-1,2,3,7,8,9-HxCDD	2.26e+07	3.10e+03	7.3e+03	1.76e+07	2.20e+03	8.0e+03
29	37Cl-2,3,7,8-TCDD	1.74e+07	1.41e+03	1.2e+04			

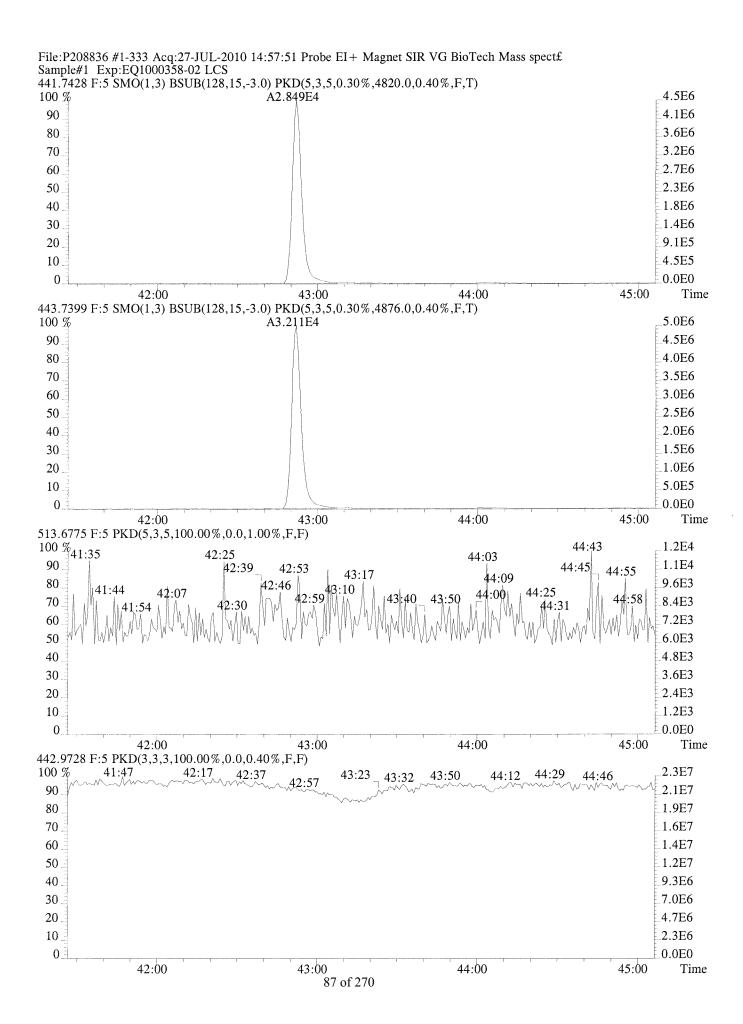

Houston, TX 77084

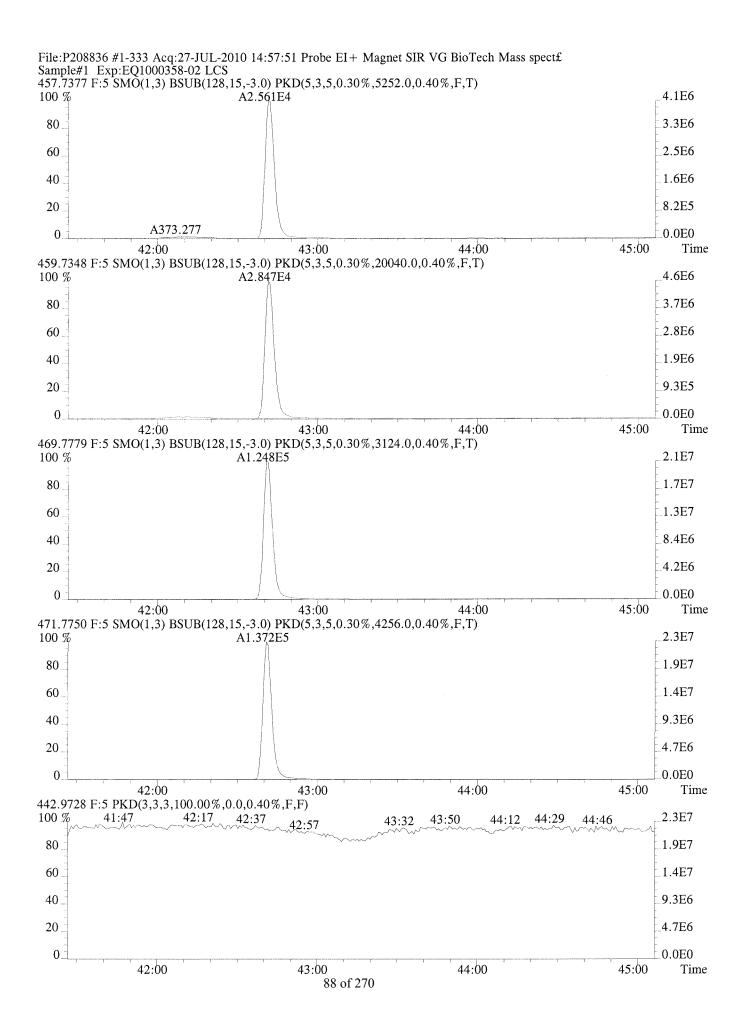

Office: (713) 266-1599. Fax: (713) 266-0130














### Columbia Analytical Services, Inc. Sample Response Summary

CLIENT ID. DLCS

Acquired: 27-JUL-10 15:46:18 Run #17 Filename P208837 Samp: 1 Inj: 1 Processed: 28-JUL-10 12:29:29 LAB. ID: EQ1000358-03 Mod? RRF Name RT-1 Resp 1 Resp 2 Ratio Meet Тур 1 Unk 2,3,7,8-TCDF | 28:17 1.380e + 041.832e+04 0.75 ves yes 0.831 2 Unk 1,2,3,7,8-PeCDF 32:35 4.268e+04 2.833e+04 1.51 yes no 0.840 1.48 0.850 3 Unk 2,3,4,7,8-PeCDF | 33:20 4.515e+04 3.046e+04yes no 4 Unk 1,2,3,4,7,8-HxCDF | 36:08 3.895e+04 3.235e+041.20 yes no 1.072 5 Unk 1,2,3,6,7,8-HxCDF | 36:14 4.496e+04 3.760e+04 1.20 yes no 1.128 1.23 1.006 6 Unk 2,3,4,6,7,8-HxCDF | 36:43 3.724e + 043.027e+04yes no 2.627e+04 1.22 0.864 7 Unk 1,2,3,7,8,9-HxCDF 37:26 3.217e+04 yes no 2.707e+04 1.01 yes 1.315 8 Unk 1,2,3,4,6,7,8-HpCDF | 38:50 2.724e+04no 0.970 2.634e+04 2.672e+04 0.99 9 Unk 1,2,3,4,7,8,9-HpCDF | 40:08 yes no OCDF | 42:52 3.547e+04 4.012e+04 0.88 1.103 10 Unk yes no 1.269e+04 0.916 1.661e+04 11 Unk 2,3,7,8-TCDD 29:05 0.76 yes yes 2.393e+04 1.57 0.869 12 Unk 1,2,3,7,8-PeCDD 33:41 3.757e + 04yes no 2.744e+04 1.26 0.925 1,2,3,4,7,8-HxCDD | 36:50 2.182e+04 yes 13 Unk no 1.25 1.054 14 Unk 1,2,3,6,7,8-HxCDD 36:53 3.636e + 042.905e+04 yes no 1.25 0.966 15 Unk 1,2,3,7,8,9-HxCDD 37:11 3.387e + 042.718e+04ves nol 2.325e+04 2.219e+04 1.05 nol 0.879 16 Unk 1,2,3,4,6,7,8-HpCDD | 39:43 yes 0.89 0.959 17 Unk OCDD | 42:41 3.026e+04 3.417e+04 yes no 0.77 1.424 18 IS 13C-2,3,7,8-TCDF 28:15 7.793e+041.007e+05 yes nol 1.263 19 IS 13C-1,2,3,7,8-PeCDF | 32:35 1.153e+05 7.285e+041.58 yes no 20 IS 13C-1,2,3,4,7,8-HxCDF | 36:07 1.257e+05 2.406e+05 0.52 yes no 1.279 13C-1,2,3,4,6,7,8-HpCDF | 38:50 7.384e+041.664e+05 0.44 no 0.902 21 IS yes 0.77 1.057 22 IS 13C-2,3,7,8-TCDD 29:04 6.798e+04 8.773e+04yes no 23 IS 1.58 0.873 13C-1,2,3,7,8-PeCDD 33:39 8.995e+04 5.695e+04 yes no 0.997 1.392e+05 1.25 24 IS 13C-1,2,3,6,7,8-HxCDD 36:53 1.738e+05 yes no 0.833 25 IS 13C-1,2,3,4,6,7,8-HpCDD 39:42 1.327e+05 1.258e+05 1.05 yes no 0.733 26 IS 13C-OCDD 42:41 1.497e+05 1.654e+05 0.91 yes nol 27 RS/RT 13C-1,2,3,4-TCDD 28:49 8.694e+04 1.104e+05 0.79 yes no 28 RS/RT 13C-1,2,3,7,8,9-HxCDD 37:11 1.196e+05 9.461e+04 1.26 yes no 37C1-2,3,7,8-TCDD | 29:05 0.983 29 C/Up 1.448e+05 no SUM AREA 30 Tot Total Tetra-Furans 28:17 3.212e+04 0.75 0.831 yes 0.76 Total Tetra-Dioxins 29:05 0.916 31 Tot 2.931e+04 yes 32 Tot Total Penta-Furans 32:35 1.466e+05 1.51 yes 0.845 0.869 33 Tot Total Penta-Dioxins 33:41 6.150e+04 1.57 yes

Columbia Analytical Services, Inc. 19408 Park Row., Suite 320 Houston, TX 77084 Office(713)266-1599. Fax(713)266-0130

34 Tot

35 Tot

36 Tot

37 Tot

Total Hexa-Furans 36:08

Total Hexa-Dioxins 36:50

Total Hepta-Furans 38:50

Total Hepta-Dioxins 39:43

2.798e + 05

1.757e+05

1.074e + 05

4.545e+04

1.20

1.26

1.01

1.05

yes

yes

yes

yes

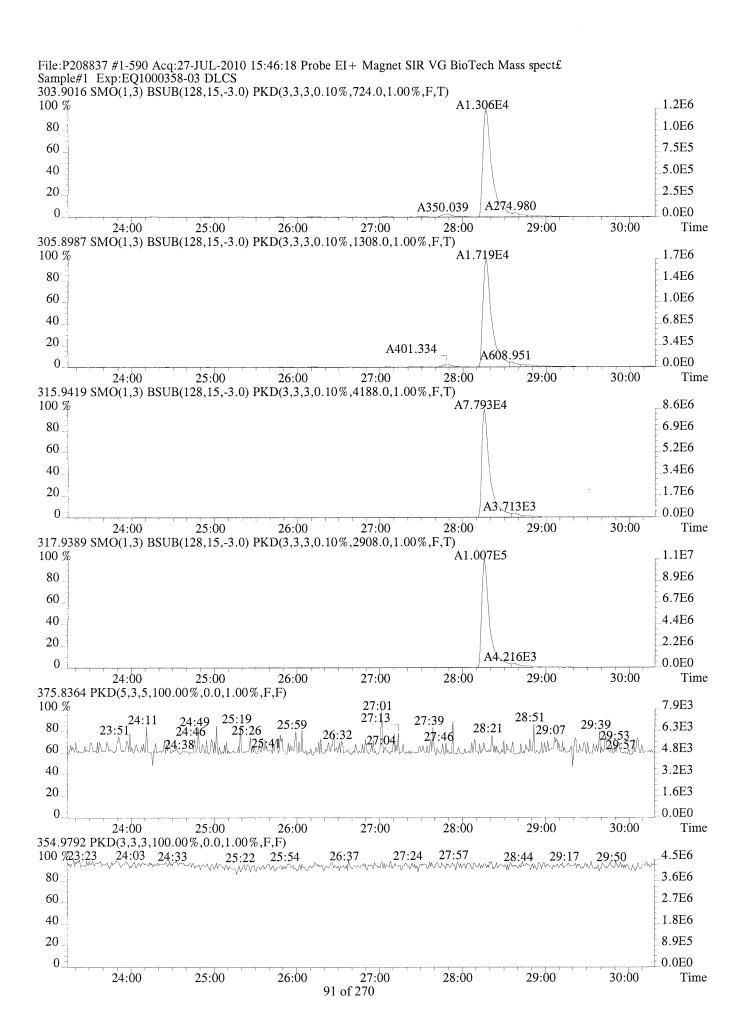
1.018

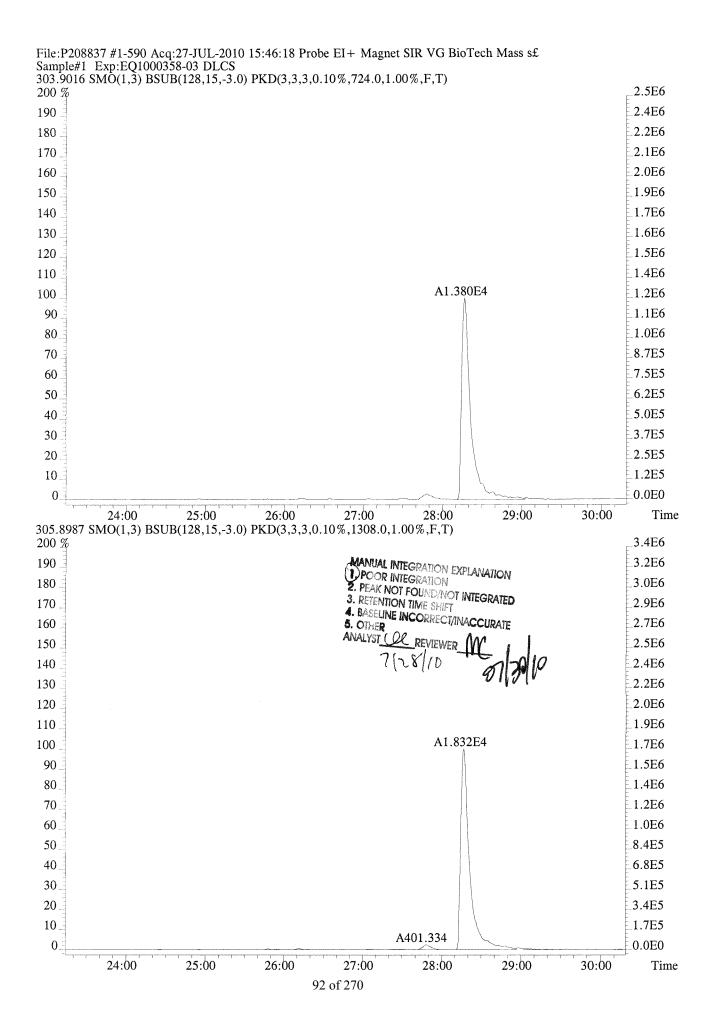
0.982

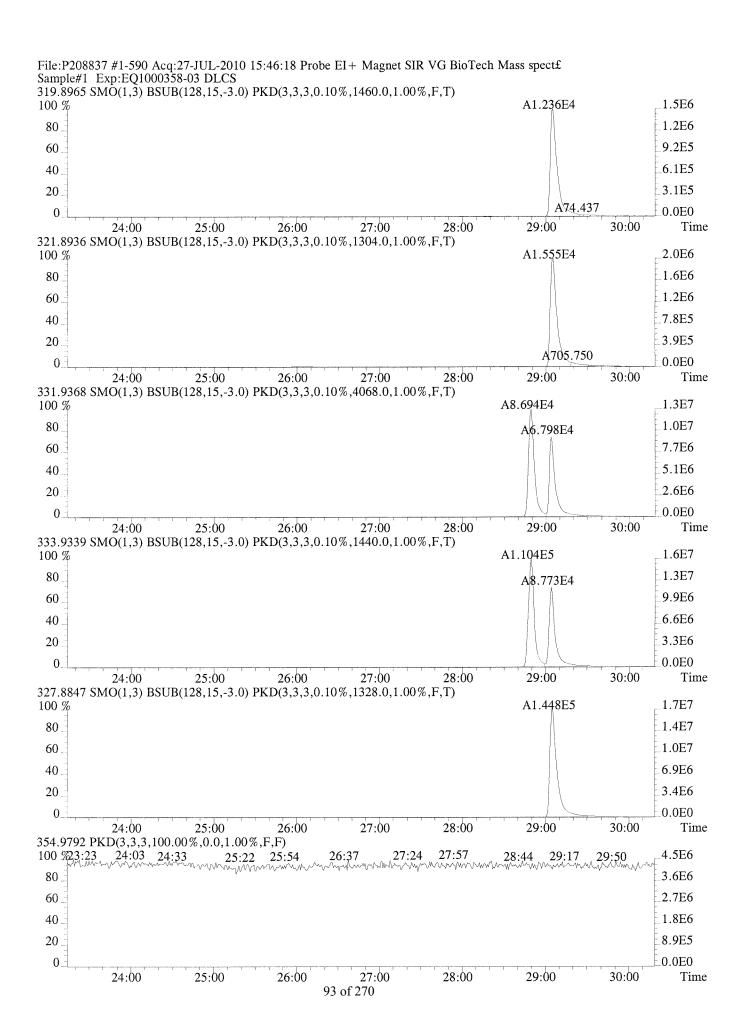
1.143

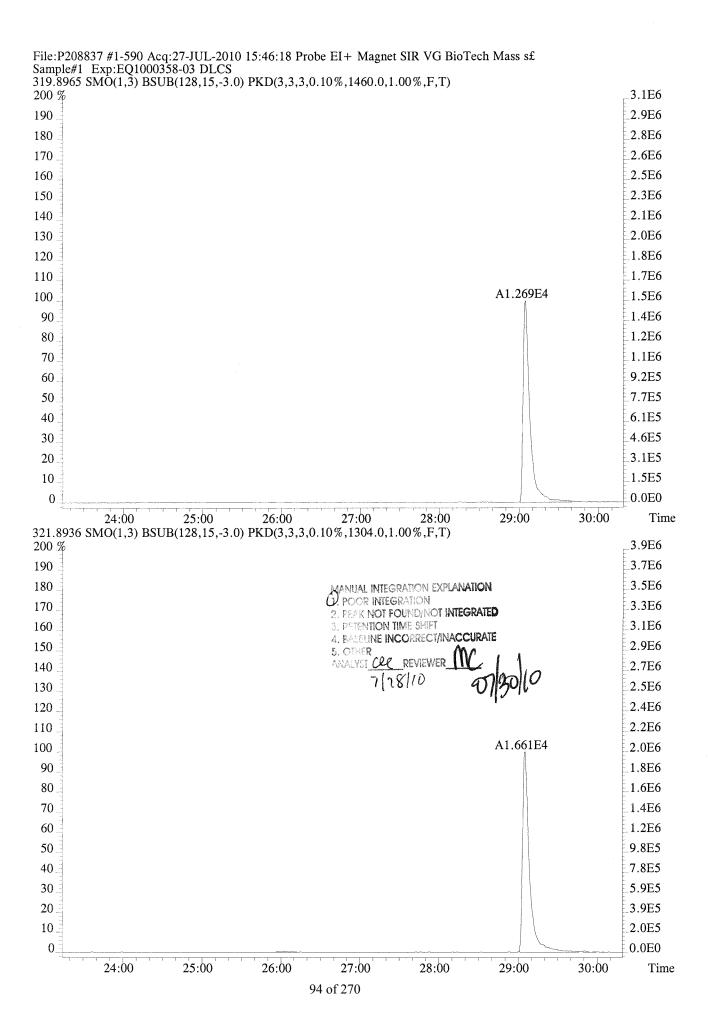
0.879

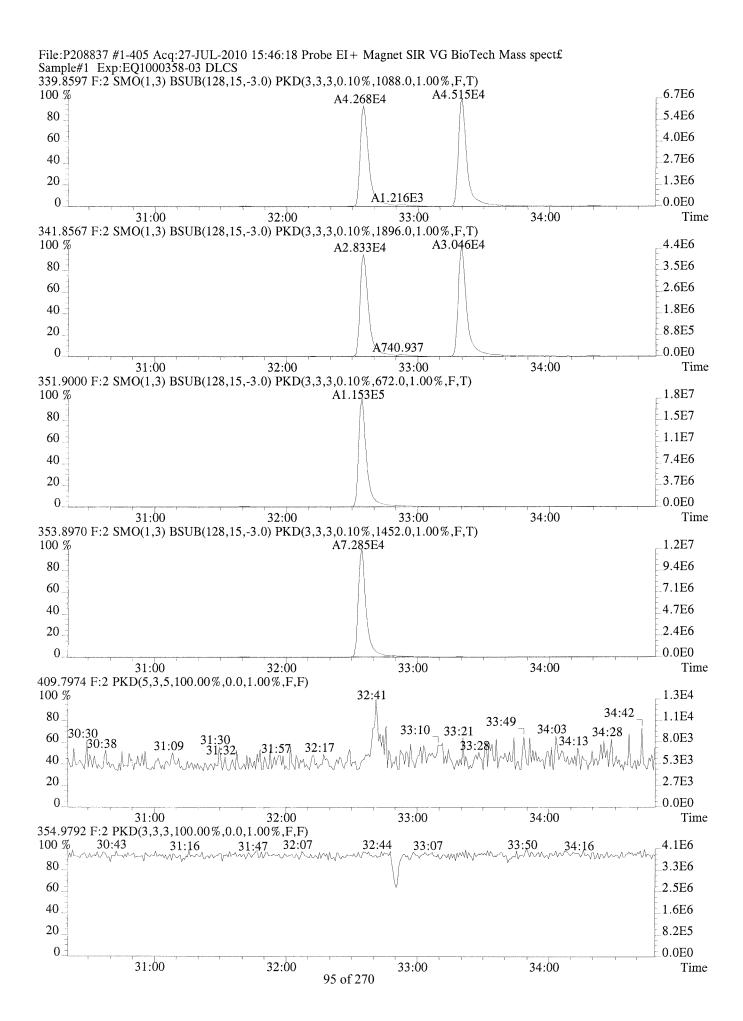
#### Columbia Analytical Services, Inc. Signal/Noise Height Ratio Summary

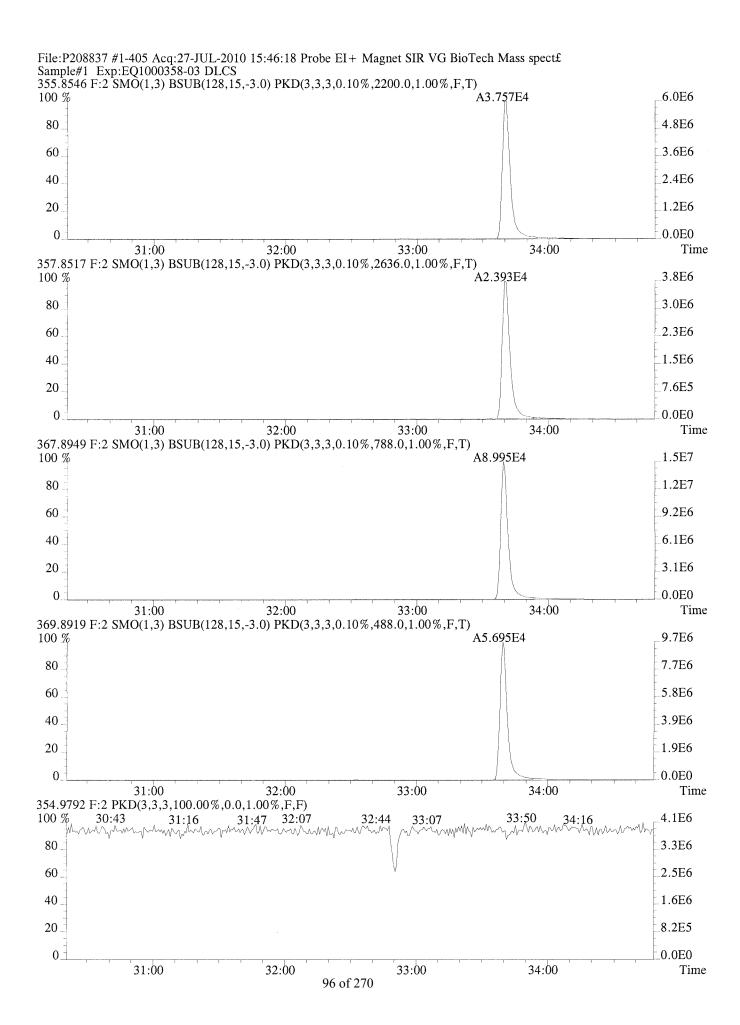

CLIENT ID. DLCS

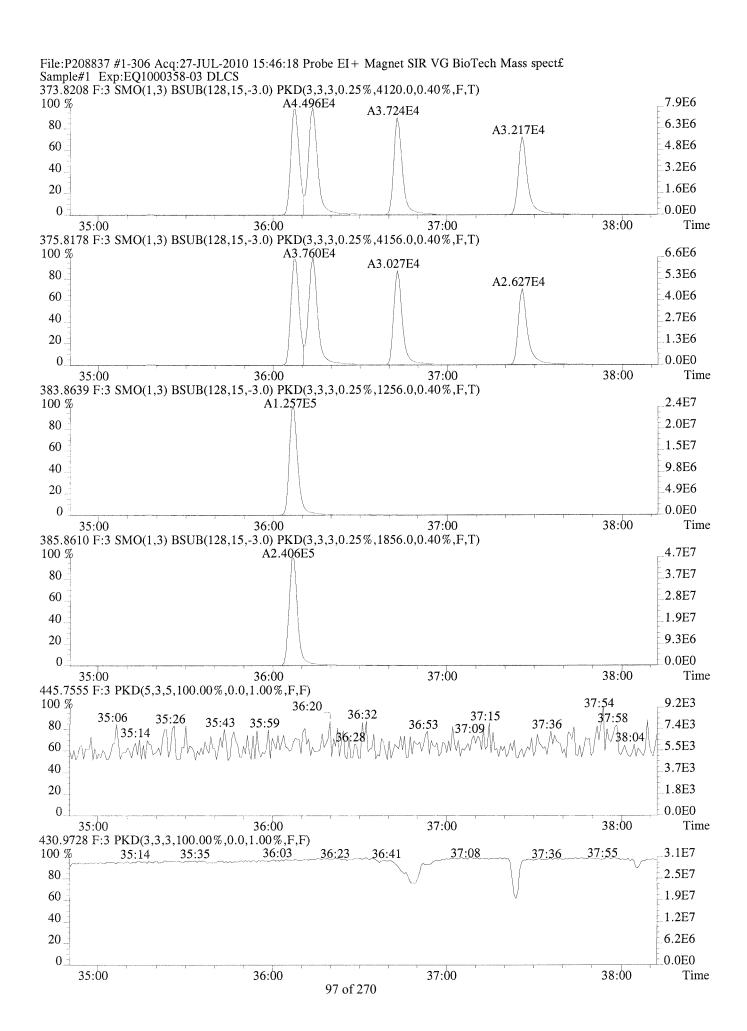

Run #17 Filename P208837 Samp: 1 Inj: 1 Acquired: 27-JUL-10 15:46:18 Processed: 28-JUL-10 12:29:291 LAB. ID: EQ1000358-03

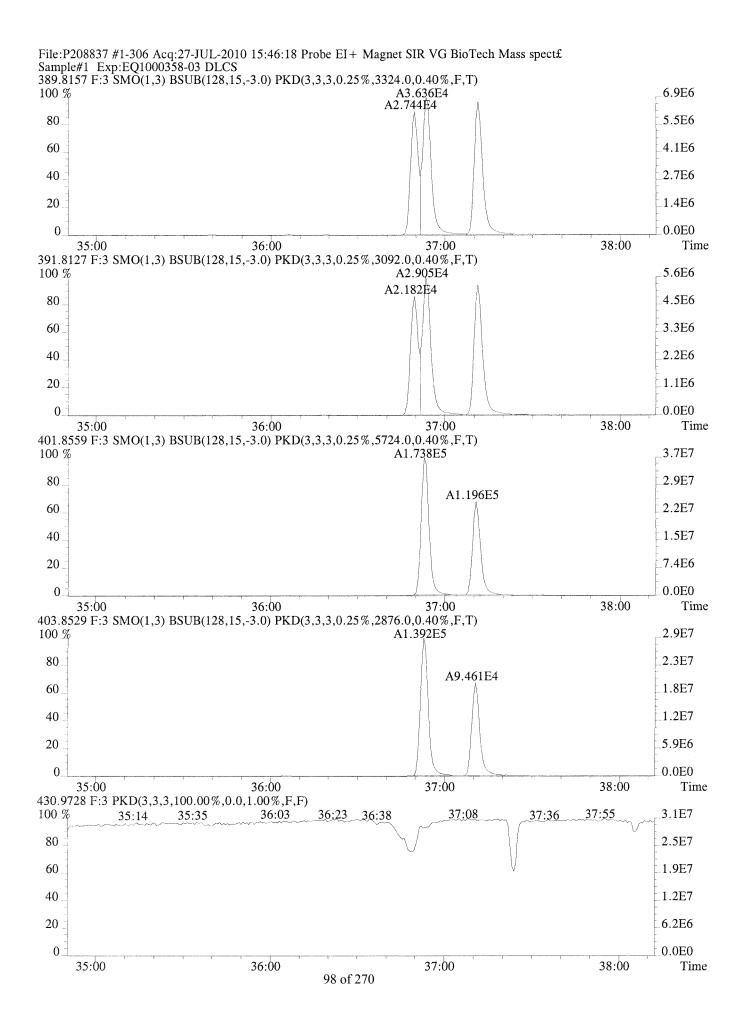

	Name	Signal 1	Noise 1	S/N Rat.1	Signal 2	Noise 2  S	/N Rat.2
1	2,3,7,8-TCDF	1.25e+06	7.24e+02	1.7e+03	1.69e+06	1.31e+03	1.3e+03
2	1,2,3,7,8-PeCDF	6.28e+06	1.09e+03	5.8e+03	4.18e+06	1.90e+03	2.2e+03
3	2,3,4,7,8-PeCDF	6.72e+06	1.09e+03	6.2e+03	4.40e+06	1.90e+03	2.3e+03
4	1,2,3,4,7,8-HxCDF	7.78e+06	4.12e+03	1.9e+03	6.51e+06	4.16e+03	1.6e+03
5	1,2,3,6,7,8-HxCDF	7.91e+06	4.12e+03	1.9e+03	6.64e+06	4.16e+03	1.6e+03
6	2,3,4,6,7,8-HxCDF	7.15e+06	4.12e+03	1.7e+03	5.82e+06	4.16e+03	1.4e+03
7	1,2,3,7,8,9-HxCDF	5.72e+06	4.12e+03	1.4e+03	4.69e+06	4.16e+03	1.1e+03
8	1,2,3,4,6,7,8-HpCDF	5.41e+06	1.64e+04	3.3e+02	5.42e+06	2.37e+04	2.3e+02
9	1,2,3,4,7,8,9-HpCDF	4.47e+06	1.64e+04	2.7e+02	4.58e+06	2.37e+04	1.9e+02
10	OCDF	5.49e+06	2.47e+03	2.2e+03	6.12e+06	3.02e+03	2.0e+03
11	2,3,7,8-TCDD	1.53e+06	1.46e+03	1.1e+03	1.96e+06	1.30e+03	1.5e+03
12	1,2,3,7,8-PeCDD	5.96e+06	2.20e+03	2.7e+03	3.80e+06	2.64e+03	1.4e+03
13	1,2,3,4,7,8-HxCDD	6.12e+06	3.32e+03	1.8e+03	4.78e+06	3.09e+03	1.5e+03
14	1,2,3,6,7,8-HxCDD	6.85e+06	3.32e+03	2.1e+03	5.56e+06	3.09e+03	1.8e+03
15	1,2,3,7,8,9-HxCDD	6.62e+06	3.32e+03	2.0e+03	5.24e+06	3.09e+03	1.7e+03
16	1,2,3,4,6,7,8-HpCDD	4.47e+06	6.60e+03	6.8e+02	4.27e+06	4.68e+03	9.1e+02
17	OCDD	4.89e+06	2.57e+03	1.9e+03	5.53e+06	3.47e+03	1.6e+03
18	13C-2,3,7,8-TCDF	8.59e+06	4.19e+03	2.1e+03	1.11e+07	2.91e+03	3.8e+03
19	13C-1,2,3,7,8-PeCDF	1.84e+07	6.72e+02	2.7e+04	1.18e+07	1.45e+03	8.1e+03
20	13C-1,2,3,4,7,8-HxCDF	2.44e+07	1.26e+03	1.9e+04	4.67e+07	1.86e+03	2.5e+04
21	13C-1,2,3,4,6,7,8-HpCDF	1.49e+07	3.71e+03	4.0e+03	3.36e+07	1.24e+04	2.7e+03
22	13C-2,3,7,8-TCDD	9.53e+06	4.07e+03	2.3e+03	1.20e+07	1.44e+03	8.4e+03
23	13C-1,2,3,7,8-PeCDD	1.53e+07	7.88e+02	1.9e+04	9.67e+06	4.88e+02	2.0e+04
24	13C-1,2,3,6,7,8-HxCDD	3.67e+07	5.72e+03	6.4e+03	2.92e+07	2.88e+03	1.0e+04
25		2.63e+07	4.17e+03	6.3e+03	2.45e+07	2.35e+03	1.0e+04
26	13C-OCDD	2.53e+07	2.71e+03	9.3e+03	2.82e+07	2.48e+03	1.1e+04
27	13C-1,2,3,4-TCDD	1.29e+07	4.07e+03	3.2e+03	1.64e+07	1.44e+03	1.1e+04
28	13C-1,2,3,7,8,9-HxCDD	2.49e+07	5.72e+03	4.3e+03	1.96e+07	2.88e+03	6.8e+03
29	37C1-2,3,7,8-TCDD	1.72e+07	1.33e+03	1.3e+04			

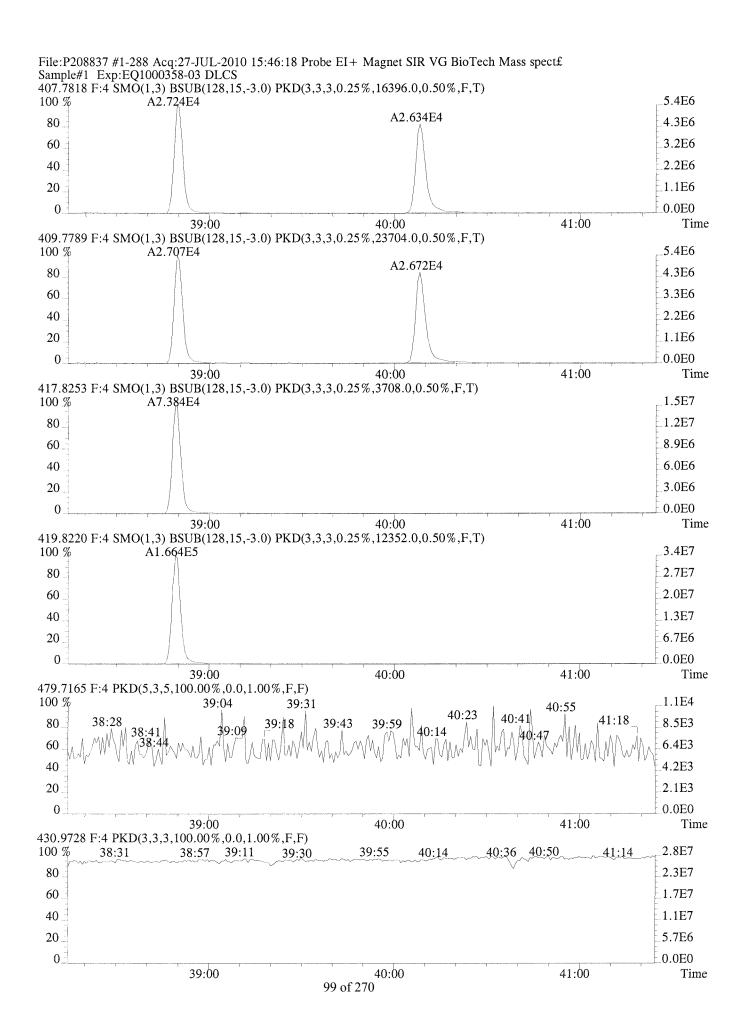

Houston, TX 77084

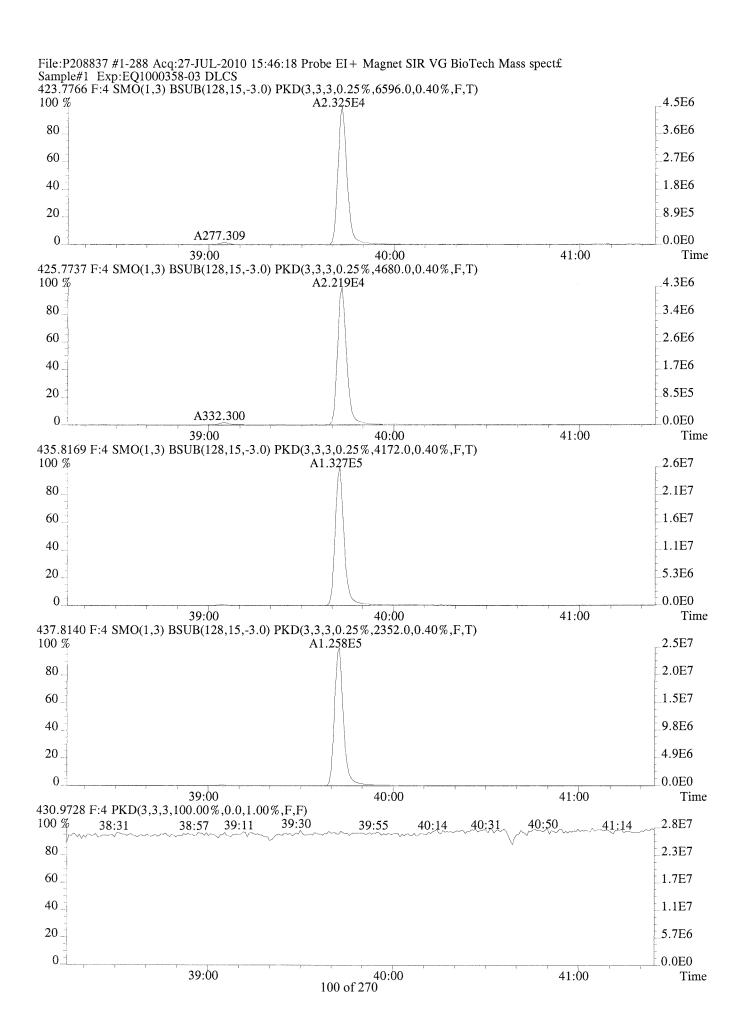

Office: (713)266-1599. Fax: (713)266-0130

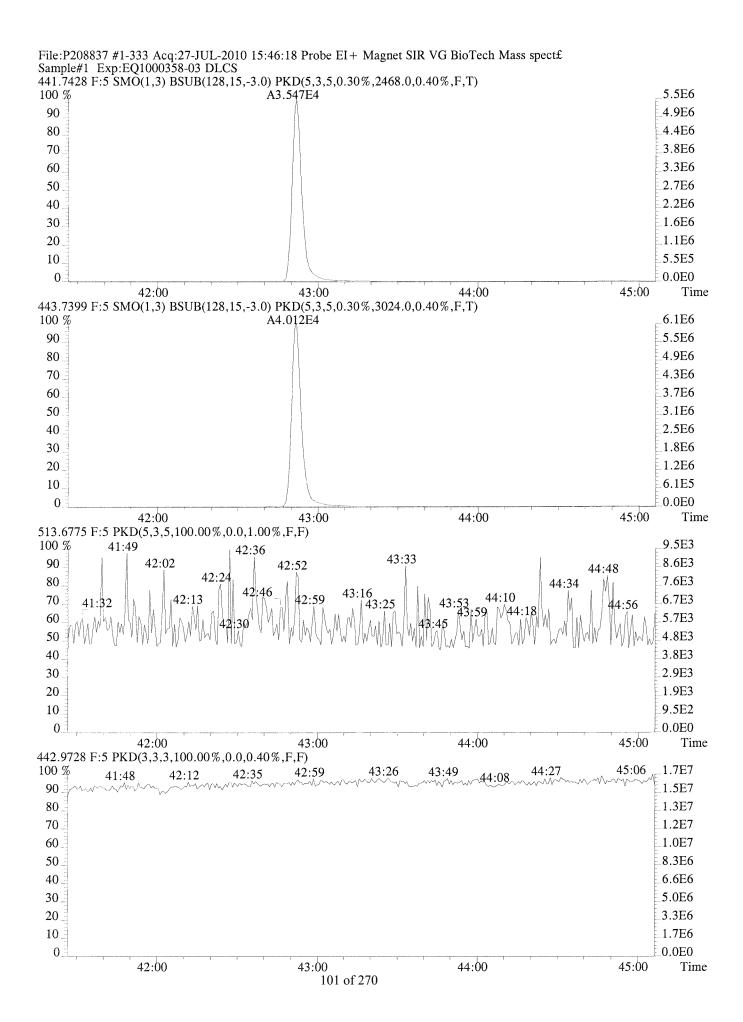


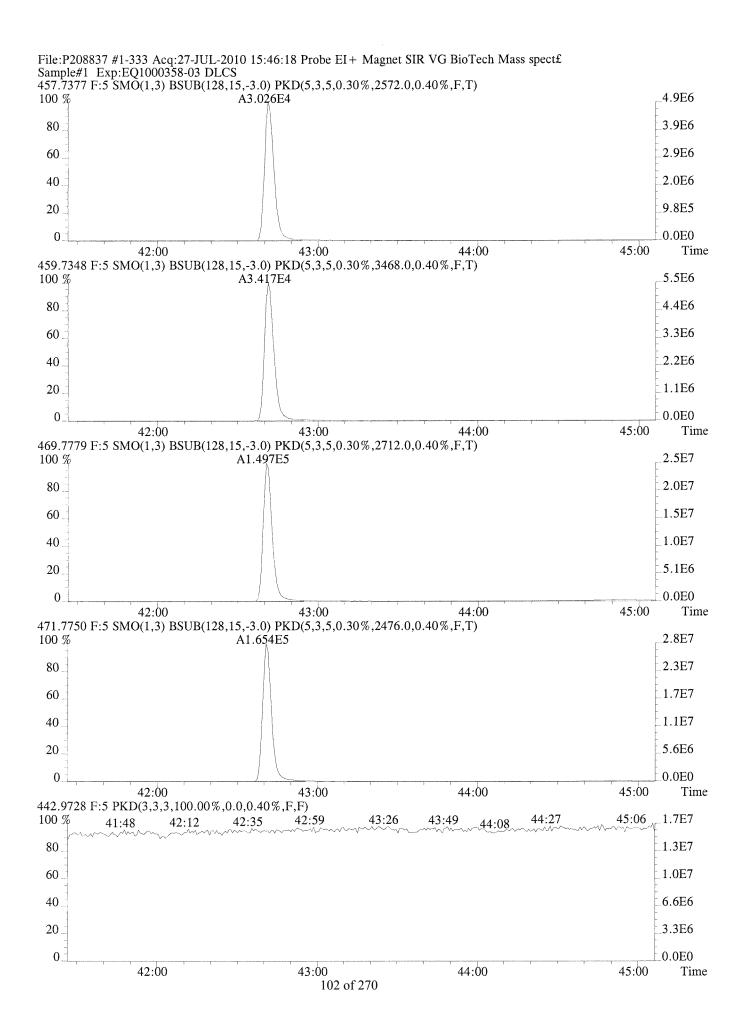
















# **Continuing Calibration**

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

An Employee Owned Company

# RW/ HRCC3 Daily Calibration QC Checklist

Calibration File Name:	Circle or Beginning /	ne: Ending
Method: 8290 / Tetra / TCDD Only / Retention Window/Column Performance Check:	Analyst	Second Check
Windows labeled for first and last eluting compounds	Les	
Column performance shows less than or equal to 25% valley between column specific 2378 isomer and the closest eluters		
No QC ion deflections affect column specific 2378 isomer or the closest eluters		
HRCC3 Continuing Calibration	Analyst	Second Check
Percent RSD within method criteria		
All relative abundance ratios meet method criteria		
No QC ion deflections greater than 20%		
Mass spectrometer resolution greater than or equal to 10,000 and documented		
Signal-to-noise of all target analytes and associated labeled standards at least 2.5:1		
Ending Calibration injected prior to end of 12 hour clock		
Analyst:	Second QC:	MC

USEPA - CLP Page 1 of

#### 5DFC PCDD/PCDF ANALYTICAL SEQUENCE SUMMARY

Lab Name: Columbia Analytical Services Contract:

GC Column: DB-5 ID: 0.25 (mm) Instrument ID: AutoSpec-Premier

Init. Calib. Date: 08/01/08

Init. Calib.Times: 14:25

THE ANALYTICAL SEQUENCE OF STANDARDS, SAMPLES, BLANKS, AND LABORATORY CONTROL

SAMPLES (LCSs) IS AS FOLLOWS:

EPA	LAB	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
================	===========			========
WINDOW DEFINE		P208827	27-JUL-10	06:28:37
CCAL HRCC3		P208826	27-JUL-10	05:07:52
CCAL HRCC3	CCAL HRCC3	P208838	27-JUL-10	17:05:28
METHOD BLANK	EQ1000354-01	P208828	27-JUL-10	07:35:16
60/60/60 4	60/60/60 4	P208829	27-JUL-10	08:21:53
METHOD BLANK	EQ1000358-01	P208830	27-JUL-10	10:03:42
SRC-2010-8-COMP	E1000811-001	P208831	27-JUL-10	10:50:01
SB-20 6-8'	J1003350-009	P208832	27-JUL-10	11:38:33
SB-10 0-2'	J1003407-007	P208833	27-JUL-10	12:27:05
SB-30 14-16'	don't use	P208834	27-JUL-10	13:15:36
SB-30 14-16'	J1003461-013	P208835	27-JUL-10	14:11:13
LCS	EQ1000358-02	P208836	27-JUL-10	14:57:51
DLCS	EQ1000358-03	P208837	27-JUL-10	15:46:18

DLM02.0(5/05)

Sample List Report

Last Modified: Sample List:

Printed:

C:/MassLynx/CASHOUSTON.PRO\SampleDB\E10727.SPL

Tuesday, July 27, 2010 17:05:25 Central Daylight Time

Tuesday, July 27, 2010 18:08:14 Central Daylight Time

C: Prosert RES

Compa

MassLynx 4.1

Analytical Services Houston, Texas 77084 19408 Park Row Suite 320

Page 1 of 1.

Page Position (1, 1)

8290CAS 8290CAS 8290CAS 8290CAS 8290CAS 8290CAS 8290CAS 8290CAS 3290CAS 8290CAS 8290CAS 8290CAS 8290CAS 3290CAS 8290CAS Acq Met 3290CAS 8290CAS 8290CAS 8290CAS 3290CAS 8290CAS GC Met HOMS CHECK DOGST MAR CHECK Analyst Comments SRC-2010-8-Comp SB-30 14-16' SB-30 14-16' SB-10 0-2' SB-20 6-8' Client ID D9-83-4A D4-90-2 DLCS rcs ₩ W WINDOW DEFINE EQ1000354-01 EQ1000358-03 EQ1000358-01 EQ1000358-02 E1000811-001 11003350-009 J1003461-013 CCAL HRCC3 J1003461-013 J1003407-007 60/60/60 4 File Name Sample ID P208827 P208828 P208829 P208830 208835 -208836 208837 P208838 P208832 P208833 P208834 P208831 66:28 50:01 07:35 11:17 14:57 Time Date

10

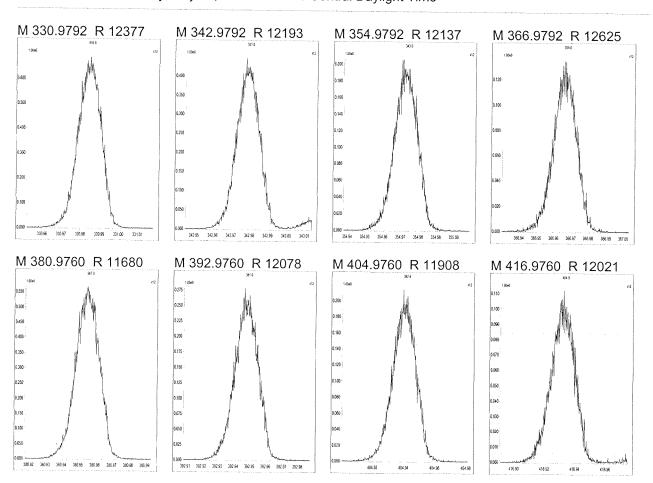
106 of 270

- Z & 4 G 9 Z

17 18 19 20 22 23 24 25 26 26 27 28 28

Experiment: 8290CAS.exp Reference: pfk.ref Function: 1 @ 200 (ppm)

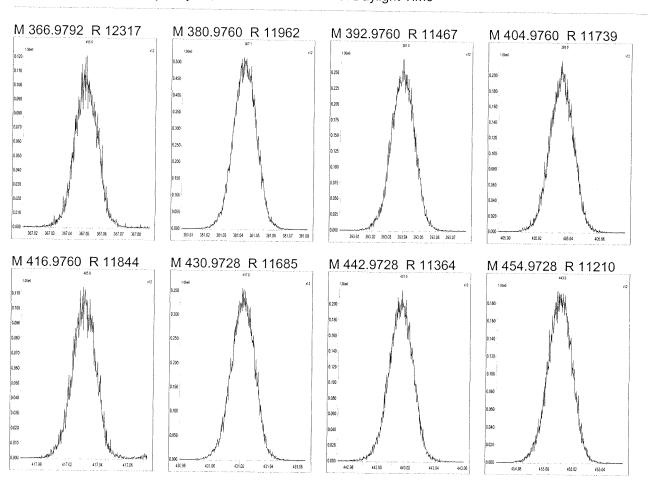
Printed:


Tuesday, July 27, 2010 06:24:38 Central Daylight Time



Experiment: 8290CAS.exp Reference: pfk.ref Function: 2 @ 200 (ppm)

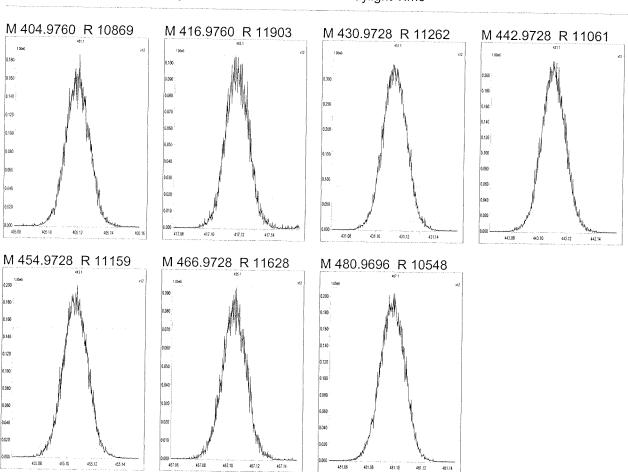
Printed:


Tuesday, July 27, 2010 06:25:05 Central Daylight Time



Experiment: 8290CAS.exp Reference: pfk.ref Function: 3 @ 200 (ppm)

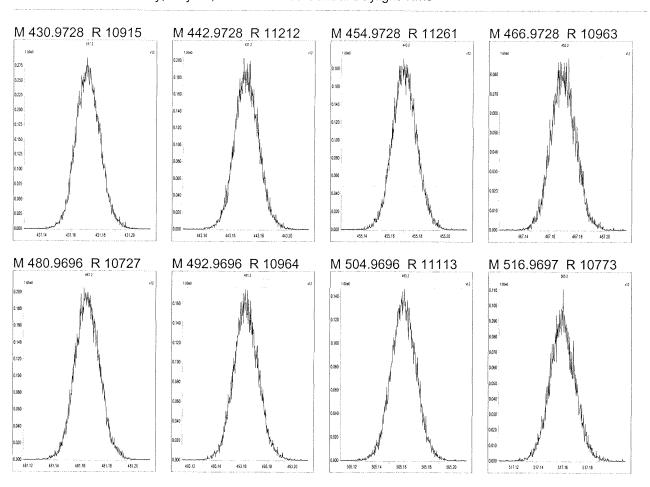
Printed:


Tuesday, July 27, 2010 06:25:45 Central Daylight Time



Experiment: 8290CAS.exp Reference: pfk.ref Function: 4 @ 200 (ppm)

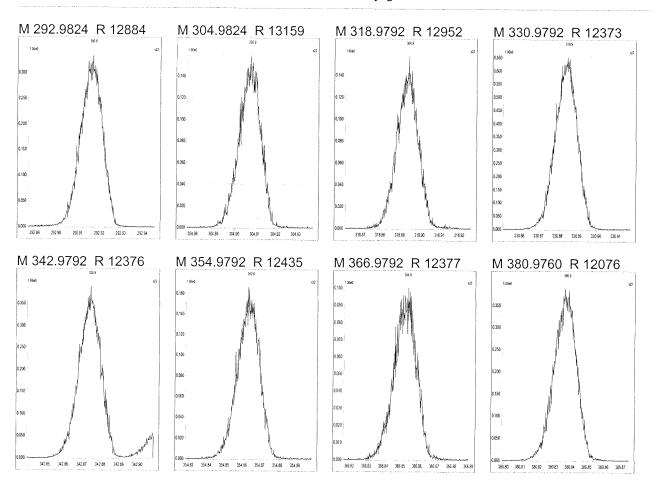
Printed:


Tuesday, July 27, 2010 06:26:13 Central Daylight Time



Experiment: 8290CAS.exp Reference: pfk.ref Function: 5 @ 200 (ppm)

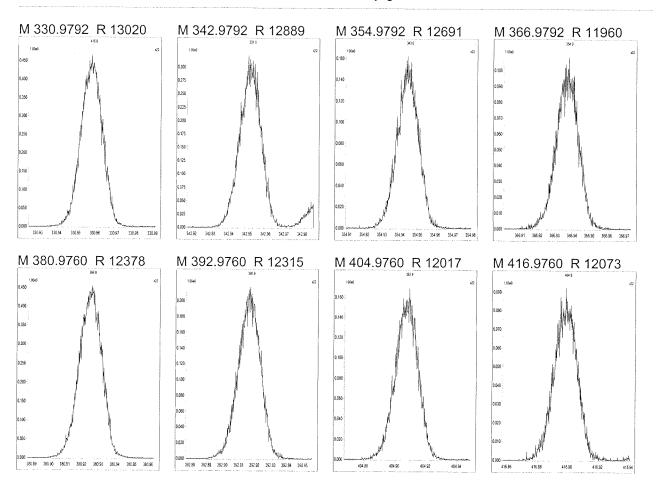
Printed:


Tuesday, July 27, 2010 06:27:38 Central Daylight Time



Experiment: 8290CAS.exp Reference: pfk.ref Function: 1 @ 200 (ppm)

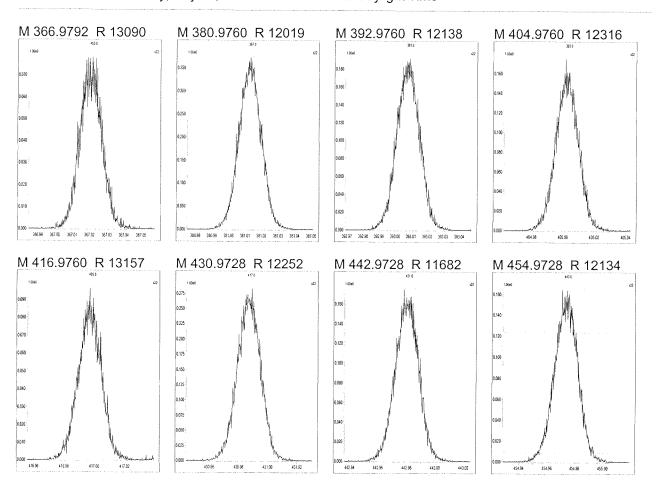
Printed:


Tuesday, July 27, 2010 17:56:37 Central Daylight Time



Experiment: 8290CAS.exp Reference: pfk.ref Function: 2 @ 200 (ppm)

Printed:

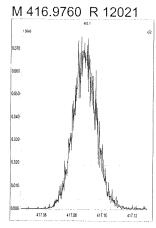

Tuesday, July 27, 2010 17:56:55 Central Daylight Time

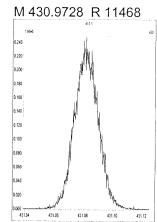


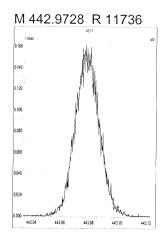
Experiment: 8290CAS.exp Reference: pfk.ref Function: 3 @ 200 (ppm)

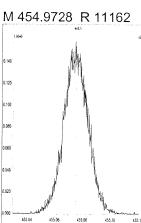
Printed:

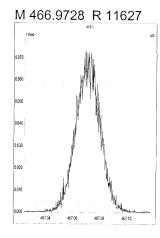

Tuesday, July 27, 2010 17:57:26 Central Daylight Time

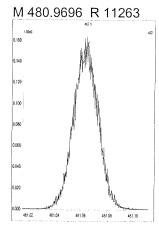




Experiment: 8290CAS.exp Reference: pfk.ref Function: 4 @ 200 (ppm)


Printed:


Tuesday, July 27, 2010 17:57:56 Central Daylight Time

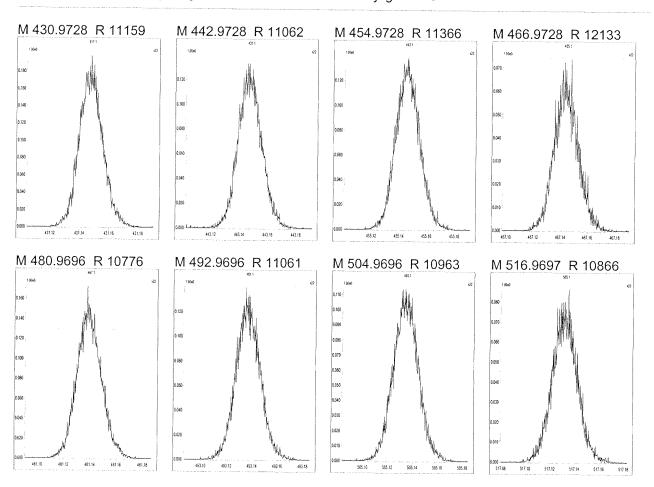











Experiment: 8290CAS.exp Reference: pfk.ref Function: 5 @ 200 (ppm)

Printed:

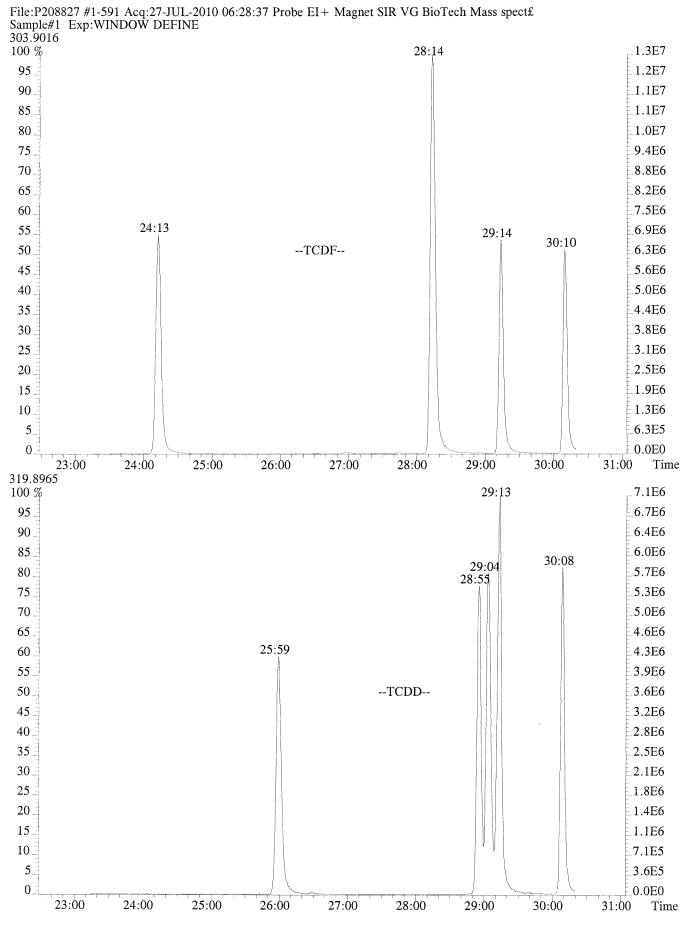
Tuesday, July 27, 2010 17:58:14 Central Daylight Time

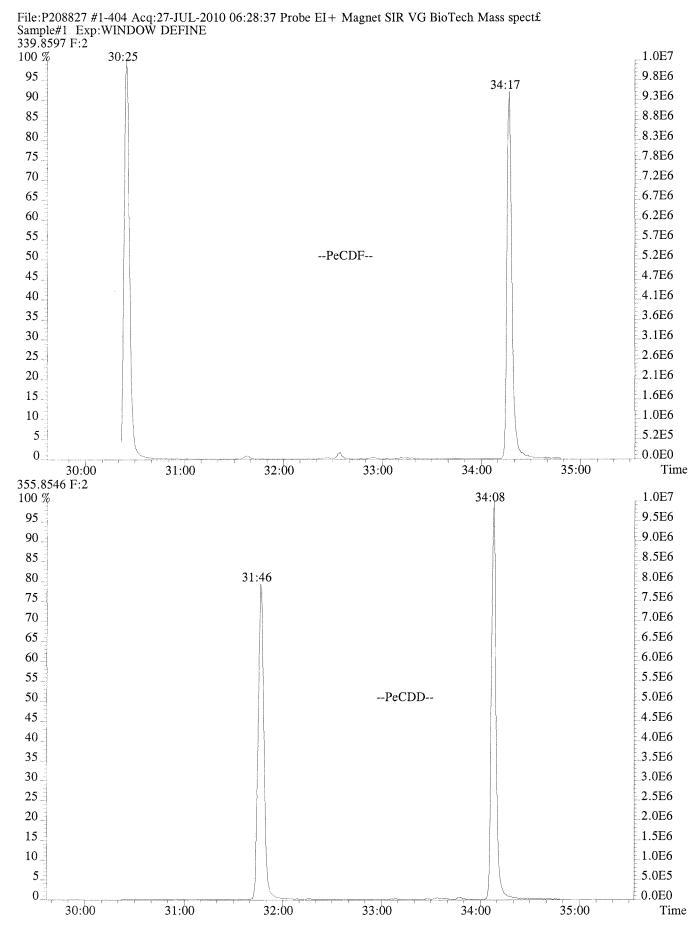


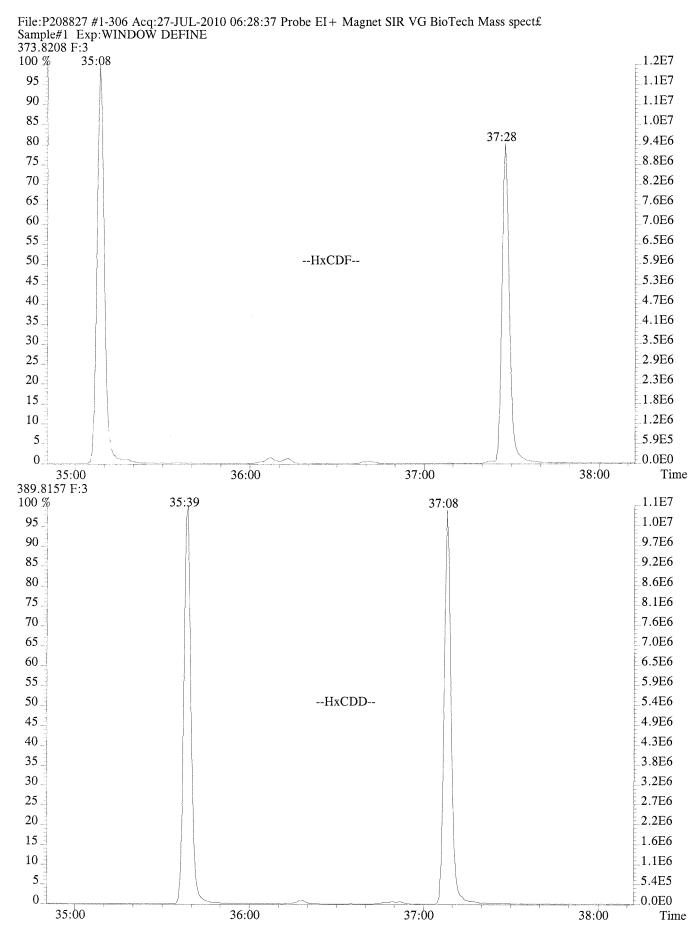
### 5DFA WINDOW DEFINING MIX SUMMARY

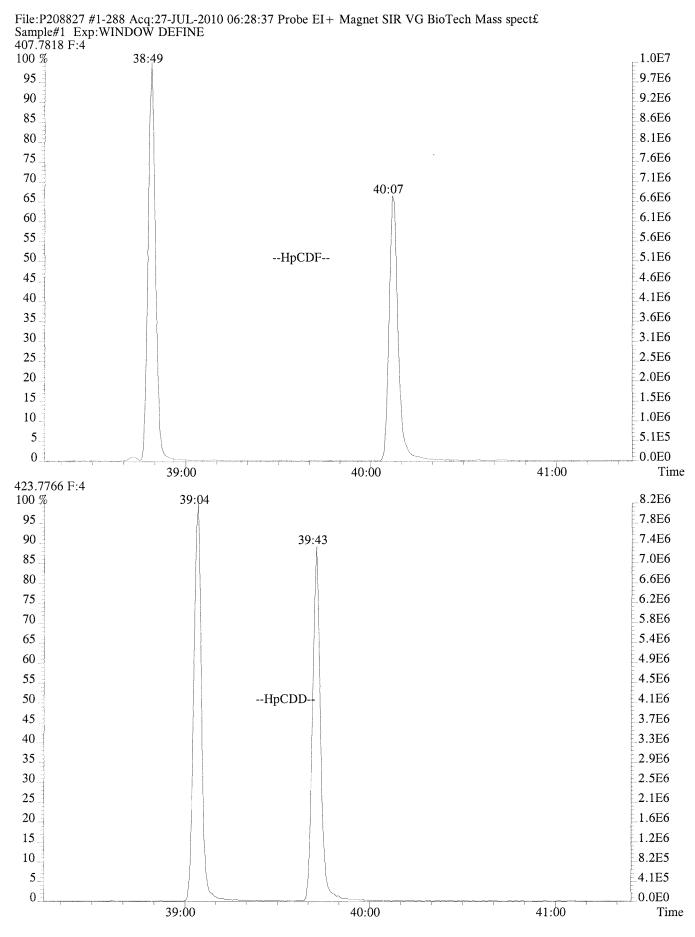
CLIENT	ID:
WDM	

Lab Name: COLUMBIA ANALYTICAL SERVICES


SDG No.:


Lab File ID: P208827 Date Analyzed: 27-JUL-2010 Time Analyzed: 06:28:37


Congener	Retention Time First Eluting	Retention Time Last Eluting
TCDF	24:13	30:10
TCDD	25:59	30:08
PeCDF	30:25	34:17
PeCDD	31:46	34:08
HxCDF	35:08	37:28
HxCDD	35:39	37:08
HpCDF	38:49	40:07
HpCDD	39:04	39:43


[%] Valley 2378-TCDD:











# FORM 4A PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Columbia Analytical Services Episode No.:

Contract No.:

SDG No.:

Initial Calibration Date: 08/01/08

Instrument ID: AutoSpec-Premier GC Column ID: DB-5

VER Data Filename: P208826 Analysis Date: 27-JUL-10 Time: 05:07:52

NATIVE ANALYTES	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	CCAL. RRF	MEAN RRF	%D (3)
2,3,7,8-TCDD	M/M+2	0.77	0.65-0.89	0.87	0.92	-5.24
1,2,3,7,8-PeCDD	M+2/M+4	1.55	1.32-1.78	0.81	0.87	-6.63
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	M+2/M+4 M+2/M+4 M+2/M+4	1.23 1.28 1.29	1.05-1.43 1.05-1.43 1.05-1.43	0.88 1.08 0.96	0.93 1.05 0.97	-4.81 2.66 -0.78
1,2,3,4,6,7,8-HpCDD	M+2/M+4	1.06	0.88-1.20	0.86	0.88	-1.62
OCDD	M+2/M+4	0.90	0.76-1.02	1.01	0.96	5.53
2,3,7,8-TCDF	M/M+2	0.75	0.65-0.89	0.83	0.83	-0.23
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	M+2/M+4 M+2/M+4	1.51 1.50	1.32-1.78 1.32-1.78	0.83 0.84	0.84 0.85	-1.10 -1.17
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF	M+2/M+4 M+2/M+4 M+2/M+4 M+2/M+4	1.20 1.22 1.21 1.22	1.05-1.43 1.05-1.43 1.05-1.43 1.05-1.43	0.95 1.19 0.84 1.05	1.07 1.13 0.86 1.01	-11.58 5.17 -2.35 4.28
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF		1.00	0.88-1.20 0.88-1.20	1.18 0.89	1.32 0.97	-10.15 -8.03
OCDF	M+2/M+4	0.88	0.76-1.02	1.05	1.10	-4.61

⁽¹⁾ See Table 6, Method 8290, for m/z specifications.

8290F4Ap

⁽²⁾ Ion Abundance Ratio Control Limits as specified in Table 8, Method 8290.

⁽³⁾ The beginning CCAL %RSD for the 17 unlabeled standard must not exceed +/-20%, Section 7.7.4.1. The ending CCAL must not exceed +/-25%. Section 8.3.2.4.

## FORM 4B PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Columbia Analytical Services Episode No.:

Contract No.: SDG No.:

Initial Calibration Date: 08/01/08

Instrument ID: AutoSpec-Premier GC Column ID: DB-5

VER Data Filename: P208826 Analysis Date: 27-JUL-10 Time: 05:07:52

	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	CCAL. RRF	MEAN RRF	%D (3)
LABELED COMPOUNDS						
13C-2,3,7,8-TCDD	M/M+2	0.78	0.65-0.89	1.10	1.06	3.76
13C-1,2,3,7,8-PeCDD	M+2/M+4	1.58	1.32-1.78	1.13	0.87	29.72
13C-1,2,3,6,7,8-HxCDI	M+2/M+4	1.25	1.05-1.43	0.92	1.00	-8.18
13C-1,2,3,4,6,7,8-Hp0	CDD M+2/M+4	1.05	0.88-1.20	0.83	0.83	-0.40
13C-OCDD	M+2/M+4	0.90	0.76-1.02	0.66	0.73	-10.28
13C-2,3,7,8-TCDF	M/M+2	0.80	0.65-0.89	1.23	1.42	-13.74
13C-1,2,3,7,8-PeCDF	M+2/M+4	1.58	1.32-1.78	1.31	1.26	3.58
13C-1,2,3,4,7,8-HxCDI	F M/M+2	0.52	0.43-0.59	1.02	1.28	-19.85
13C-1,2,3,4,6,7,8-Hp0	CDF M/M+2	0.44	0.37-0.51	0.83	0.90	-7.75
CLEANUP STANDARD						
37Cl-2,3,7,8-TCDD				0.98	0.98	-0.71

8290F4B

⁽¹⁾ See Table 6, Method 8290, for m/z specifications.

⁽²⁾ Ion Abundance Ratio Control Limits as specified in Table 8, Method 8290.

⁽³⁾ The beginning CCAL %RSD for the labeled standard must not exceed +/- 30%, Section 7.7.4.2. The ending CCAL must not exceed +/- 35%, Section 8.3.2.4.

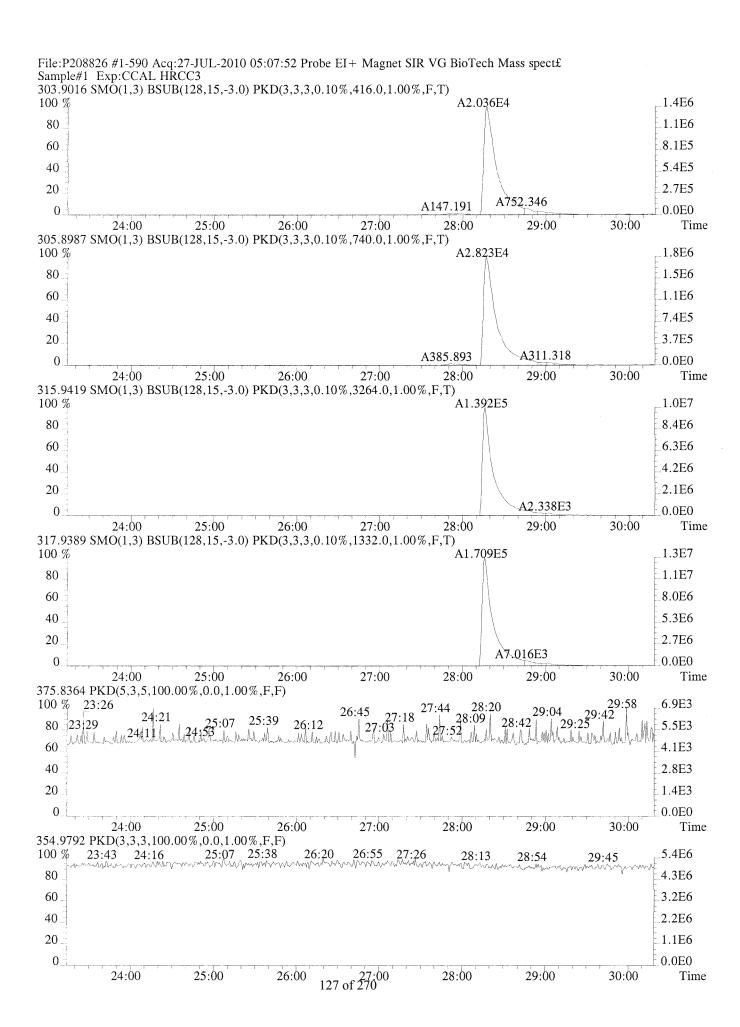
## Columbia Analytical Services, Inc. Sample Response Summary

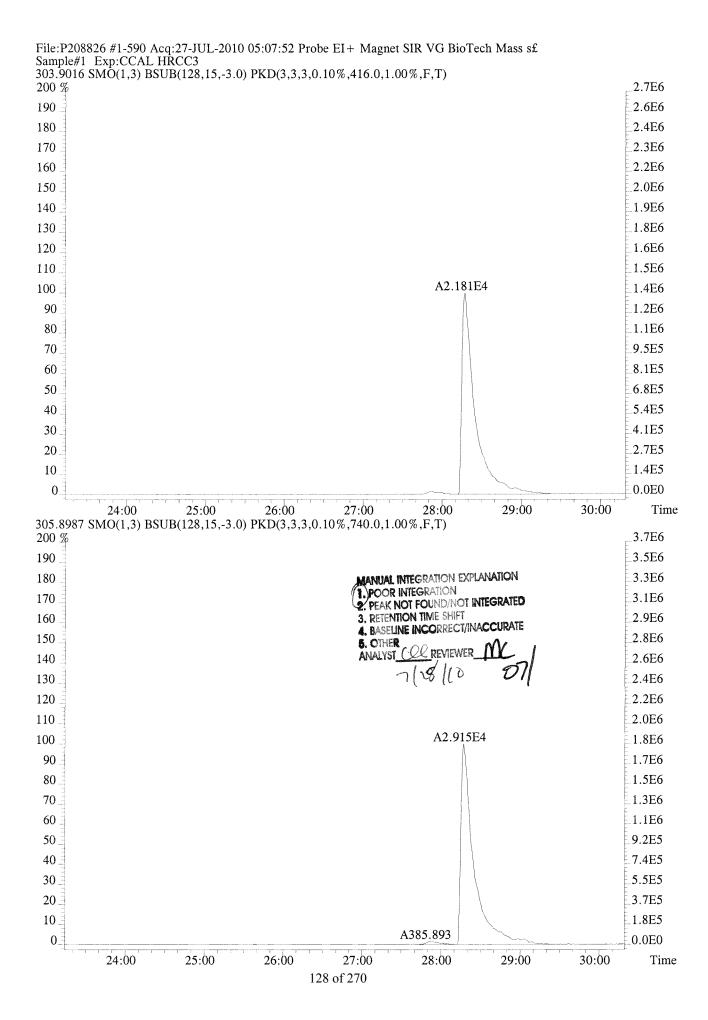
CLIENT ID. CCAL HRCC3

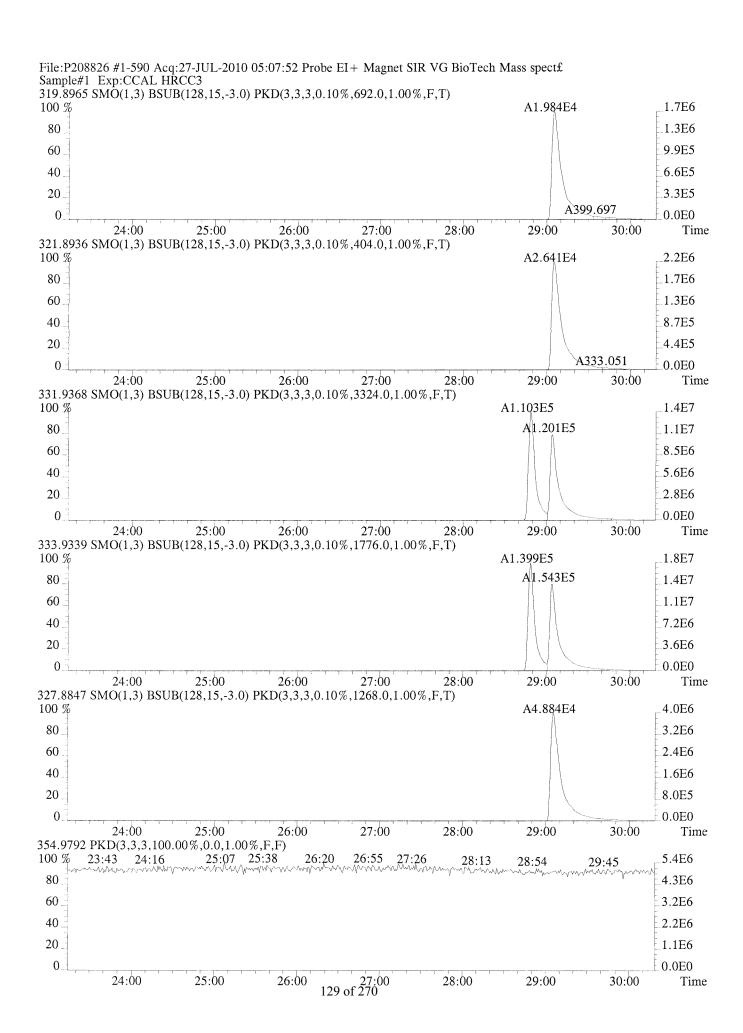
Run #6 Filename P208826 Samp: 1 Acquired: 27-JUL-10 05:07:52 Inj: 1 Processed: 28-JUL-10 10:16:54 LAB. ID: CCAL HRCC3 RRF Name RT-1 Resp 2 Ratio Meet Mod? Тур Resp 1 1 Unk 2,3,7,8-TCDF | 28:18 2.181e+04 2.915e+04 0.75 yes yes 0.831 2 Unk 1,2,3,7,8-PeCDF | 32:35 8.171e+04 5.420e+04 1.51 yes yes 0.840 3 Unk 2,3,4,7,8-PeCDF | 33:20 8.257e+04 5.488e+041.50 yes no 0.850 1.072 5.678e+04 1.20 4 Unk 1,2,3,4,7,8-HxCDF | 36:07 6.834e+04yes no 1.22 5 Unk 1,2,3,6,7,8-HxCDF | 36:13 8.605e+04 7.048e+04yes no 1.128 1.006 6 Unk 2,3,4,6,7,8-HxCDF | 36:42 7.623e+046.225e+04 1.22 yes no 1.21 0.864 7 Unk 1,2,3,7,8,9-HxCDF | 37:25 6.093e+04 5.039e+04yes no 1.00 1.315 8 Unk 1,2,3,4,6,7,8-HpCDF 38:49 6.332e+046.327e+04yes no 1.00 0.970 9 Unk 1,2,3,4,7,8,9-HpCDF | 40:08 4.789e+044.770e+04 yes no 10 Unk OCDF | 42:51 9.483e+04 0.88 no| 1.103 8.346e+04 yes 0.77 0.916 11 Unk 2,3,7,8-TCDD 29:05 2.070e+04 2.696e+04 yes yes 0.869 12 Unk 1,2,3,7,8-PeCDD 33:40 6.993e+04 4.501e+04 1.55 yes nol 13 Unk 1,2,3,4,7,8-HxCDD | 36:49 5.729e+04 4.659e+04 1.23 yes no 0.925 14 Unk 1,2,3,6,7,8-HxCDD | 36:53 7.155e+04 5.611e+04 1.28 yes no 1.054 15 Unk 1,2,3,7,8,9-HxCDD 37:11 6.358e+044.942e+04 1.29 yes nol 0.966 1,2,3,4,6,7,8-HpCDD | 39:42 4.742e+04 4.494e+041.06 yes no 0.879 16 Unk 17 Unk OCDD | 42:40 8.124e+04 9.024e+04 0.90 yes no 0.959 18 IS 13C-2,3,7,8-TCDF | 28:16 1.364e+05 1.709e+05 0.80 yes 1.424 no 19 IS 13C-1,2,3,7,8-PeCDF | 32:34 2.005e+05 1.268e+05 1.58 yes no 1.263 0.52 1.279 20 IS 13C-1,2,3,4,7,8-HxCDF | 36:06 2.249e+05 4.349e+05 yes no 13C-1,2,3,4,6,7,8-HpCDF | 38:48 1.643e+05 3.713e+05 0.44 yes 0.902 21 IS no 13C-2,3,7,8-TCDD 29:04 1.201e+05 1.543e+05 0.78 1.057 22 IS yes no 1.58 0.873 23 IS 13C-1,2,3,7,8-PeCDD 33:39 1.734e + 051.099e+05 yes yes 13C-1,2,3,6,7,8-HxCDD | 36:52 24 IS 3.274e + 052.623e+05 1.25 yes no 0.997 25 IS 2.730e+05 2.612e+05 1.05 no 0.833 13C-1,2,3,4,6,7,8-HpCDD | 39:41 yes 0.90 no | 0.733 4.021e+05 4.449e+05 26 IS 13C-OCDD | 42:40 yes 27 RS/RT 0.79 13C-1,2,3,4-TCDD 28:49 1.103e+05 1.399e+05 yes no 28 RS/RT 13C-1,2,3,7,8,9-HxCDD 37:10 3.586e+05 2.853e+05 1.26 yes no 29 C/Up 37C1-2,3,7,8-TCDD 29:05 4.884e+04 no 0.983 SUM AREA Total Tetra-Furans 28:18 5.096e+04 0.75 0.831 30 Tot yes Total Tetra-Dioxins 29:05 4.766e+04 0.77 0.916 31 Tot yes Total Penta-Furans 32:35 2.733e+05 1.51 0.845 32 Tot yes 33 Tot Total Penta-Dioxins 33:40 1.149e + 051.55 yes 0.869 34 Tot Total Hexa-Furans 36:07 5.315e+05 1.20 ves 1.018 1.23 35 Tot Total Hexa-Dioxins 36:49 3.445e + 050.982 yes Total Hepta-Furans 38:49 1.00 1.143 36 Tot 2.222e+05 yes Total Hepta-Dioxins 39:04 0.879 37 Tot 9.275e+04 | 1.07 yes

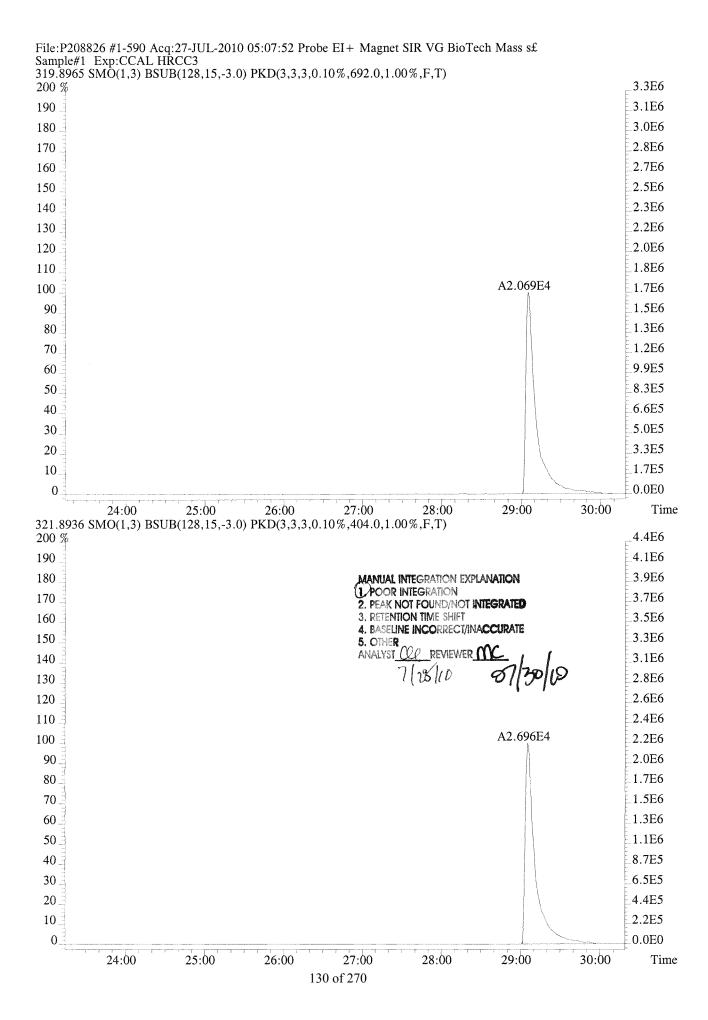
Columbia Analytical Services, Inc. 19408 Park Row., Suite 320 Houston, TX 77084 Office(713)266-1599. Fax(713)266-0130

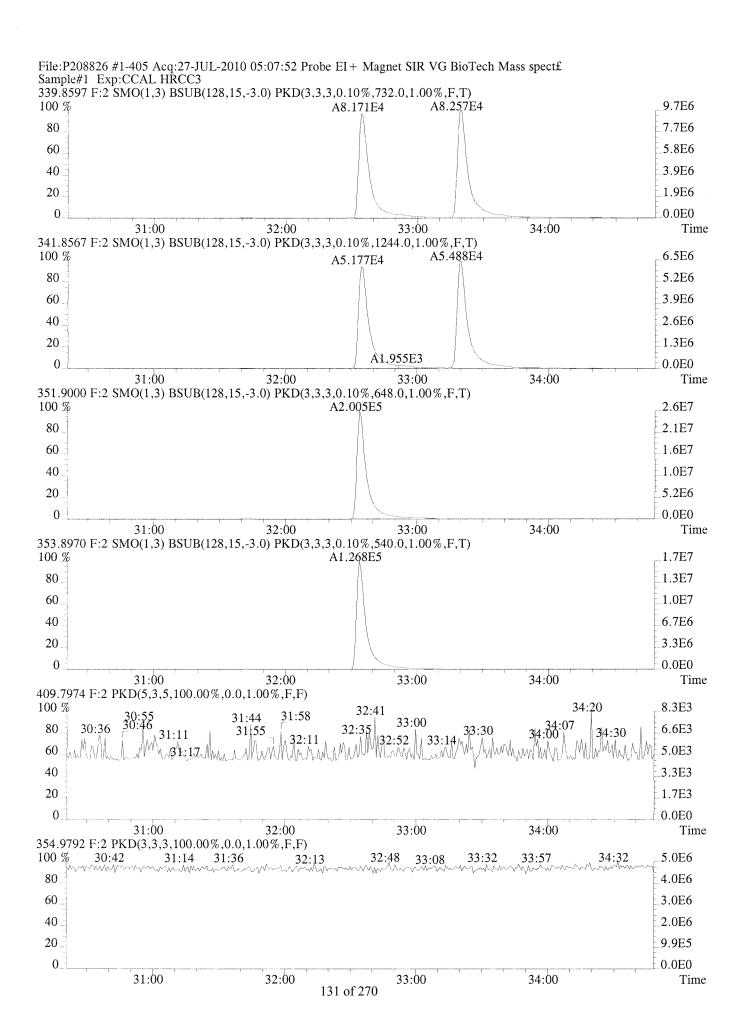
## Columbia Analytical Services, Inc. Signal/Noise Height Ratio Summary

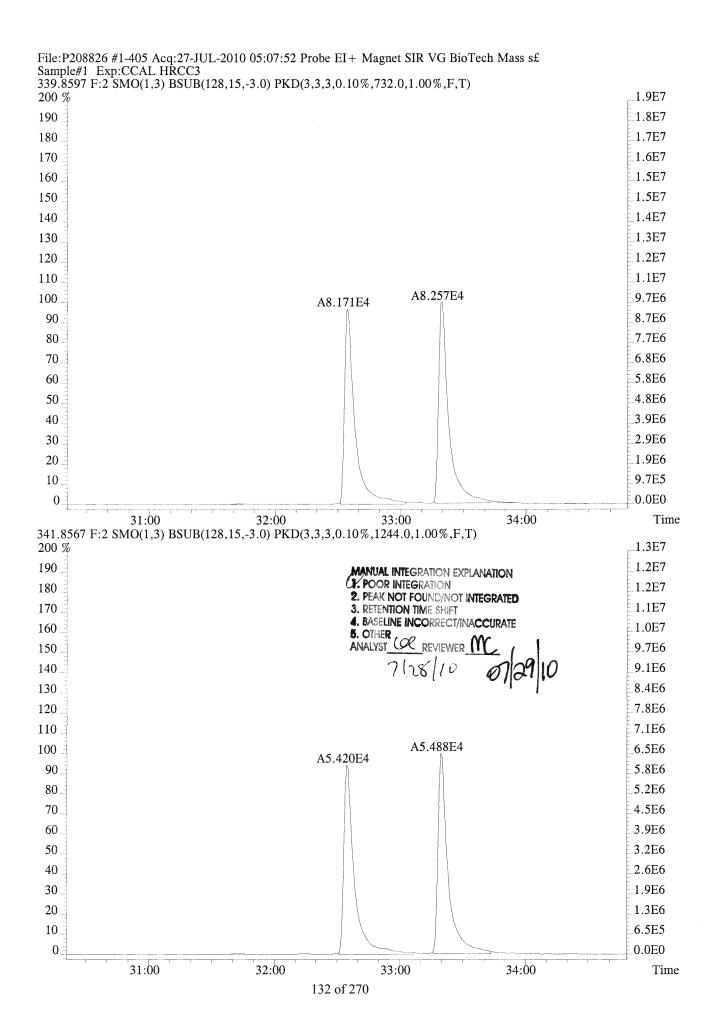

CLIENT ID. CCAL HRCC3

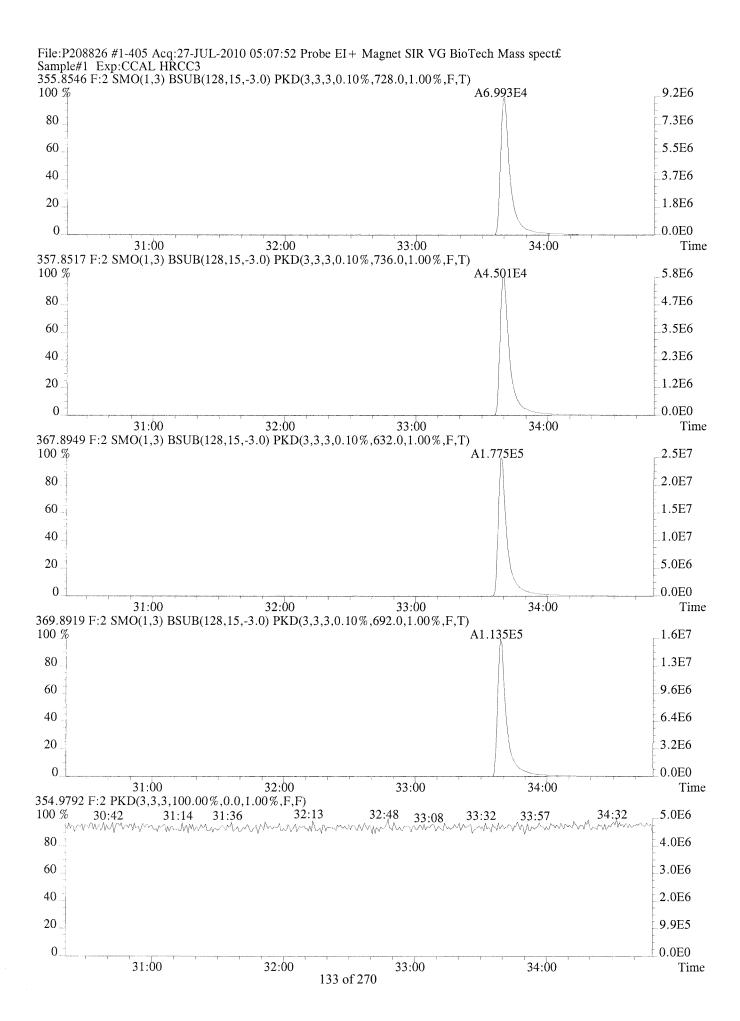

Run #6 Filename P208826 Samp: 1 Inj: 1 Acquired: 27-JUL-10 05:07:52 Processed: 28-JUL-10 10:16:541 LAB. ID: CCAL HRCC3

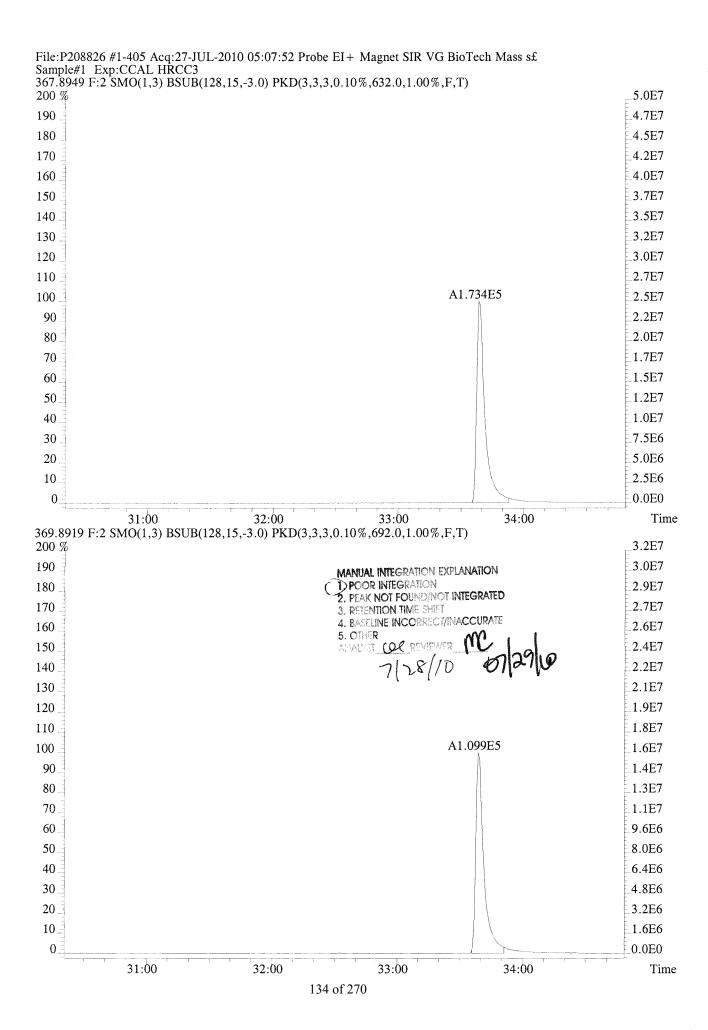

	Name	Signal 1	Noise 1	S/N Rat.1	Signal 2	Noise 2  S	/N Rat.2
1	2,3,7,8-TCDF	1.35e+06	4.16e+02	3.3e+03	1.84e+06	7.40e+02	2.5e+03
2	1,2,3,7,8-PeCDF	9.35e+06	7.32e+02	1.3e+04	6.09e+06	1.24e+03	4.9e+03
3	2,3,4,7,8-PeCDF	9.63e+06	7.32e+02	1.3e+04	6.45e+06	1.24e+03	5.2e+03
4	1,2,3,4,7,8-HxCDF	1.31e+07	1.73e+03	7.6e+03	1.08e+07	1.13e+03	9.6e+03
5	1,2,3,4,7,8-HxCDF	1.27e+07	1.73e+03	7.3e+03	1.04e+07	1.13e+03	9.2e+03
6	2,3,4,6,7,8-HxCDF	1.26e+07	1.73e+03	7.3e+03	1.04e+07	1.13e+03	9.4e+03
7	1,2,3,7,8,9-HxCDF	8.97e+06	1.73e+03	5.2e+03	7.41e+06	1.13e+03	6.6e+03
8	1,2,3,4,6,7,8-HpCDF	1.18e+07	1.38e+04	8.5e+02	1.17e+07	8.26e+03	1.4e+03
9	1,2,3,4,7,8,9-HpCDF	7.19e+06	1.38e+04	5.2e+02	7.15e+06	8.26e+03	8.7e+02
10	OCDF	1.21e+07	6.36e+02	1.9e+04	1.38e+07		9.4e+03
	OCDI	1.210107	0.500102	1.50,01	1.300107	1.170105	3.40703
11	2,3,7,8-TCDD	1.66e+06	6.92e+02	2.4e+03	2.18e+06	4.04e+02	5.4e+03
12	1,2,3,7,8-PeCDD	9.15e+06	7.28e+02	1.3e+04	5.81e+06	7.36e+02	7.9e+03
13	1,2,3,4,7,8-HxCDD	1.22e+07	2.10e+03	5.8e+03	9.82e+06	1.50e+03	6.6e+03
14	1,2,3,6,7,8-HxCDD	1.25e+07	2.10e+03	5.9e+03	9.74e+06	1.50e+03	6.5e+03
15	1,2,3,7,8,9-HxCDD	1.05e+07	2.10e+03	5.0e+03	8.36e+06	1.50e+03	5.6e+03
16	1,2,3,4,6,7,8-HpCDD	8.27e+06	1.91e+03	4.3e+03	7.86e+06	1.24e+03	6.3e+03
17	OCDD	1.23e+07	1.13e+03	1.1e+04	1.36e+07		9.4e+03
18	13C-2,3,7,8-TCDF	1.04e+07	3.26e+03	3.2e+03	1.33e+07	1.33e+03	1.0e+04
19	13C-1,2,3,7,8-PeCDF	2.60e+07	6.48e+02	4.0e+04	1.66e+07	5.40e+02	3.1e+04
20	13C-1,2,3,4,7,8-HxCDF	4.05e+07	7.00e+02	5.8e+04	7.82e+07	8.40e+02	9.3e+04
21	13C-1,2,3,4,6,7,8-HpCDF	3.24e+07	1.37e+04	2.4e+03	7.27e+07	3.07e+04	2.4e+03
22	13C-2,3,7,8-TCDD	1.11e+07	3.32e+03	3.3e+03	1.44e+07	1.78e+03	8.1e+03
23	13C-1,2,3,7,8-PeCDD	2.49e+07	6.32e+02	3.9e+04	1.60e+07	6.92e+02	2.3e+04
24	13C-1,2,3,6,7,8-HxCDD	6.33e+07	3.96e+03	1.6e+04	5.08e+07	1.70e+03	3.0e+04
25	13C-1,2,3,4,6,7,8-HpCDD	5.02e+07	1.29e+03	3.9e+04	4.83e+07	1.40e+03	3.4e+04
26	13C-OCDD	6.41e+07	9.68e+02	6.6e+04	7.16e+07	9.16e+02	7.8e+04
	'	'	1	•	'	'	
27	13C-1,2,3,4-TCDD	1.41e+07	3.32e+03	4.2e+03	1.79e+07	1.78e+03	1.0e+04
28	13C-1,2,3,7,8,9-HxCDD	6.58e+07	3.96e+03	1.7e+04	5.18e+07	1.70e+03	3.0e+04
29	37Cl-2,3,7,8-TCDD	3.98e+06	1.27e+03	3.1e+03	·	·	

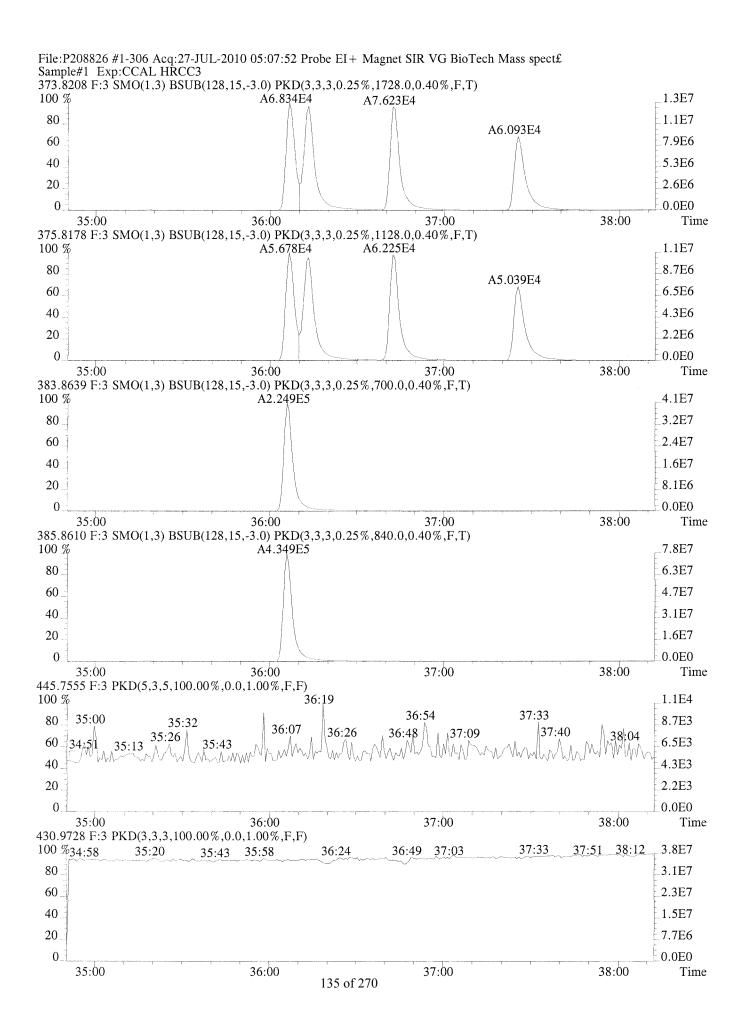

Houston, TX 77084

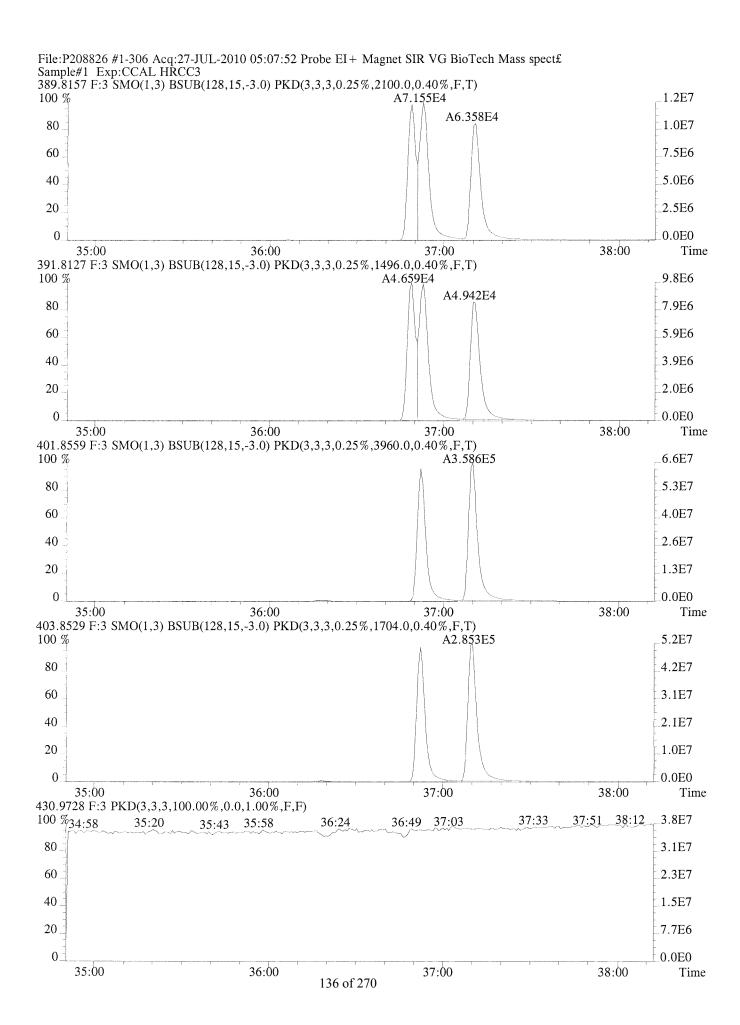

Office: (713)266-1599. Fax: (713)266-0130

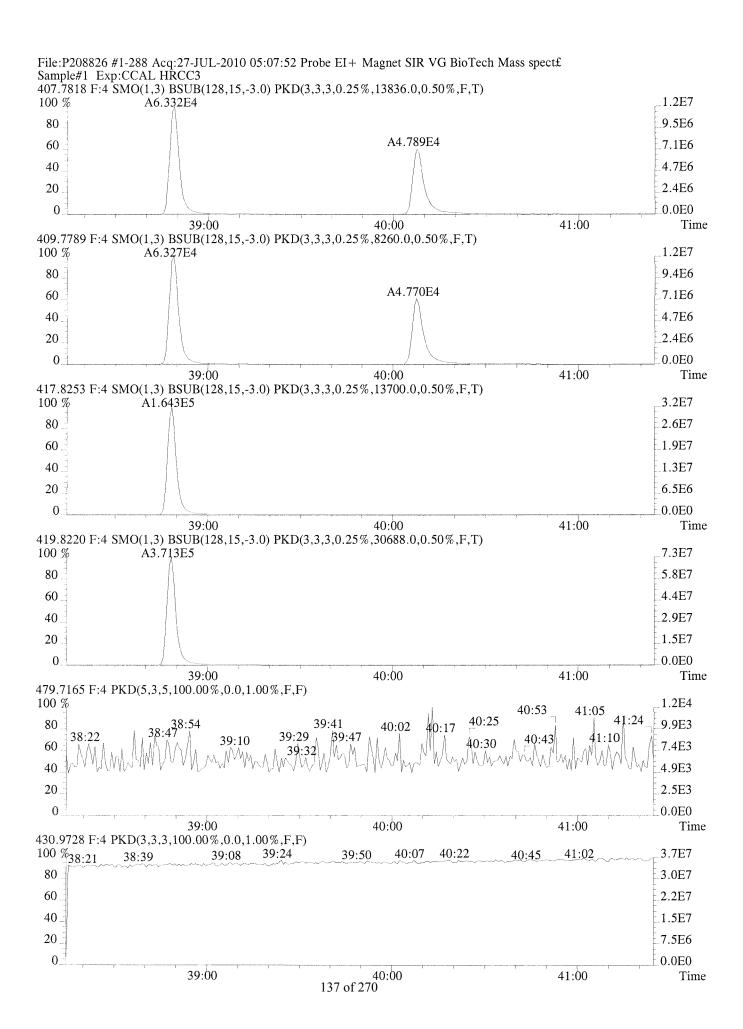


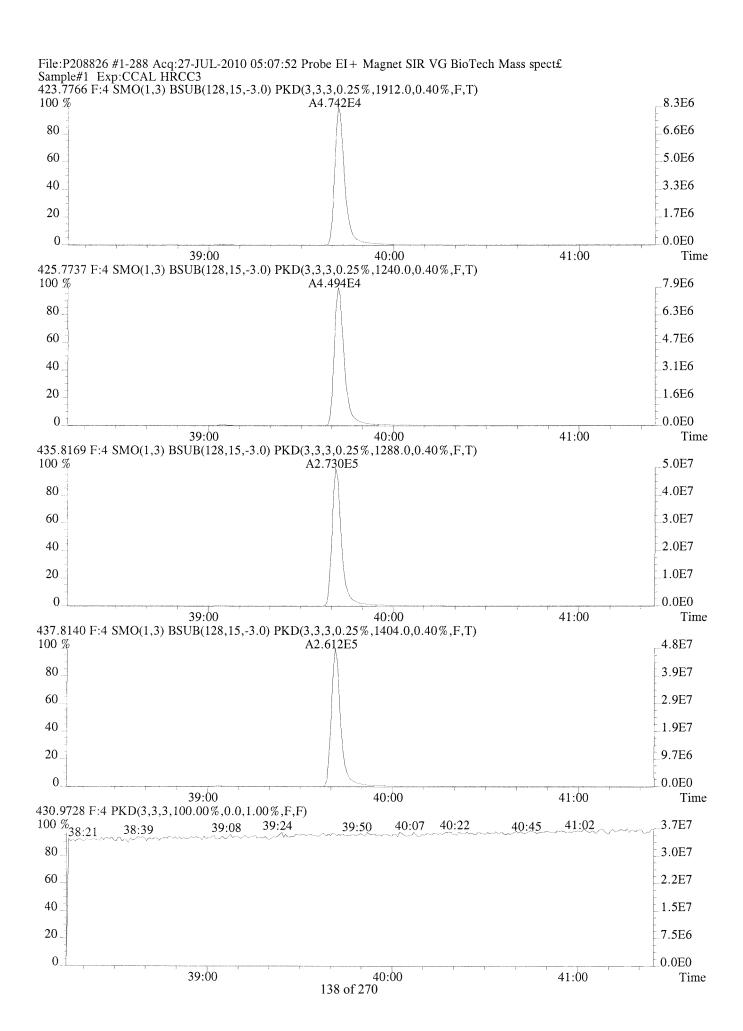



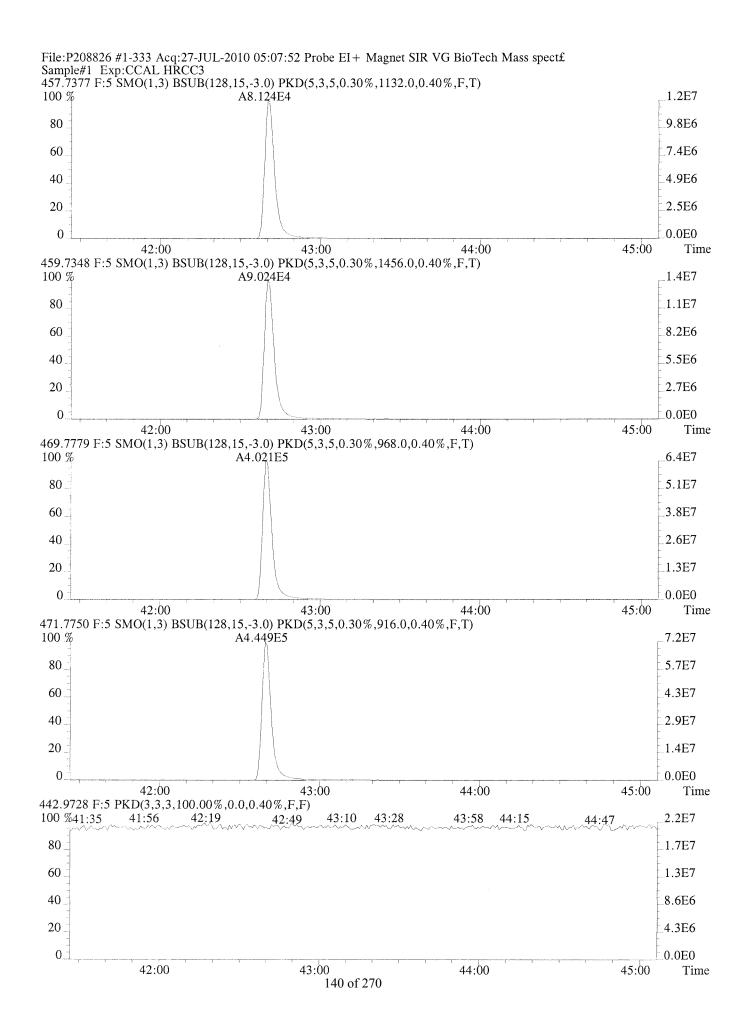
















## FORM 4A PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Columbia Analytical Services Episode No.:

Contract No.:

SDG No.:

Initial Calibration Date: 08/01/08

Instrument ID: AutoSpec-Premier GC Column ID: DB-5

VER Data Filename: P208838 Analysis Date: 27-JUL-10 Time: 17:05:28

NATIVE ANALYTES	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	CCAL. RRF	MEAN RRF	%D (3)
2,3,7,8-TCDD	M/M+2	0.77	0.65-0.89	0.97	0.92	5.84
1,2,3,7,8-PeCDD	M+2/M+4	1.56	1.32-1.78	0.81	0.87	-6.55
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	M+2/M+4 M+2/M+4 M+2/M+4	1.24 1.27 1.26	1.05-1.43 1.05-1.43 1.05-1.43	0.97 1.09 1.03	0.93 1.05 0.97	5.12 3.43 6.51
1,2,3,4,6,7,8-HpCDD	M+2/M+4	1.04	0.88-1.20	0.91	0.88	3.12
OCDD	M+2/M+4	0.89	0.76-1.02	1.11	0.96	15.40
2,3,7,8-TCDF	M/M+2	0.77	0.65-0.89	0.87	0.83	4.37
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	M+2/M+4 M+2/M+4	1.55 1.54	1.32-1.78 1.32-1.78	0.87	0.84	3.20 5.90
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF	M+2/M+4 M+2/M+4 M+2/M+4 M+2/M+4	1.25 1.17 1.23 1.23	1.05-1.43 1.05-1.43 1.05-1.43 1.05-1.43	1.10 1.11 0.91 1.05	1.07 1.13 0.86 1.01	2.92 -1.96 5.67 4.13
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF		1.00 1.02	0.88-1.20 0.88-1.20	1.25 0.97	1.32 0.97	-4.85 0.16
OCDF	M+2/M+4	0.89	0.76-1.02	1.15	1.10	3.84

⁽¹⁾ See Table 6, Method 8290, for m/z specifications.

8290F4Ap

⁽²⁾ Ion Abundance Ratio Control Limits as specified in Table 8, Method 8290.

⁽³⁾ The beginning CCAL %RSD for the 17 unlabeled standard must not exceed +/-20%, Section 7.7.4.1. The ending CCAL must not exceed +/-25%. Section 8.3.2.4.

# FORM 4B PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Columbia Analytical Services Episode No.:

Contract No.: SDG No.:

Initial Calibration Date: 08/01/08

Instrument ID: AutoSpec-Premier GC Column ID: DB-5

VER Data Filename: P208838 Analysis Date: 27-JUL-10 Time: 17:05:28

LABELED COMPOUNDS	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	CCAL. RRF	MEAN RRF	%D (3)
13C-2,3,7,8-TCDD	M/M+2	0.78	0.65-0.89	1.04	1.06	-1.53
13C-1,2,3,7,8-PeCDD	M+2/M+4	1.56	1.32-1.78	1.10	0.87	26.31
13C-1,2,3,6,7,8-HxCDI	M+2/M+4	1.26	1.05-1.43	0.88	1.00	-11.94
13C-1,2,3,4,6,7,8-HpC	CDD M+2/M+4	1.04	0.88-1.20	0.82	0.83	-2.09
13C-OCDD	M+2/M+4	0.91	0.76-1.02	0.60	0.73	-17.86
13C-2,3,7,8-TCDF	M/M+2	0.78	0.65-0.89	1.36	1.42	-4.36
13C-1,2,3,7,8-PeCDF	M+2/M+4	1.55	1.32-1.78	1.32	1.26	4.63
13C-1,2,3,4,7,8-HxCDF	M/M+2	0.52	0.43-0.59	1.08	1.28	-15.54
13C-1,2,3,4,6,7,8-HpC	CDF M/M+2	0.44	0.37-0.51	0.83	0.90	-7.66
CLEANUP STANDARD						
37Cl-2,3,7,8-TCDD				1.01	0.98	2.49

8290F4B

⁽¹⁾ See Table 6, Method 8290, for m/z specifications.

⁽²⁾ Ion Abundance Ratio Control Limits as specified in Table 8, Method 8290.

⁽³⁾ The beginning CCAL %RSD for the labeled standard must not exceed +/- 30%, Section 7.7.4.2. The ending CCAL must not exceed +/- 35%, Section 8.3.2.4.

## Columbia Analytical Services, Inc. Sample Response Summary

CLIENT ID. CCAL HRCC3

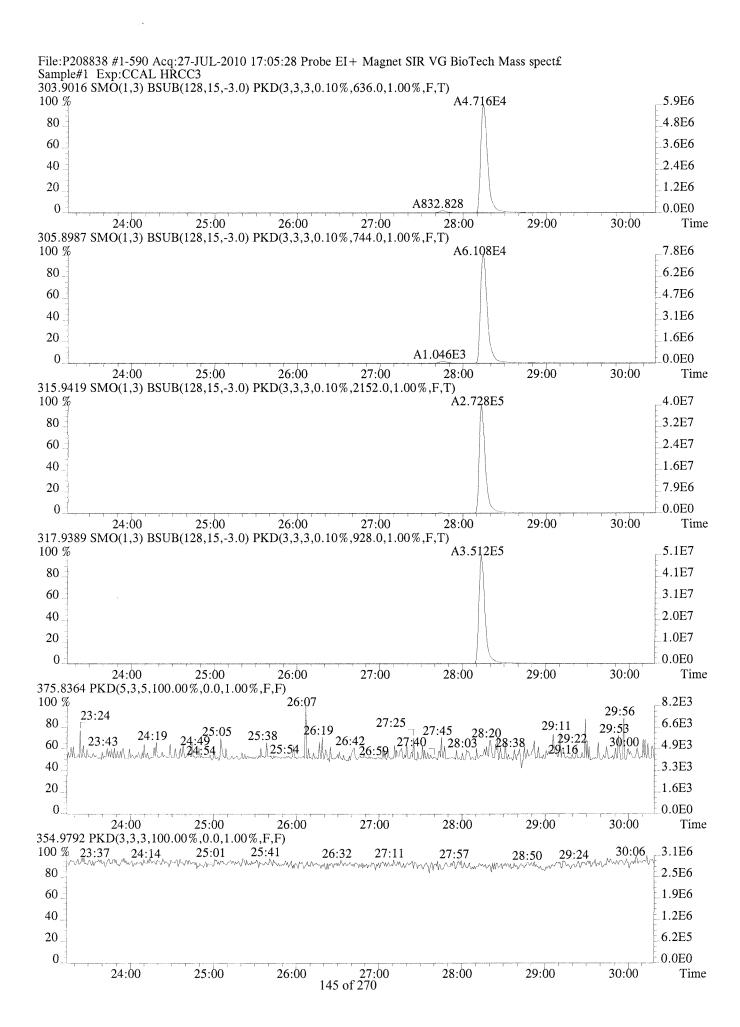
Acquired: 27-JUL-10 17:05:28 Run #7 Filename P208838 Samp: 1 Inj: 1 Processed: 28-JUL-10 10:23:12 LAB. ID: CCAL HRCC3 Mod? RRF Тур Name RT-1 Resp 1 Resp 2 Ratio Meet 2,3,7,8-TCDF | 28:15 0.77 0.831 1 Unk 4.716e+04 6.108e+04 yes no 2 Unk 1.030e+05 1.55 0.840 1,2,3,7,8-PeCDF | 32:35 1.594e+05 yes nο 1.54 0.850 3 Unk 2,3,4,7,8-PeCDF | 33:20 1.650e+05 1.074e+05 yes no 1.25 1.072 4 Unk 1,2,3,4,7,8-HxCDF | 36:08 1.427e+05 1.145e+05 yes no 1.17 1.128 5 Unk 1,2,3,6,7,8-HxCDF | 36:14 1.392e+05 1.185e+05 yes no 2,3,4,6,7,8-HxCDF 36:43 1.23 1.006 6 Unk 1.345e+05 1.097e+05 yes no 7 Unk 1,2,3,7,8,9-HxCDF | 37:25 1.23 0.864 1.175e+05 9.522e+04 yes no 1.00 1.315 8 Unk 1,2,3,4,6,7,8-HpCDF | 38:50 1.126e+05 1.123e+05 yes no 1.02 0.970 9 Unk 1,2,3,4,7,8,9-HpCDF | 40:08 8.797e+04 8.665e+04 yes no 10 Unk OCDF | 42:52 1.405e+051.573e+05 0.89 yes no 1.103 5.215e+04 11 Unk 2,3,7,8-TCDD 29:04 4.036e+04 0.77 yes nol 0.916 12 Unk 1,2,3,7,8-PeCDD 33:40 1.251e+05 8.007e+04 1.56 yes no 0.869 13 Unk 1,2,3,4,7,8-HxCDD | 36:50 1.022e+05 8.224e+04 1.24 yes no 0.925 14 Unk 1,2,3,6,7,8-HxCDD | 36:54 1.155e+05 9.127e+04 1.27 yes no 1.054 1.26 0.966 15 Unk 1,2,3,7,8,9-HxCDD 37:11 1.086e+05 8.639e+04yes no 1.04 0.879 16 Unk 1,2,3,4,6,7,8-HpCDD | 39:43 8.131e+04 7.818e+04yes no 0.959 OCDD | 42:42 1.358e+05 1.519e+05 0.89 17 Unk yes nol 0.78 1.424 18 IS 13C-2,3,7,8-TCDF | 28:13 2.728e+05 3.512e+05 yes no 19 IS 1.55 1.263 13C-1,2,3,7,8-PeCDF | 32:34 3.683e+05 2.372e+05 no yes 0.52 1.279 20 IS 13C-1,2,3,4,7,8-HxCDF | 36:07 3.986e + 057.667e + 05yes no 0.44 0.902 13C-1,2,3,4,6,7,8-HpCDF | 38:49 2.747e+05 6.237e+05 yes nol 21 IS 2.673e+05 0.78 22 IS 13C-2,3,7,8-TCDD 29:03 2.096e+05 yes nol 1.057 23 IS 13C-1,2,3,7,8-PeCDD | 33:39 3.081e+05 1.970e+05 1.56 yes no 0.873 24 IS 13C-1,2,3,6,7,8-HxCDD | 36:54 5.289e+05 4.188e+05 1.26 yes no 0.997 1.04 0.833 25 IS 13C-1,2,3,4,6,7,8-HpCDD 39:42 4.489e+05 4.311e+05 yes no 26 IS 13C-OCDD | 42:41 6.174e+05 6.820e+05 0.91 yes no 0.733 27 RS/RT 13C-1,2,3,4-TCDD | 28:49 2.026e+05 2.556e+05 0.79 yes no 28 RS/RT 13C-1,2,3,7,8,9-HxCDD 37:11 6.003e+05 4.788e+05 1.25 yes no 37Cl-2,3,7,8-TCDD 29:04 9.233e+04no 0.983 29 C/Up SUM AREA 30 Tot Total Tetra-Furans 28:15 1.082e+05 0.77 0.831 yes 31 Tot Total Tetra-Dioxins 29:04 9.251e+04 0.77 0.916 yes Total Penta-Furans 32:35 1.55 0.845 32 Tot 5.348e+05yes 33 Tot Total Penta-Dioxins 33:40 2.051e+05 1.56 0.869 yes 34 Tot Total Hexa-Furans 36:08 9.719e+05 1.25 1.018 yes 1.24 Total Hexa-Dioxins | 36:50 0.982 35 Tot 5.861e+05 yes 36 Tot Total Hepta-Furans 38:50 3.995e+05 1.00 1.143 yes 37 Tot Total Hepta-Dioxins | 39:43 1.595e+05 1.04 0.879 yes

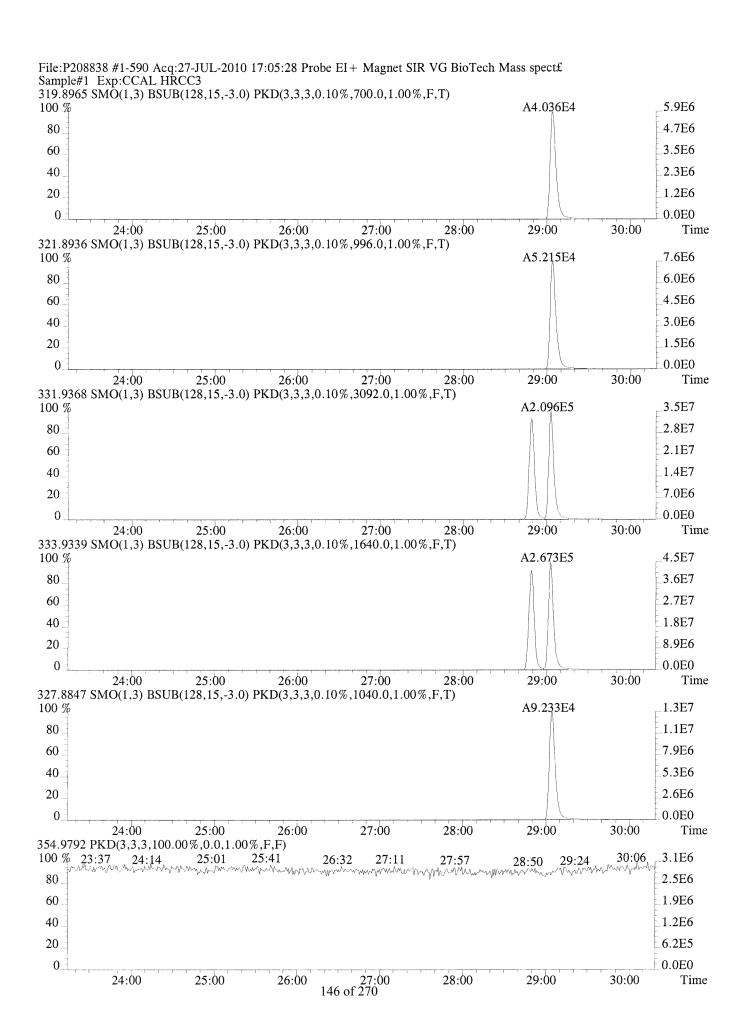
Columbia Analytical Services, Inc. 19408 Park Row., Suite 320 Houston, TX 77084 Office(713)266-1599. Fax(713)266-0130

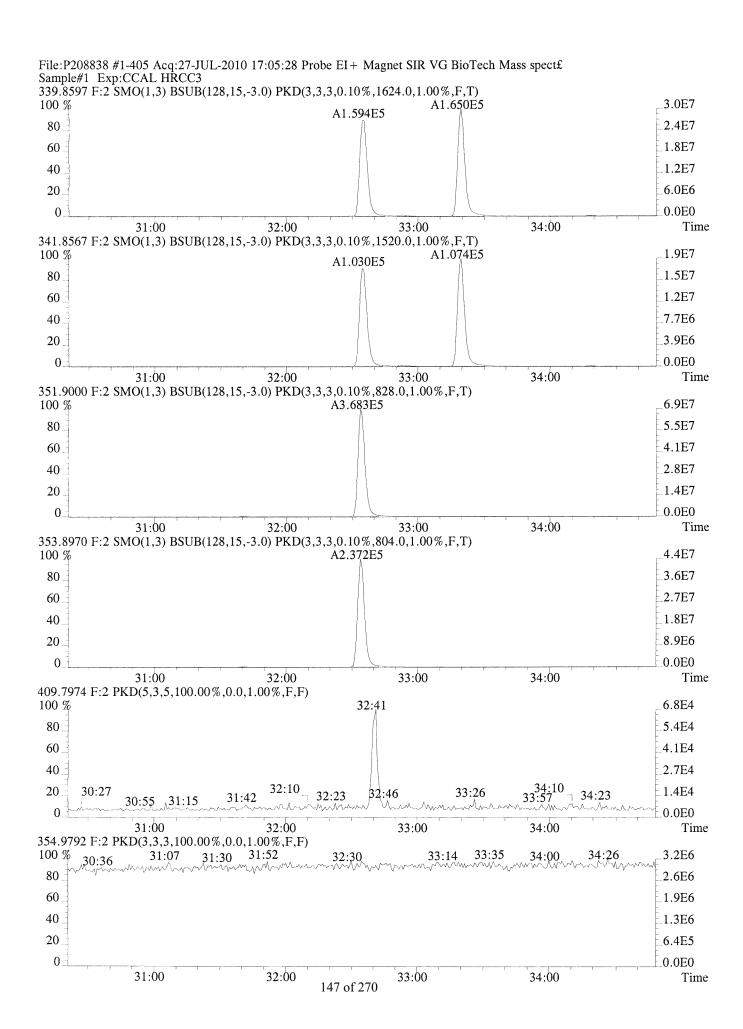
## Columbia Analytical Services, Inc. Signal/Noise Height Ratio Summary

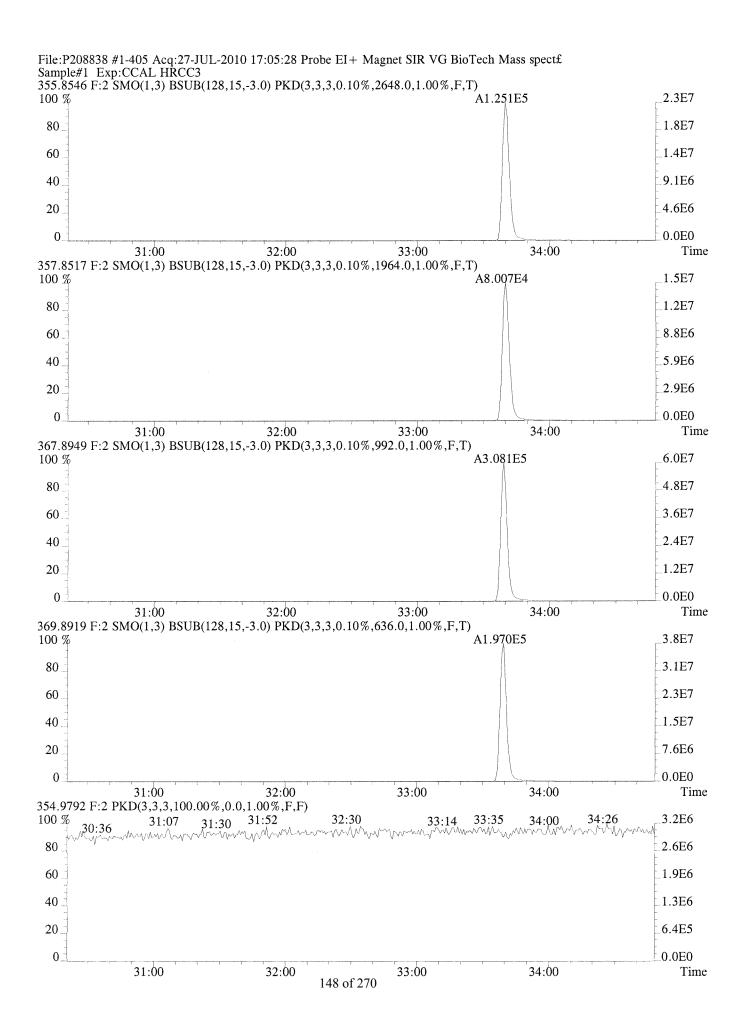
CLIENT ID. CCAL HRCC3

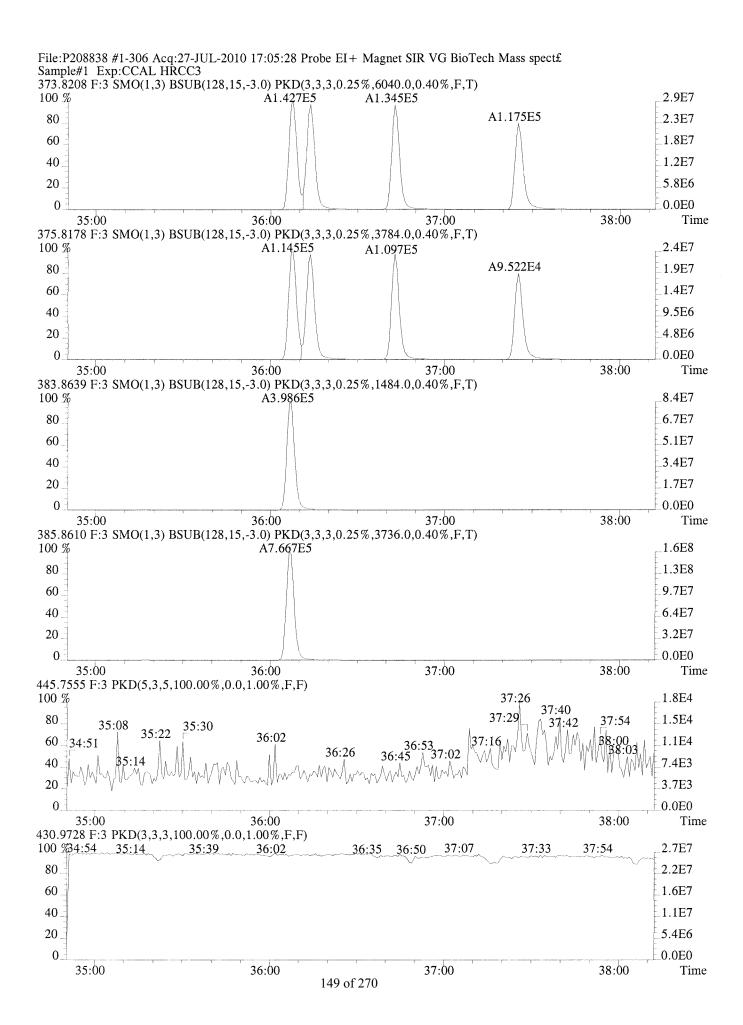
Run #7 Filename P208838 Samp: 1 Inj: 1 Acquired: 27-JUL-10 17:05:28 Processed: 28-JUL-10 10:23:121 LAB. ID: CCAL HRCC3

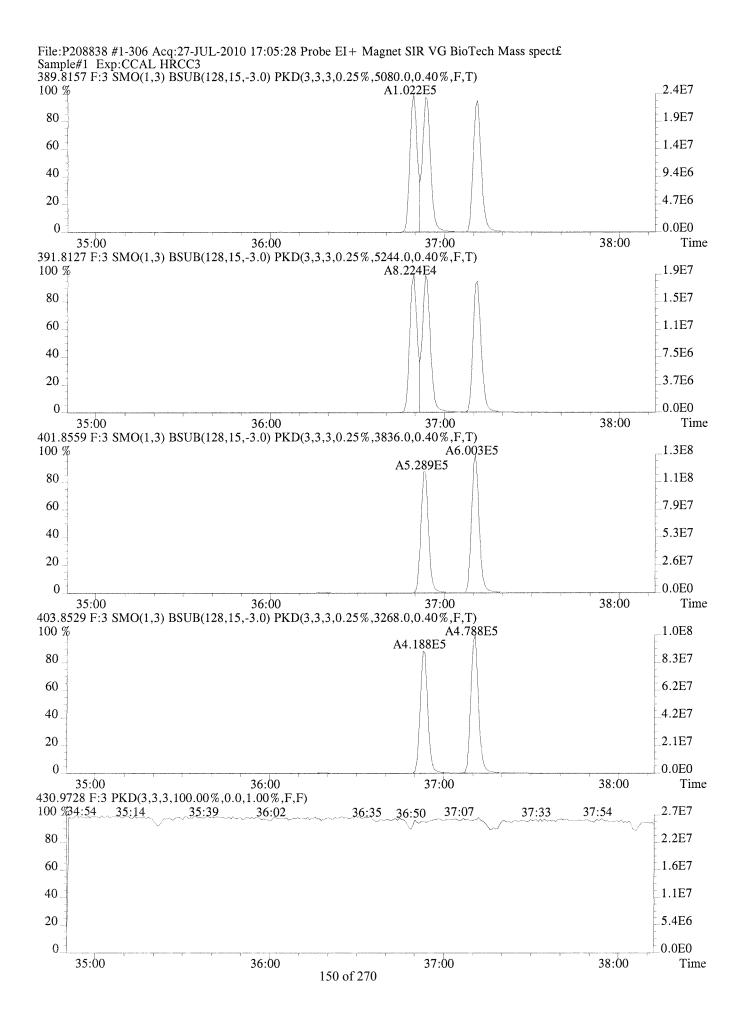

	Name	Signal 1	Noise 1	S/N Rat.1	Signal 2	Noise 2  S	/N Rat.2
1	2,3,7,8-TCDF	5.94e+06	6.36e+02	9.3e+03	7.80e+06	7.44e+02	1.0e+04
2	1,2,3,7,8-PeCDF	2.67e+07	1.62e+03	1.6e+04	1.75e+07	1.52e+03	1.2e+04
3	2,3,4,7,8-PeCDF	2.97e+07	1.62e+03	1.8e+04	1.92e+07	1.52e+03	1.3e+04
4	1,2,3,4,7,8-HxCDF	2.92e+07	6.04e+03	4.8e+03	2.38e+07	3.78e+03	6.3e+03
5	1,2,3,6,7,8-HxCDF	2.85e+07	6.04e+03	4.7e+03	2.33e+07	3.78e+03	6.2e+03
6	2,3,4,6,7,8-HxCDF	2.84e+07	6.04e+03	4.7e+03	2.34e+07	3.78e+03	6.2e+03
7	1,2,3,7,8,9-HxCDF	2.33e+07	6.04e+03	3.9e+03	1.90e+07	3.78e+03	5.0e+03
8	1,2,3,4,6,7,8-HpCDF	2.41e+07	4.56e+03	5.3e+03	2.35e+07	8.14e+03	2.9e+03
9	1,2,3,4,7,8,9-HpCDF	1.61e+07	4.56e+03	3.5e+03	1.61e+07	8.14e+03	2.0e+03
10	OCDF	2.36e+07	1.48e+03	1.6e+04	2.59e+07	1.71e+03	1.5e+04
	·	,	•	·	,		
11	2,3,7,8-TCDD	5.87e+06	7.00e+02	8.4e+03	7.54e+06	9.96e+02	7.6e+03
12	1,2,3,7,8-PeCDD	2.29e+07	2.65e+03	8.6e+03	1.47e+07	1.96e+03	7.5e+03
13	1,2,3,4,7,8-HxCDD	2.35e+07	5.08e+03	4.6e+03	1.86e+07	5.24e+03	3.6e+03
14	1,2,3,6,7,8-HxCDD	2.30e+07	5.08e+03	4.5e+03	1.85e+07	5.24e+03	3.5e+03
15	1,2,3,7,8,9-HxCDD	2.24e+07	5.08e+03	4.4e+03	1.77e+07	5.24e+03	3.4e + 03
16	1,2,3,4,6,7,8-HpCDD	1.60e+07	6.44e+03	2.5e+03	1.55e+07	6.42e+03	2.4e+03
17	OCDD	2.28e+07	5.65e+03	4.0e+03	2.54e+07	6.83e+03	3.7e+03
18	13C-2,3,7,8-TCDF	3.97e+07	2.15e+03	1.8e+04	5.10e+07	9.28e+02	5.5e+04
19	13C-1,2,3,7,8-PeCDF	6.87e+07	8.28e+02	8.3e+04	4.44e+07	8.04e+02	5.5e+04
20	13C-1,2,3,4,7,8-HxCDF	8.40e+07	1.48e+03	5.7e+04	1.61e+08	3.74e+03	4.3e+04
21	13C-1,2,3,4,6,7,8-HpCDF	5.97e+07	1.60e+04	3.7e+03	1.35e+08	1.46e+04	9.3e+03
22	13C-2,3,7,8-TCDD	3.49e+07	3.09e+03	1.1e+04	4.47e+07	1.64e+03	2.7e+04
23	13C-1,2,3,7,8-PeCDD	6.02e+07	9.92e+02	6.1e+04	3.82e+07	6.36e+02	6.0e+04
24	13C-1,2,3,6,7,8-HxCDD	1.15e+08	3.84e+03	3.0e+04	9.19e+07	3.27e+03	2.8e+04
25	13C-1,2,3,4,6,7,8-HpCDD	9.25e+07	2.61e+03	3.5e+04	9.00e+07	2.32e+03	3.9e+04
26	13C-OCDD	1.11e+08	1.92e+03	5.8e+04	1.23e+08	1.74e+03	7.1e+04
						ı	
27	13C-1,2,3,4-TCDD	3.27e+07	3.09e+03	1.1e+04	4.10e+07	1.64e+03	2.5e+04
28	13C-1,2,3,7,8,9-HxCDD	1.31e+08	3.84e+03	3.4e+04	1.04e+08	3.27e+03	3.2e+04
29	37C1-2,3,7,8-TCDD	1.32e+07	1.04e+03	1.3e+04			

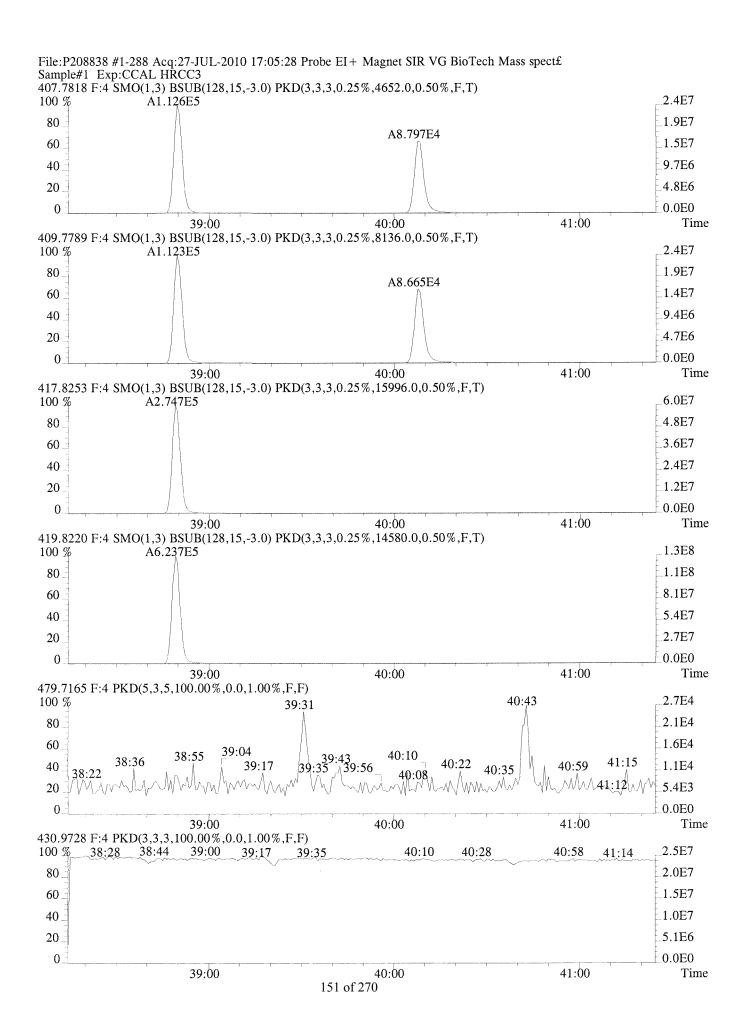

Columbia Analytical Services, Inc.

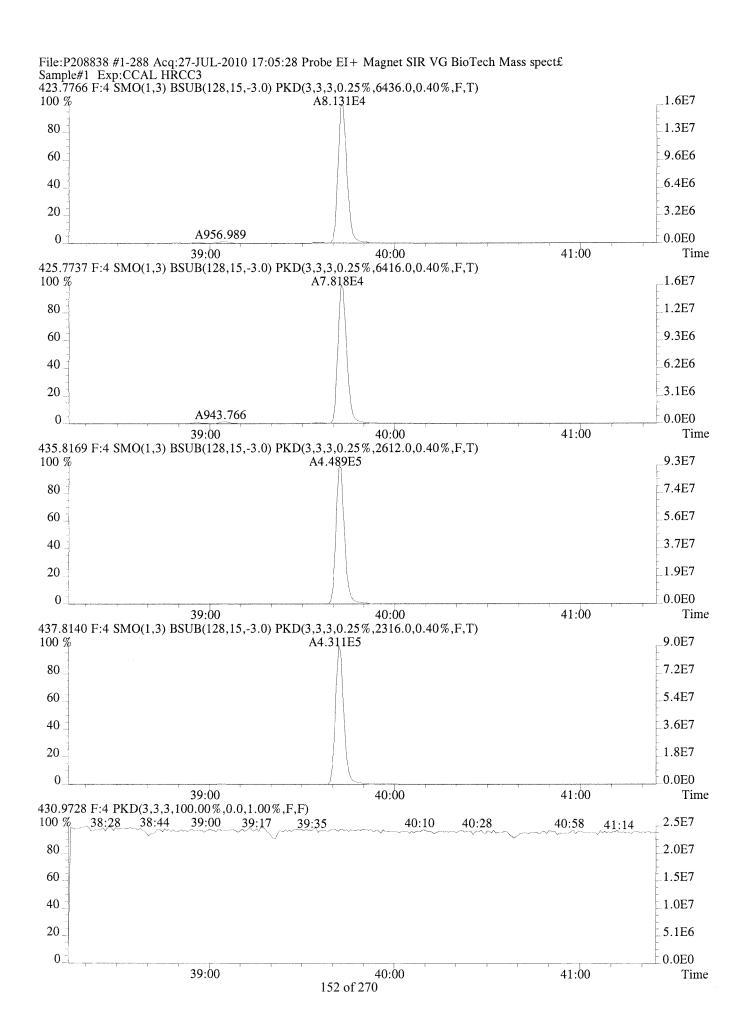

19408 Park Row, Suite 320


Houston, TX 77084


Office: (713) 266-1599. Fax: (713) 266-0130

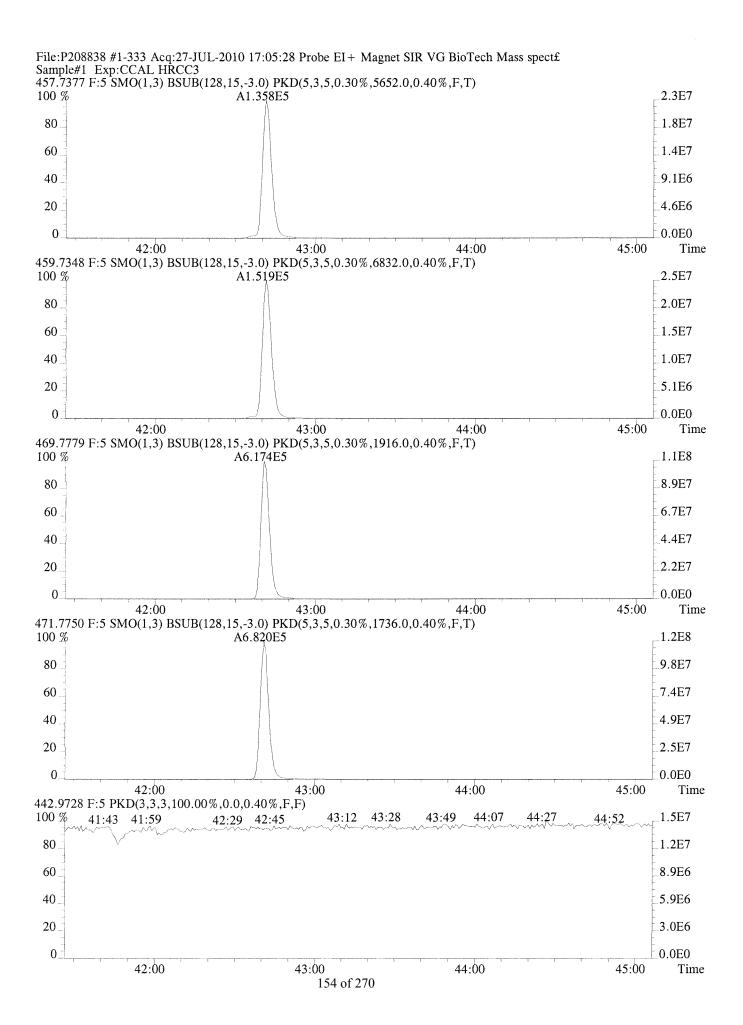



















# RW/CS3 Daily Calibration QC Checklist

Calibration File Name: 43748-419	Circle or Beginning /	ne: Ending
Date: $\frac{1}{2700}$	Degining	
Method: 1613 / 1613E / VCP / Tetra / TCDD Only / TC	DF Conf/ VCP Conf / 8280	/ M23 / TO-9A
Retention Window/Column Performance Check:	Analyst	Second Check
Windows in and first and last eluters labeled	NA	NA
Column Performance shows less than or equal to 25% valley between column specific 2378 isomer and its closest eluters		
No QC ion deflections affect column specific 2378 isomer or its closest eluters (HRMS Only)		✓
CS3 Continuing Calibration	Analyst	Second Check
Percent RSD within method criteria		
All relative abundance ratios meet method criteria		<b>/</b>
No QC ion deflections of greater than 20% (HRMS Only)		
Mass spectrometer resolution greater than or equal to 10,000 and documented (HRMS Only)		
2378-TCDD elutes at 25 minutes or later on the DB-5 column	NA	NA
Signal-to-noise of all target analytes and their labeled standards at least 10:1		
Valley between labeled 123478 and 123678 HxCDD peaks less than or equal to 50% (LRMS Only)	NA	NA
Ending Calibration injected prior to end of 12 hour clock		
Analyst:	Second QC:	nc
ccalqc.xls 02/08/00 155 of	f 270	

USEPA - CLP Page 1 of 1

# 5DFC PCDD/PCDF ANALYTICAL SEQUENCE SUMMARY

Lab Name: Columbia Analytical Services Contract:

Init. Calib. Date: 12/17/07

Init. Calib.Times: 16:11

THE ANALYTICAL SEQUENCE OF STANDARDS, SAMPLES, BLANKS, AND LABORATORY CONTROL SAMPLES (LCSs) IS AS FOLLOWS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
COLUMN PERFORMANCE		U137247	27-JUL-10	11:58:48
CCAL CS3		U137248	27-JUL-10	12:24:48
INST BLANK	INST BLANK	U137250	27-JUL-10	14:15:28
SRC-2010-8-COMP	E1000811-001	U137251	27-JUL-10	14:53:12
SB-20 6-8'	DO NOT USE	U137252	27-JUL-10	15:30:12
SB-10 0-2'	J1003407-007	U137253	27-JUL-10	16:07:13
SB-30 14-16'	J1003461-013	U137254	27-JUL-10	16:44:15
CCAL CS3	CCAL CS3	U137255	27-JUL-10	17:30:33
SB-20 6-8'	J1003350-009	U137252	27-JUL-10	15:30:12

### HRGC/HRMS RUN LOG

CAS HOUSTON

19408 Park Row, Suite 320 Houston, TX 77084

Acq Method: TOFCAS GC Method: TOFCAS

Result File EU 37448 res



An Employee Owned Company

Da	ite	Time	File	CAS ID	Client ID	Batch #	Analyst	Comments	RE	
01/2	3/10	23:55	()137238	K1007017-010	DU23-0.2-0.5	حب بوليان بالولوان والمقاول والمواجع والمواجع المواجع المواجع والمواجع المواجع المواجع والمواجع المواجع المواج	He.	1613		
01/2	410	00:33	0137239		DU33-0.0-0.2		1	•-		
		01:09	0(37240	1 1	DU 33-0.2-0.5					
		0]:46	<u> </u>	-013	DU35-0.0-0.2					
		02:23	()137242	-014	DU35-0.2-0.5		,	**		
		03:00	()[37243	-015	D436-0.0-0.2			• The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the		
157	$\blacksquare$	03:37	()137244	-016	DU36-0.2-0.5		700	•		
157 of 270		04:14	D137245	nb -017	DU37-0.0-0.2			•		
		04:53		HRMS CHECK			ik		-715 PPMANER - 15	
1010	916	06:50	( )122011	HRMS CHEK	i		8			
and a	/	06:51	()137246	COLUMN PELEDEMAN	JE D4-59-1			NEOS REJUDECTION	CHANNET	AINE
07/a	10	11:56	1)1270112	Hems CHECK	~		fl			COWNW
	<u> </u>	11:58	() 137247	COLUMN PERFORMAN	_	manager at 10 percy property of constraints of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second				
		13:24	0137248	CCAL C53	D1-34-2					
		14:15	() 37249 () 37250	TOST. BLANK				NOTO LEINTERIN		
		14,10	Ulolan	TIST. BLANK			<u>u</u>	8290		

Reviewed by:

<b>HRGC/III</b>	RMS	RIIN	LOG
AAA O O KAAA	N.I. I.ALL	あいしょす.	# / X P X 1

CAS HOUSTON 19408 Park Row, Suite 320 Houston, TX 77084

Acq Method: TCACAS	Result File:
GC Method: TOPCAS	EDD File:



An Employee Owned Company

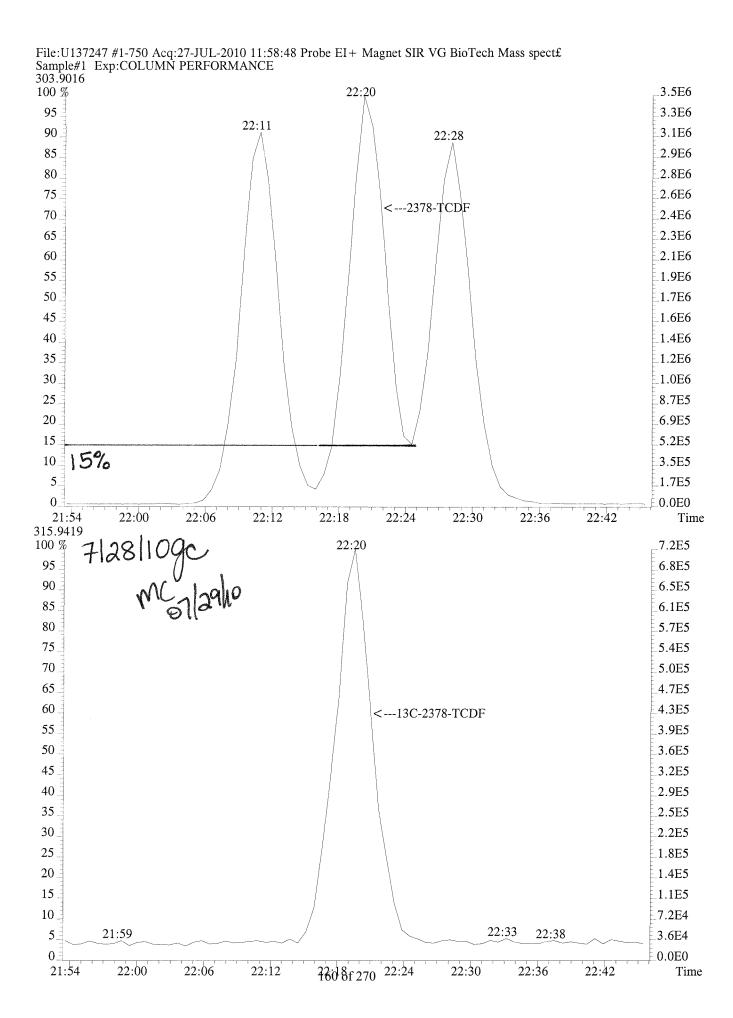
 $\epsilon$ 

Date	TE	No. 10 B		The same property and the same was a second and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same				
<u> </u>	Time	File	CAS ID	Client ID	Batch #	Analyst	Comments	RE
07/27/10		()(3725)	E1000811-001	SAC-2010-8-CO	mn	K	8290	
46	15:30	()137253	0 005550-009	SB-20 6-8'	<del>.</del>		1/	
-	16:0+	()[37,253	J 1003407-007	SB-10 0-2'	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon			
	16:44	0137254	01003461-013	58-30 14-16				
TO AND THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY O	17.50	0137255	CCAL CS3	D11-34-2			And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	
	18:17		Hems CHECK					
		() (37256	COLUMN PERFORMAN	F 1459-1				
	8:45	()137057	िक्ट					
		()137258	TOST. BLANK					
		()   37,259	K1007017-018	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon			1613	
		()137260	L -019	-	Committee and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	The Property of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the C	1012	
		() [3726]	-020		and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t		- Market Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of t	
		()137862	E1000735-001	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	The section of the section (i.e., a particular property of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sec		M23	
		() 31263	1 - CO2				Mos	hi 100 km - Mad be Yang Malangapaga
-		()137864	7003		-			
***		() 137265	-004					
		MC.	The second section of the second section of the section of the section of the second section of the second section of the second section of the second section of the second section of the second section of the second sec	The same constitution of the health and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th	and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th	Production have been referred to the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same	- The contract of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of	

Reviewed by: MC

#### USEPA - CLP 5DFB

EPA SAMPLE NO.

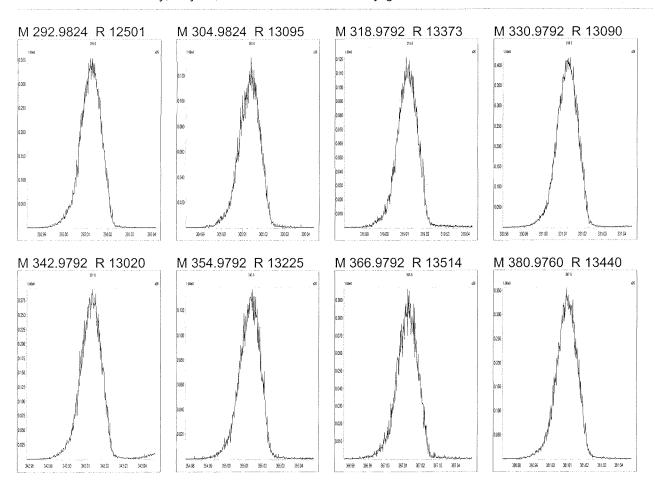

PCDD/PCDF WINDOW DEFINING MIX SUMMARY Column Perform Lab Name: Columbia Analytical Services Contract: Date Analyzed:07/27/2010 Instrument ID: Ultima AutoSpec Time Analyzed:11:58:48 Percent Valley deterimation for DB-5 (or equivalent) Column -For the Column Performance Solution beginning the 12-hour period: 1478-TCDD/2378-TCDD: QUALITY CONTROL (QC) LIMITS: Percent Valley between the TCDD isomers must be less than or equal to 25%. Percent Valley deterimation for DB-225 (or equivalent) Column -For the Column Performance Solution beginning the 12-hour period: 2347-TCDF/2378-TCDF: 15 % QUALITY COTROL (QC) LIMITS:

Analyst Init:

FORM V-HR CDD-2

DLM02.0

Percent Valley between the TCDF/TCDF isomers must be less than or equal to 25%.

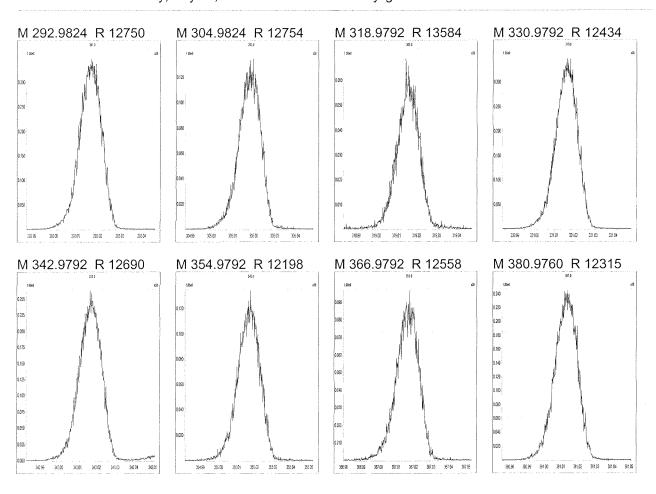



File:

Experiment: TCDFCAS.exp Reference: pfk.ref Function: 1 @ 200 (ppm)

Printed:

Tuesday, July 27, 2010 11:56:31 Central Daylight Time




File:

Experiment: TCDFCAS.exp Reference: pfk.ref Function: 1 @ 200 (ppm)

Printed:

Tuesday, July 27, 2010 18:17:23 Central Daylight Time



USEPA - ITD Page 1 of 8

### FORM 4A TCDF CALIBRATION VERIFICATION

Lab Name: Columbia Analytical Services Contract No.:

Lab Code: TX01411 Case No.: Client No: SDG No.:

Initial Calibration Date: 12/17/07

Instrument ID.: AutoSpec_Ultima GC COLUMN ID: DB-225

VER Data Filename: U137248 Analysis Date: 27-JUL-10 Time: 12:24:48

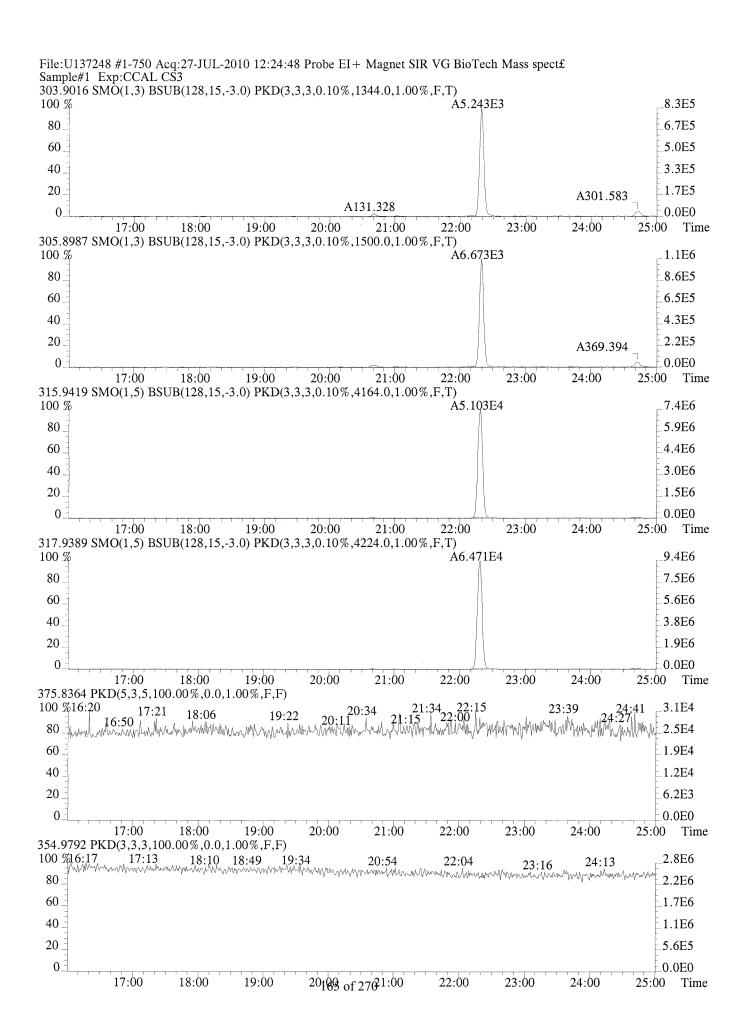
	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	CCAL. RRF	MEAN RRF	%D (3)
NATIVE ANALYTES						
2,3,7,8-TCDF	M/M+2	0.79	0.65-0.89	1.03	1.02	0.49
Labeled Compounds						
13C-2,3,7,8-TCDF	M/M+2	0.79	0.65-0.89	1.33	1.25	6.69
Cleanup Standard						
37Cl-2,3,7,8-TCDD				1.02	0.94	7.50

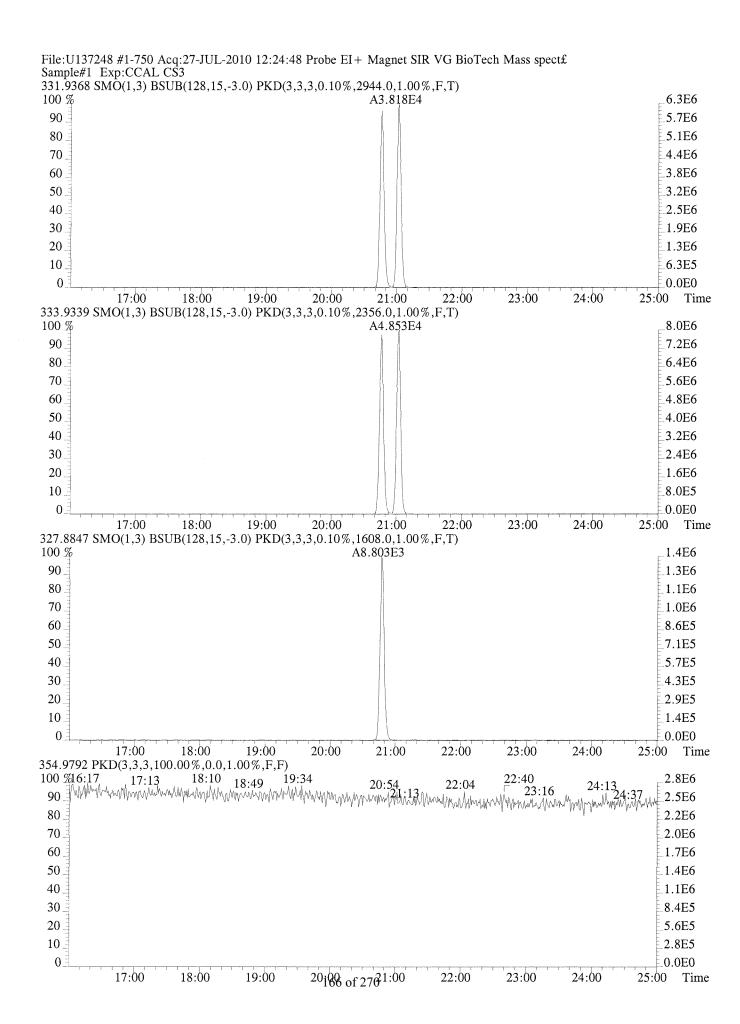
FORM VII-HR CDD1 DLM01.3

## Columbia Analytical Services, Inc. Sample Response Summary

Page 6 of 13 EPA SAMPLE NO. CCAL CS3

Samp: 1 Inj: 1 Acquired: 27-JUL-10 12:24:48


Processed:	28-JUL-10 11:40:58	-	Sample ID: CCA	L CS3			
Тур	Name	RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?
1 Unk 2 IS 3 RS/RT 4 C/Up	2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,4-TCDD 37C1-2,3,7,8-TCDD	22:19 21:02	5.243e+03 5.103e+04 3.818e+04 8.803e+03	6.673e+03 6.471e+04 4.853e+04	0.79 0.79 0.79	yes yes yes	no no no no
			Height Ratio St	-	Noise 2	s/N	


	Name						
1	2,3,7,8-TCDF	8.33e+05	1.34e+03	6.2e+02	1.08e+06	1.50e+03	7.2e+02
2	13C-2,3,7,8-TCDF	7.40e+06	4.16e+03	1.8e+03	9.36e+06	4.22e+03	2.2e+03
3	13C-1,2,3,4-TCDD	6.34e+06	2.94e+03	2.2e+03	7.99e+06	2.36e+03	3.4e+03
4	37Cl-2,3,7,8-TCDD	1.43e+06	1.61e+03	8.9e+02	·		

Columbia Analytical Services, Inc. 19408 Park Row, Suite 320 Houston, TX 77084 Office(713)266-1599. Fax(713)266-0130

Run #6

Filename U137248





USEPA - ITD Page 7 of 8

### FORM 4A TCDF CALIBRATION VERIFICATION

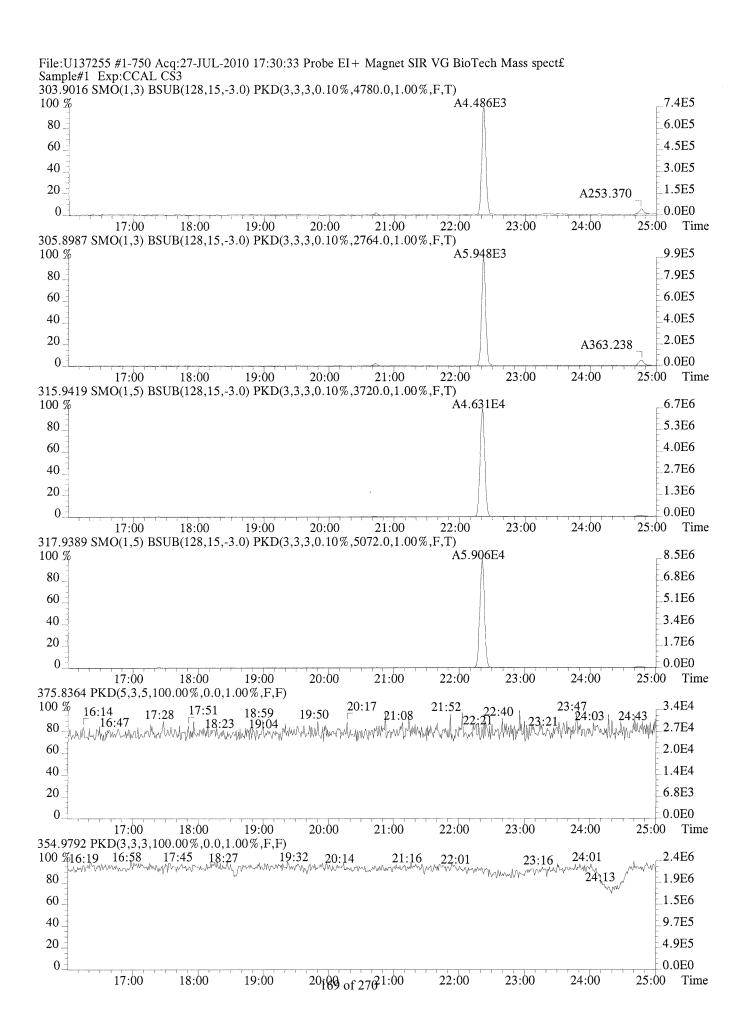
Lab Name: Columbia Analytical Services Contract No.:

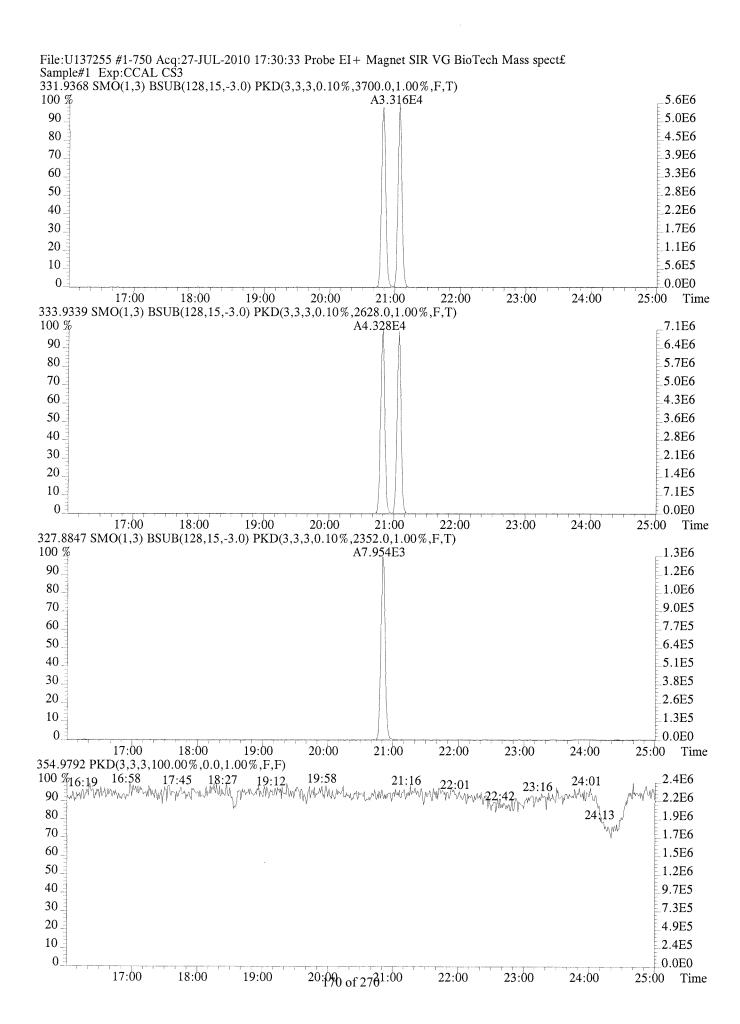
Initial Calibration Date: 12/17/07

Instrument ID.: AutoSpec_Ultima GC COLUMN ID: DB-225

VER Data Filename: U137255 Analysis Date: 27-JUL-10 Time: 17:30:33

	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	CCAL. RRF	MEAN RRF	%D (3)
NATIVE ANALYTES						
2,3,7,8-TCDF	M/M+2	0.75	0.65-0.89	0.99	1.02	-3.34
Labeled Compounds						
13C-2,3,7,8-TCDF	M/M+2	0.78	0.65-0.89	1.40	1.25	12.28
Cleanup Standard						
37Cl-2,3,7,8-TCDD				1.06	0.94	12.29


FORM VII-HR CDD1 DLM01.3


# Columbia Analytical Services, Inc. Page 12 Sample Response Summary EPA SAMPLE NO.

Page 12 of 13 CCAL CS3

**	Filename U137255 28-JUL-10 11:41:03	_	: 1 Inj: 1 Sample ID: CCAL	_	27-JUL-1	10 17:30:33
Тур	Name	RT-1	Resp 1	Resp 2	Ratio	Meet Mod?
1 Unk 2 IS 3 RS/RT 4 C/Up	J	22:21  21:05  20:50  Noise F	4.486e+03     4.631e+04     3.316e+04     7.954e+03     Height Ratio Sur	-	0.75     0.78     0.79     Noise 2	yes no yes no yes no no
3	13C-2,3,7,8-TCDF 6.6 13C-1,2,3,4-TCDD 5.5	7e+06 3 7e+06 3	4.78e+03   1.5e+0 3.72e+03   1.8e+0 3.70e+03   1.5e+0 2.35e+03   5.4e+0	03   8.55e+06   03   7.03e+06	2.76e+03 5.07e+03 2.63e+03	3 1.7e+03

Columbia Analytical Services, Inc. 19408 Park Row, Suite 320 Houston, TX 77084 Office(713)266-1599. Fax(713)266-0130







### **Initial Calibration**

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

An Employee Owned Company

## Initial Calibration QC Checklist

ICAL Name: 1808018090TN		
Date: 01 AUG. 08		
Method: 1613 / 8290 Tetra / TCDD On	nly / TCDF Conf / 8280 / 61	3 / M23 / TO-9
Retention Window/Column Performance Check	Analyst	Second Check
Windows in and first and last eluters labeled		
Column Performance shows less than or equal to 25% valley between column specific 2378 isomer and it's closest eluters		
No QC ion deflections affect column specific 2378 isomer or it's closest eluters		
Initial Calibration	Analyst	Second Check
Percent RSD within method criteria		
All relative abundance ratios meet method criteria		
No QC ion deflections of greater than 20%		
Mass spectrometer resolution greater than or equal to 10,000 and documented		
2378-TCDD elutes at 25 minutes or later on the DB-5 column		<u> </u>
Signal-to-noise of all target analytes and their labeled standards at least 10:1		
Valley between labeled 123478 and 123678 HxCDD peaks less than or equal to 50%		
All Manual Intergrations signed and dated and first and final copies of Ical summary included		
Analyst:	Second QC:	10

icalqc.xls 02-23-00

#### CAS HOUSTON INC.

5DFC

#### PCDD/PCDF ANALYTICAL SEQUENCE SUMMARY HIGH RESOLUTION

Name: Columbia Analytical Services, Houston Contract

Lab Code: TX01411 CASE No.: Client No: SDG No.:

Init. Calib. Date: 08/01/08

Init. Calib. Times: 14:25

THE ANALYTICAL SEQUENCE OF STANDARDS, SAMPLES, BLANKS, SPIKES AND DUPLICATES IS AS FOLLOWS:

EPA	LAB	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
=======================================				
WINDOW DEFINE		P200030	1-AUG-08	14:25:10
ICAL HRCC1		P200033	1-AUG-08	17:11:30
ICAL HRCC2		P200032	1-AUG-08	16:23:43
ICAL HRCC3		P200031	1-AUG-08	15:21:27
ICAL HRCC4	İ	P200034	1-AUG-08	18:16:07
ICAL HRCC5		P200035	1-AUG-08	19:02:53

HRGC/HRMS RUN LOG

CAS HOUSTON

19408 Park Row, Suite 320 Houston, TX 77084

9001/617 Result File: PSOPOISE 9015

6001/1613 EDD File: FP808018290I

An Employee Owned Company

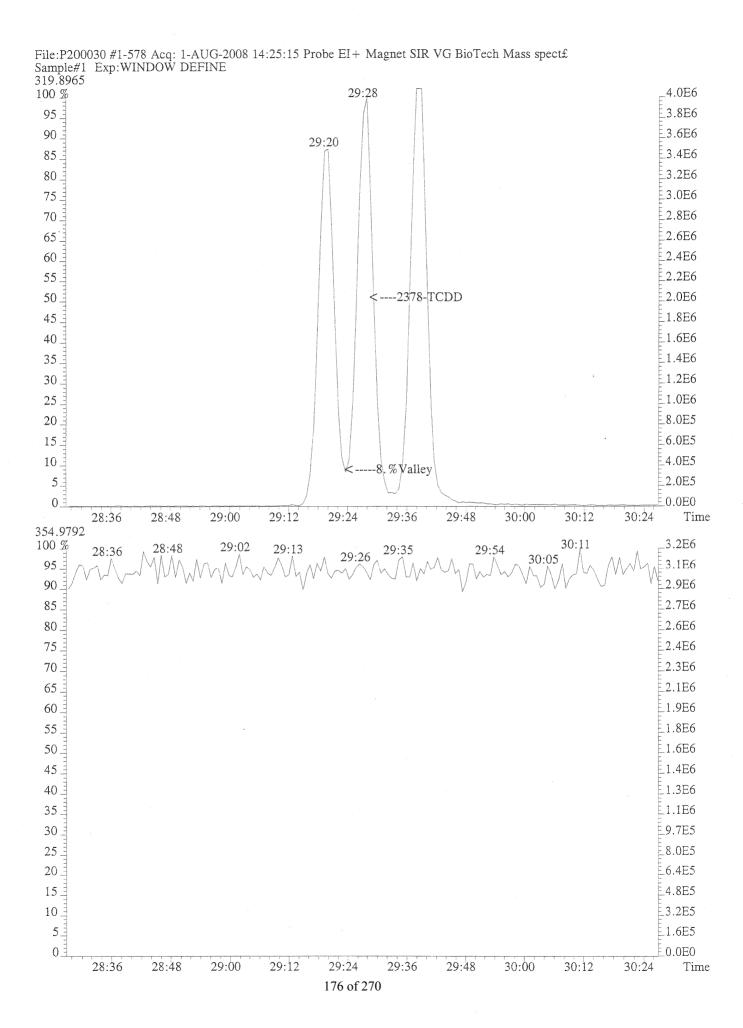
Date	Time	File	CAS ID	Client ID	Batch #	Analyst	Comments	RE	
		1200077	CCAL HACC	3 DS-2-2A		4	Use Aug		
7/3/08	18:41	westoster	HAMS Check	A	0 - AMEL AND ADDRESS - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2				
0x/01/c)	14:22	W.63/03/68	1						
7/ //	07:25	P200028	Window De Fin	430 3000			AND AND ADMINISTRATION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE		
	08:11	PZUUZG	CCAL HAR	C3 D8-2-1A	****		14:22 HRMS (.	beck	
	14:25	P260030	Window Per	Time D4-9x-2	As a constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant				
	15:21	P2CKU31	TONE WAR	17 NF-2-2A	more than a more against the a				
	16:23	P200032	ICAL HACO	2 25-49-4					
	17:11	P200073	LCAL 14RCC	1 05-49-5					
	18:16	P20W34	ICAL HRC	4 D5-49-2	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s				
	19:02		ICAL HRCC	5 DS-49-1					
		P200036	1 '		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		19:57 HAM	Check	
X	14:57		HPHS the	c/c			08:SF X		
Sloy	108	<b>F</b>	1. 1				P200076 14MG	cs csa	-04-6
1-1		P200137	Window Pet	YAR					
V		P2 ausy	CAI HA			1			

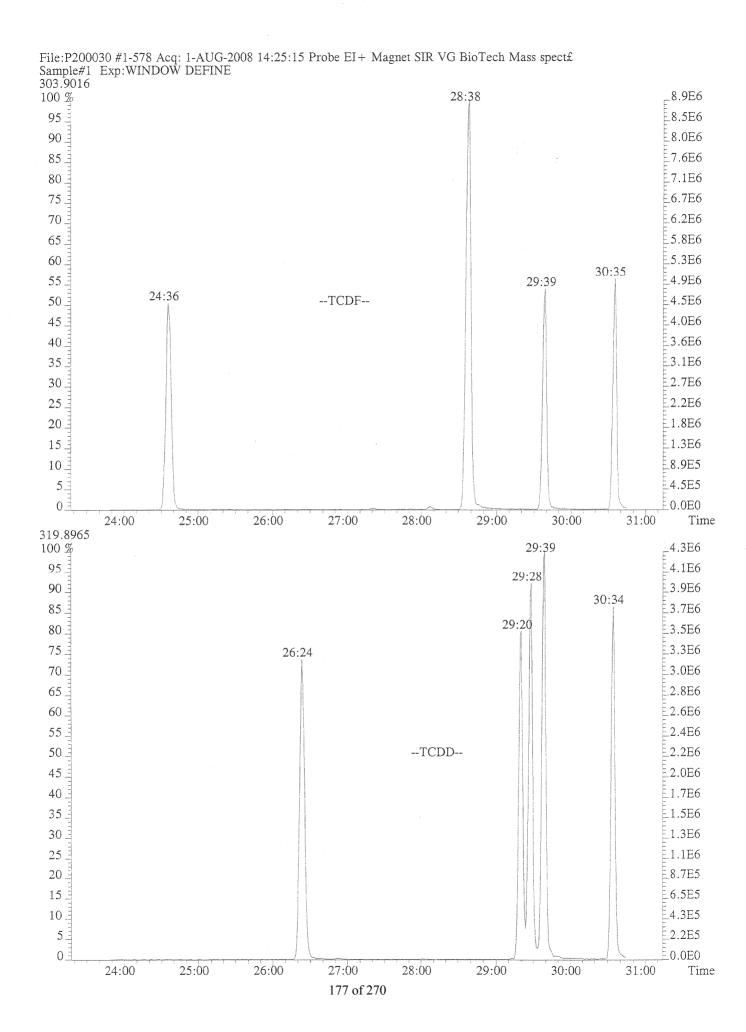
Reviewed by:

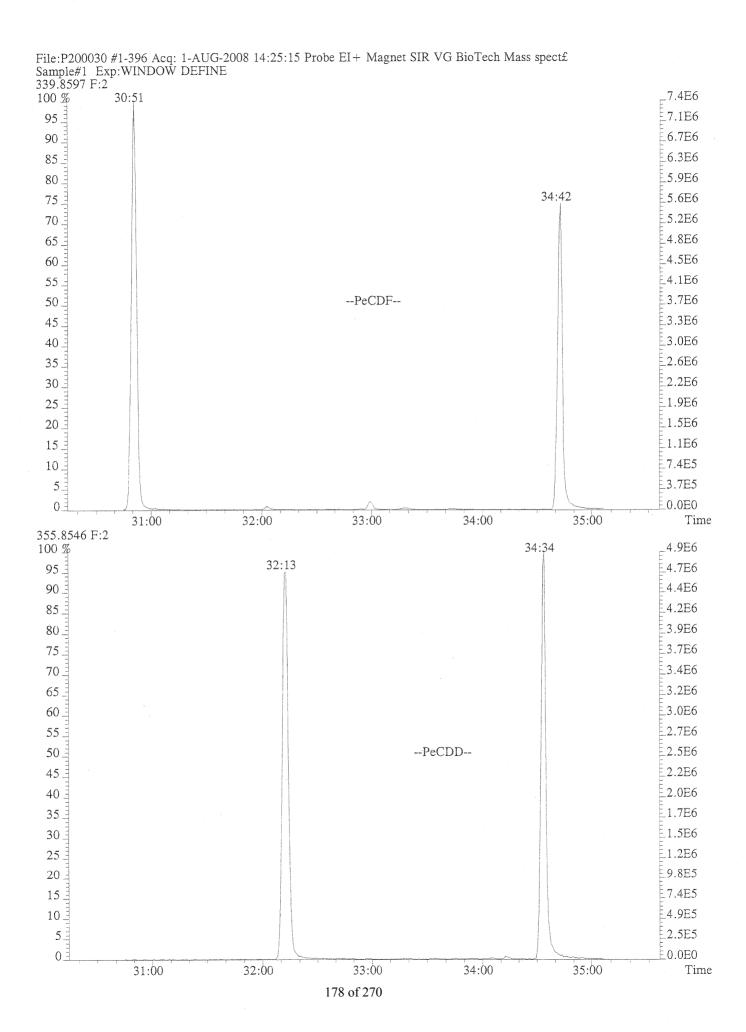
### 5DFA WINDOW DEFINING MIX SUMMARY

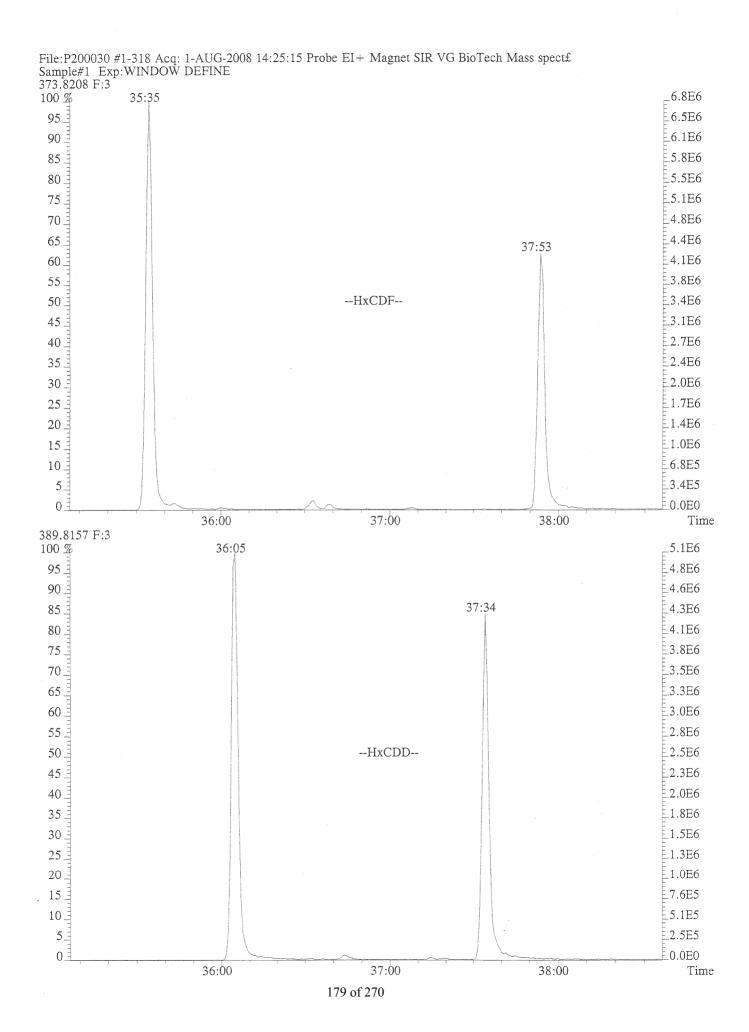
CLIENT	ID:	
WDM		

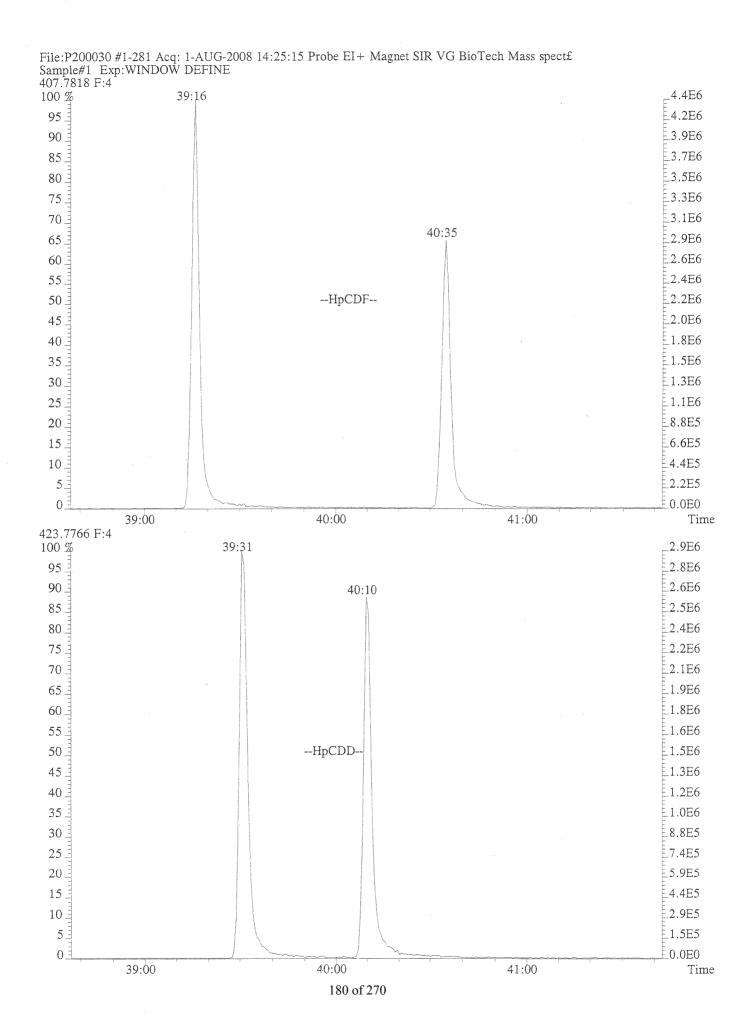
% Valley 2378-TCDD:


Lab Name: COLUMBIA ANALYTICAL SERVICES
Lab Code: CAS Case No
GC Column: DB-5 ID: 0.2 SDG No.:


Lab File ID: P200030 


Date Analyzed: 1-AUG-2008 Time Analyzed: 14:25:15


Congener	Retention Time First Eluting	Retention Time Last Eluting
TCDF	24:36	30:35
TCDD	26:24	30:34
PeCDF	30:51	34:42
PeCDD	32:13	34:34
HxCDF	35:35	37:53
HxCDD	36:05	37:34
HpCDF	39:16	40:35
HpCDD	39:31	40:10

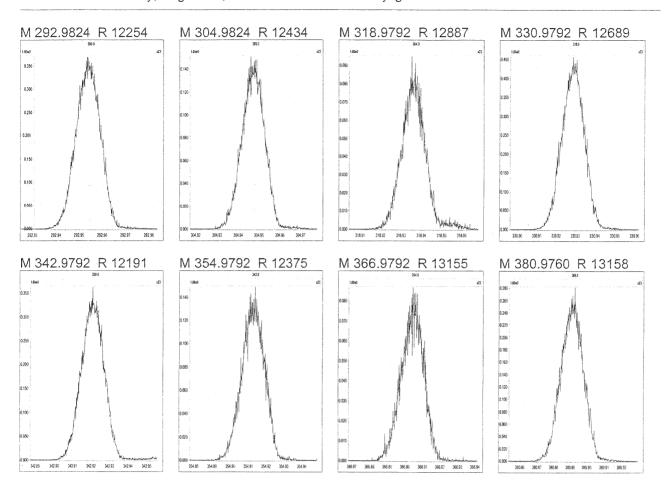

8. %









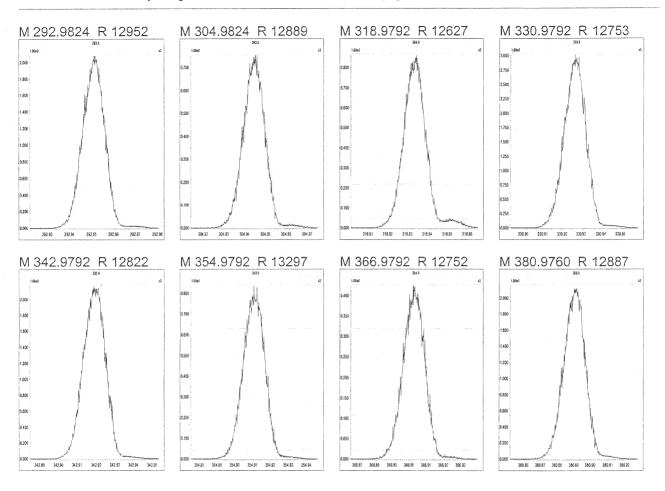



File:

Experiment: 8290CAS.exp Reference: pfk.ref Function: 1 @ 200 (ppm)

Printed:

Friday, August 01, 2008 14:22:07 Central Daylight Time




File:

Experiment: 8290CAS.exp Reference: pfk.ref Function: 1 @ 200 (ppm)

Printed:

Friday, August 01, 2008 19:57:10 Central Daylight Time



MEAN

#### FORM 3A PCDD/PCDF INITIAL CALIBRATION RELATIVE RESPONSES

Lab Name: Columbia Analytical Services Episode No.:

Contract No.:

SDG No.:

Initial Calibration Date: 08/01/08

Instrument ID: AutoSpec-Premier GC Column ID: DB-5

RELATIVE RESPONSE (RR)

HRCC1 Data Filename: P200033 HRCC4 Data Filename: P200034

HRCC2 Data Filename: P200032 HRCC5 Data Filename: P200035

HRCC3 Data Filename: P200031

	· ,				RR	(RSD)	
NATIVE ANALYTES	HRCC1	HRCC2	HRCC3	HRCC4	HRCC5		(1)
NAIIVE ANALYIES							
2,3,7,8-TCDD	0.91	0.89	0.95	0.92	0.92	0.92	2.66
1,2,3,7,8-PeCDD	0.86	0.85	0.87	0.87	0.89	0.87	1.89
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	0.94 1.07 0.98	0.90 1.06 0.97	0.90 0.99 0.92	0.93 1.08 0.97	0.96 1.08 1.00	0.93 1.05 0.97	2.87 3.77 3.15
1,2,3,4,6,7,8-HpCDD	0.86	0.86	0.88	0.89	0.90	0.88	1.87
OCDD	0.95	0.94	0.97	0.96	0.98	0.96	1.44
2,3,7,8-TCDF	0.79	0.80	0.87	0.84	0.85	0.83	3.95
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	0.81	0.82 0.82	0.87 0.88	0.84 0.87	0.85	0.84	2.85
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF	1.06 1.09 0.84 0.96	1.07 1.10 0.84 0.99	1.08 1.18 0.89 1.05	1.06 1.13 0.85 1.00	1.09 1.13 0.89 1.03	1.07 1.13 0.86 1.01	1.17 3.29 3.20 3.54
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF		1.30	1.35 0.97	1.33	1.33	1.32	2.31
OCDF	1.12	1.09	1.11	1.14	1.05	1.10	3.10

⁽¹⁾ The %RSD for the 17 unlabeled standard must not exceed +/-20%, see Section 7.7.2.1, Method 8290.

8290F3A

FORM 3B PCDD/PCDF INITIAL CALIBRATION RELATIVE RESPONSES

Lab Name: Columbia Analytical Services Episode No.:

Contract No.:

SDG No.:

Initial Calibration Date: 08/01/08

Instrument ID: AutoSpec-Premier GC Column ID: DB-5

HCC1 Data Filename: P200033 HCC4 Data Filename: P200034

HCC3 Data Filename: P200031

	RELATIVE RESPONSE (RR)						Cv (RSD)
LABELED COMPOUNDS	HRCC1	HRCC2	HRCC3	HRCC4	HRCC5	RR	(1)
13C-2,3,7,8-TCDD	1.06	1.07	0.99	1.07	1.09	1.06	3.67
13C-1,2,3,7,8-PeCDD	0.82	0.80	0.98	0.81	0.95	0.87	10.00
13C-1,2,3,6,7,8-HxCDD	1.01	0.99	0.99	1.00	0.98	1.00	1.14
13C-1,2,3,4,6,7,8-HpCDD	0.87	0.83	0.79	0.87	0.82	0.83	4.22
13C-OCDD	0.78	0.74	0.68	0.64	0.83	0.73	10.58
13C-2,3,7,8-TCDF	1.42	1.43	1.46	1.43	1.38	1.42	2.10
13C-1,2,3,7,8-PeCDF	1.22	1.20	1.38	1.19	1.33	1.26	6.61
13C-1,2,3,4,7,8-HxCDF	1.39	1.31	1.12	1.34	1.23	1.28	8.43
13C-1,2,3,4,6,7,8-HpCDF	0.96	0.92	0.84	0.95	0.84	0.90	6.54
CLEANUP STANDARD							
37Cl-2,3,7,8-TCDD	0.95	0.97	0.97	1.00	1.02	0.98	2.85

⁽¹⁾ The %RSD for the nine labeled reference compounds must not exceed +/- 30%, see Section 7.7.2.1, Method 8290.

8290F3B

#### FORM 3C PCDD/PCDF INITIAL CALIBRATION ION ABUNDANCE RATIOS

Lab Name: Columbia Analytical Services Episode No.:

Contract No.: SDG No.:

Initial Calibration Date: 08/01/08

Instrument ID: AutoSpec-Premier GC Column ID: DB-5

HCC4 Data Filename: P200034 HCC1 Data Filename: P200033

HCC5 Data Filename: P200035 HCC2 Data Filename: P200032

HCC3 Data Filename: P200031

	M/Z'S FORMING		ION ABU	NDANCE	RATIO		QC LIMITS
	RATIO	HRCC1	HRCC2	HRCC3	HRCC4	HRCC5	(2)
NATIVE ANALYTES							
2,3,7,8-TCDD	M/M+2	0.81	0.79	0.77	0.77	0.78	0.65-0.89
1,2,3,7,8-PeCDD	M+2/M+4	1.42	1.53	1.54	1.55	1.55	1.32-1.78
1,2,3,4,7,8-HxCDD	M+2/M+4	1.35	1.24	1.23	1.24	1.26	1.05-1.43
1,2,3,6,7,8-HxCDD	M+2/M+4	1.08	1.25	1.25	1.26	1.26	1.05-1.43
1,2,3,7,8,9-HxCDD	M+2/M+4	1.27	1.23	1.29	1.25	1.24	1.05-1.43
1,2,3,4,6,7,8-HpCDI	M+2/M+4	1.06	1.04	1.03	1.04	1.04	0.88-1.20
OCDD	M+2/M+4	0.92	0.89	0.90	0.89	0.89	0.76-1.02
2,3,7,8-TCDF	M/M+2	0.74	0.72	0.75	0.77	0.77	0.65-0.89
1,2,3,7,8-PeCDF	M+2/M+4	1.58	1.54	1.55	1.53	1.55	1.32-1.78
2,3,4,7,8-PeCDF	M+2/M+4	1.47	1.57	1.52	1.54	1.54	1.32-1.78
	/						
1,2,3,4,7,8-HxCDF	M+2/M+4	1.27	1.23	1.24	1.22	1.22	1.05-1.43
1,2,3,6,7,8-HxCDF	M+2/M+4 M+2/M+4	1.23	1.26 1.21	1.21 1.23	1.22 1.19	1.23 1.23	1.05-1.43
1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF	M+2/M+4 M+2/M+4	$\frac{1.32}{1.27}$	1.21	1.23	1.23	1.23	1.05-1.43
2,3,4,6,7,6-HXCDr	M+2/M+4	1.4/	1.22	1.43	1.43	1.40	1.05-1.45
1,2,3,4,6,7,8-HpCDF	M+2/M+4	1.05	0.99	1.03	1.01	1.02	0.88-1.20
1,2,3,4,7,8,9-HpCDF		1.00	0.97	1.03	1.02	1.02	0.88-1.20
OCDF	M+2/M+4	0.88	0.90	0.90	0.89	0.90	0.76-1.02

⁽¹⁾ See Table 6, Method 8290, for m/z specifications.

8290F3C

⁽²⁾ Ion Abundance Ratio Control Limits from Table 8, Method 8290.

### FORM 3D PCDD/PCDF INITIAL CALIBRATION ION ABUNDANCE RATIOS

Lab Name: Columbia Analytical Services Episode No.:

Contract No.: SDG No.:

Initial Calibration Date: 08/01/08

Instrument ID: AutoSpec-Premier GC Column ID: DB-5

HRCC1 Data Filename: P200033 HRCC4 Data Filename: P200034

HRCC2 Data Filename: P200032 HRCC5 Data Filename: P200035

HRCC3 Data Filename: P200031

	M/Z'S FORMING		ION AB	UNDANCE	RATIO		QC LIMITS
LABELED COMPOUNDS	RATIO	HRCC1	HRCC2	HRCC3	HRCC4	HRCC5	(2)
13C-2,3,7,8-TCDD	M/M+2	0.77	0.78	0.79	0.78	0.77	0.65-0.89
13C-1,2,3,7,8-PeCDD	M+2/M+4	1.58	1.58	1.58	1.54	1.56	1.32-1.78
13C-1,2,3,6,7,8-HxCDD	M+2/M+4	1.26	1.26	1.26	1.25	1.26	1.05-1.43
13C-1,2,3,4,6,7,8-HpCDE	M+2/M+4	1.05	1.04	1.05	1.05	1.04	0.88-1.20
13C-OCDD	M+2/M+4	0.90	0.90	0.91	0.89	0.89	0.76-1.02
13C-2,3,7,8-TCDF	M/M+2	0.79	0.78	0.78	0.78	0.78	0.65-0.89
13C-1,2,3,7,8-PeCDF	M+2/M+4	1.55	1.57	1.58	1.57	1.55	1.32-1.78
13C-1,2,3,4,7,8-HxCDF	M/M+2	0.52	0.52	0.52	0.52	0.52	0.43-0.59
13C-1,2,3,4,6,7,8-HpCDF	M/M+2	0.45	0.44	0.44	0.44	0.44	0.37-0.51

⁽¹⁾ See Table 6, Method 8290, for m/z specifications. Method 8290.

(2) Ion Abundance Ratio Control Limits from Table 8,

8290F3D

### Columbia Analytical Services, Inc. Sample Response Summary CLIENT ID. ICAL HRCC1

ICAL HRCC1

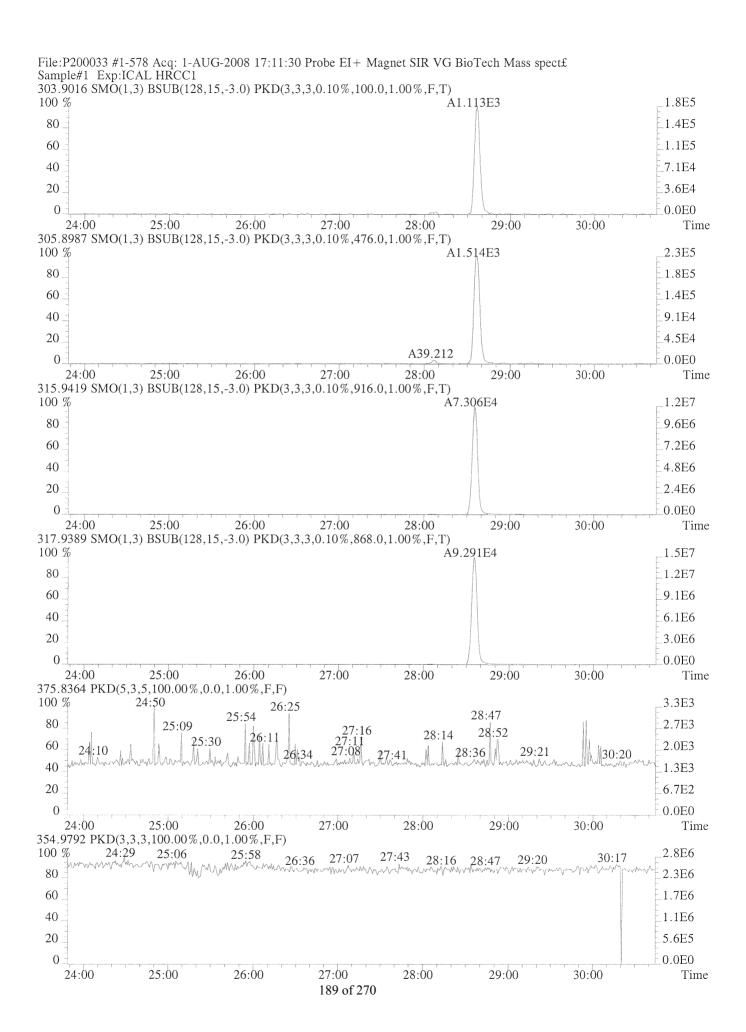
Run #1 Filename P200033 #1 Samp: 1 Inj: 1 Acquired: 1-AUG-08 17:11:30 Processed: 14-APR-10 10:16:04 LAB. ID: ICAL HRCC1

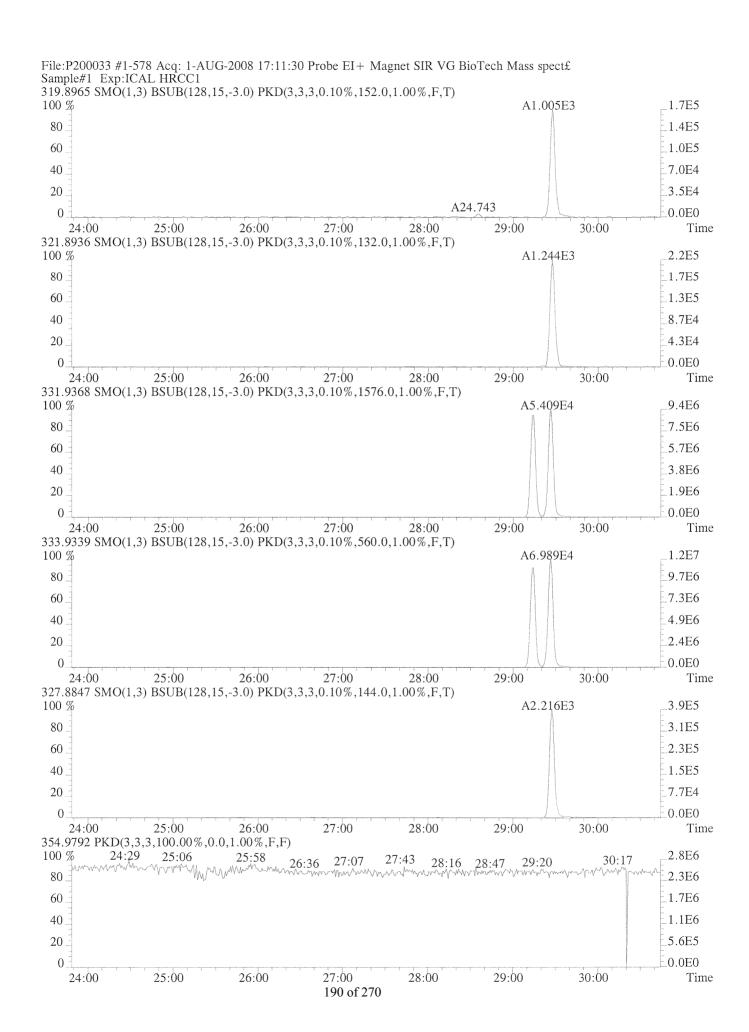
	Тур	Name	RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?	RRT
				4-	***				
1	Unk	2,3,7,8-TCDF	28:37	1.113e+03	1.514e+03	0.74	yes	no	1.001
2	Unk	1,2,3,7,8-PeCDF	32:59	3.561e+03	2.247e+03	1.58	yes	no	1.000
3	Unk	2,3,4,7,8-PeCDF	33:43	3.436e+03	2.334e+03	1.47	yes	no	1.022
4	Unk	1,2,3,4,7,8-HxCDF	36:33	3.007e+03	2.365e+03	1.27	yes	no	1.000
5	Unk	1,2,3,6,7,8-HxCDF	36:39	3.032e+03	2.468e+03	1.23	yes	no	1.003
6	Unk	2,3,4,6,7,8-HxCDF	37:08	2.726e+03	2.153e+03	1.27	yes	no	1.016
7	Unk	1,2,3,7,8,9-HxCDF	37:50	2.412e+03	1.827e+03	1.32	yes	no	1.036
8	Unk	1,2,3,4,6,7,8-HpCDF	39:16	2.267e+03	2.158e+03	1.05	yes	no	1.000
9	Unk	1,2,3,4,7,8,9-HpCDF	40:35	1.657e+03	1.651e+03	1.00	yes	no	1.034
10	Unk	OCDF	43:22	2.963e+03	3.362e+03	0.88	yes	no	1.004
11	Unk	2,3,7,8-TCDD	29:27	1.005e+03	1.244e+03	0.81	yes	no	1.001
12	Unk	1,2,3,7,8-PeCDD	34:05	2.397e+03	1.686e+03	1.42	yes	no	1.000
13	Unk	1,2,3,4,7,8-HxCDD		1.996e+03	1.475e+03	1.35	yes	no	0.998
14	Unk	1,2,3,6,7,8-HxCDD	37:19	2.046e+03	1.902e+03	1.08	yes	no	1.000
15	Unk	1,2,3,7,8,9-HxCDD	37:36	2.009e+03	1.585e+03	1.27	yes	no	1.008
16	Unk	1,2,3,4,6,7,8-HpCDD	40:10	1.398e+03	1.317e+03	1.06	yes	no	1.000
17	Unk	OCDD	43:12	2.575e+03	2.798e+03	0.92	yes	no	1.000
18	IS	13C-2,3,7,8-TCDF	28:35	7.306e+04	9.291e+04	0.79	yes	no	0.978
19	IS	13C-1,2,3,7,8-PeCDF	32:59	8.693e+04	5.591e+04	1.55	yes	no	1.128
20	IS	13C-1,2,3,4,7,8-HxCDF	36:32	8.684e+04	1.664e+05	0.52	yes	no	0.972
21	IS1	3C-1,2,3,4,6,7,8-HpCDF	39:15	5.370e+04	1.204e+05	0.45	yes	no	1.044
22	IS	13C-2,3,7,8-TCDD		5.409e+04	6.989e+04	0.77	yes	no	1.007
23	IS	13C-1,2,3,7,8-PeCDD	34:04	5.838e+04	3.701e+04	1.58	yes	no	1.165
24	IS	13C-1,2,3,6,7,8-HxCDD		1.029e+05	8.145e+04	1.26	yes	no	0.992
25	IS1	3C-1,2,3,4,6,7,8-HpCDD	40:09	8.037e+04	7.678e+04	1.05	yes	no	1.068
26	IS	13C-OCDD	43:12	1.337e+05	1.488e+05	0.90	yes	no	1.149
	S/RT	13C-1,2,3,4-TCDD		5.144e+04	6.531e+04	0.79	yes	no	*
	S/RT	13C-1,2,3,7,8,9-HxCDD		1.006e+05	8.105e+04	1.24	yes	no	*
29	C/Up	37Cl-2,3,7,8-TCDD	29:27	2.216e+03				no	1.007

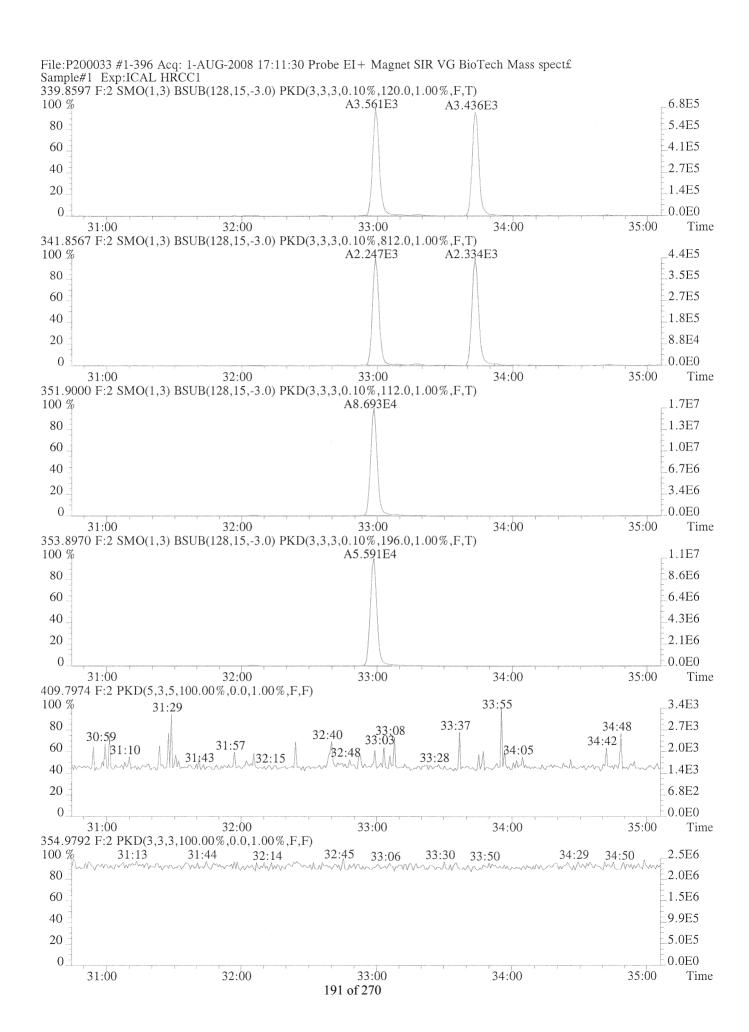
### Columbia Analytical Services, Inc. Signal/Noise Height Ratio Summary

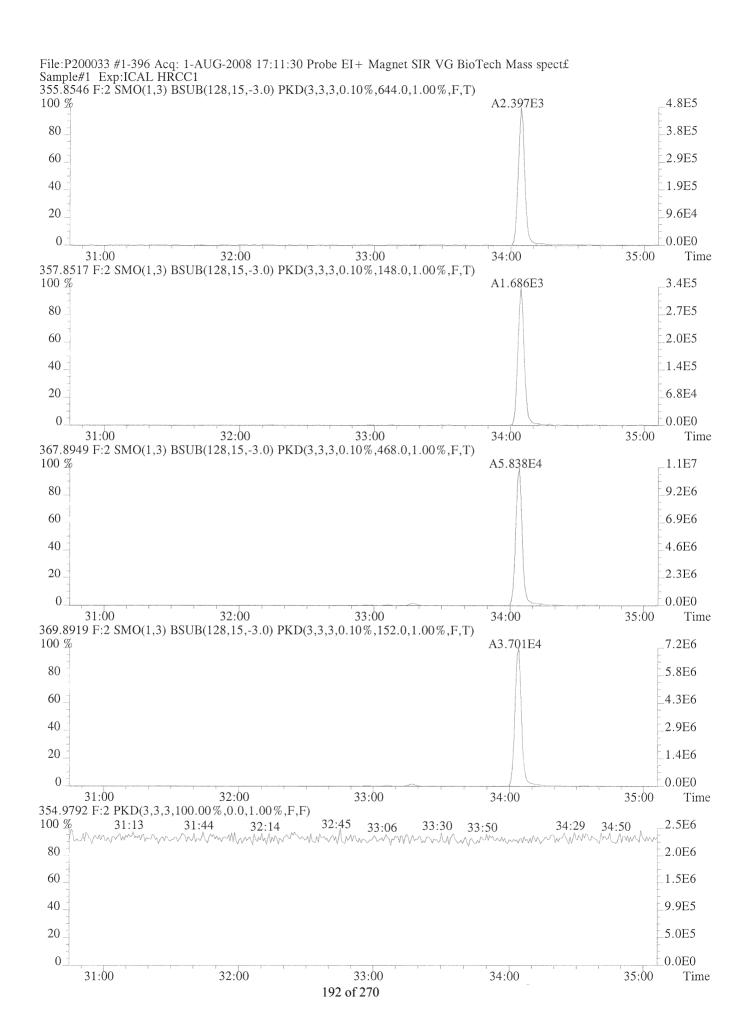
CLIENT ID.
ICAL HRCC1

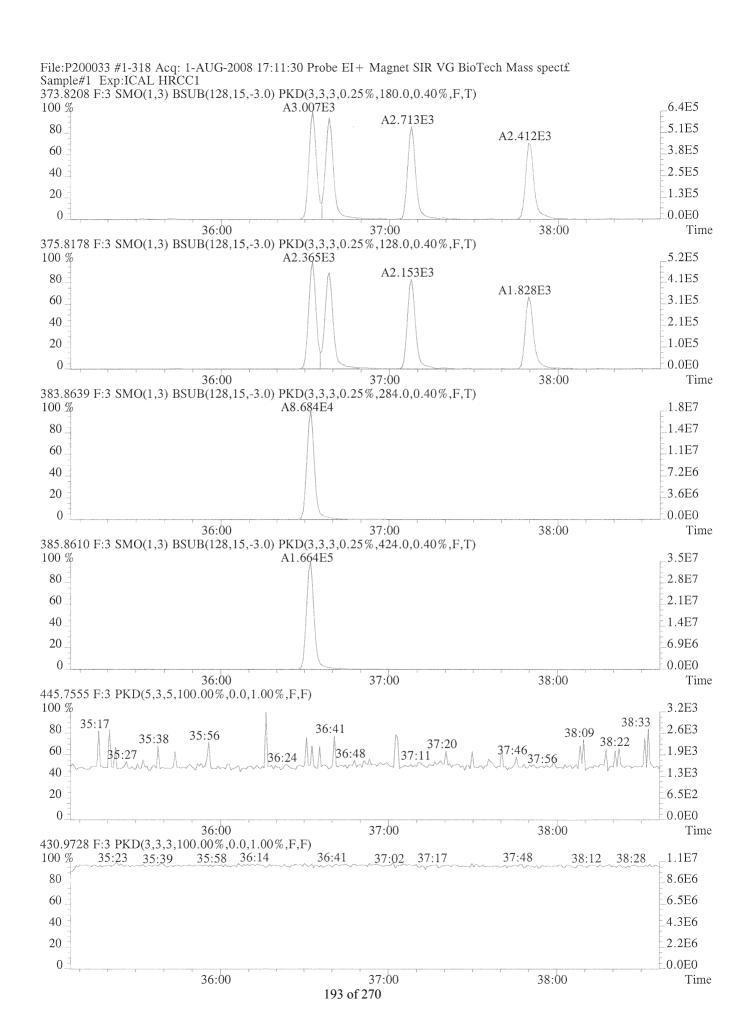
Run #1 Filename P200033 Samp: 1 Inj: 1 Acquired: 1-AUG-08 17:11:30 Processed: 14-APR-10 10:16:041 LAB. ID: ICAL HRCC1 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 1 2,3,7,8-TCDF | 1.78e+05 | 1.00e+02 | 1.8e+03 | 2.26e+05 | 4.76e+02 | 4.8e+02 2 1,2,3,7,8-PeCDF | 6.75e+05 | 1.20e+02 | 5.6e+03 | 4.41e+05 | 8.12e+02 | 5.4e+02 3 2,3,4,7,8-PeCDF | 6.51e+05 | 1.20e+02 | 5.4e+03 | 4.42e+05 | 8.12e+02 | 5.4e+02 1,2,3,4,7,8-HxCDF | 6.36e+05 | 1.80e+02 | 3.5e+03 | 5.17e+05 | 1.28e+02 | 4.0e+03 4 5 1,2,3,6,7,8-HxCDF | 6.02e+05 | 1.80e+02 | 3.3e+03 | 4.66e+05 | 1.28e+02 | 3.6e+03 2,3,4,6,7,8-HxCDF | 5.47e+05 | 1.80e+02 | 3.0e+03 | 4.34e+05 | 1.28e+02 | 3.4e+03 | 1,2,3,7,8,9-HxCDF | 4.51e+05 | 1.80e+02 | 2.5e+03 | 3.45e+05 | 1.28e+02 | 2.7e+03 6 7 8 1,2,3,4,6,7,8-HpCDF | 4.71e+05 | 1.16e+03 | 4.1e+02 | 4.40e+05 | 4.76e+02 | 9.2e+02 9 1,2,3,4,7,8,9-HpCDF | 2.92e+05 | 1.16e+03 | 2.5e+02 | 3.03e+05 | 4.76e+02 | 6.4e+02 10 OCDF | 3.86e+05 | 1.60e+02 | 2.4e+03 | 4.51e+05 | 3.92e+02 | 1.2e+03 11 2,3,7,8-TCDD | 1.74e+05 | 1.52e+02 | 1.1e+03 | 2.17e+05 | 1.32e+02 | 1.6e+03 12 1,2,3,7,8-PeCDD | 4.78e+05 | 6.44e+02 | 7.4e+02 | 3.39e+05 | 1.48e+02 | 2.3e+03 13 1,2,3,4,7,8-HxCDD | 4.40e+05 | 1.28e+02 | 3.4e+03 | 3.48e+05 | 6.80e+01 | 5.1e+03 14 1,2,3,6,7,8-HxCDD 4.34e+05 1.28e+02 3.4e+03 3.63e+05 6.80e+01 5.3e+03 1.5 1,2,3,7,8,9-HxCDD | 4.06e+05 | 1.28e+02 | 3.2e+03 | 3.24e+05 | 6.80e+01 | 4.8e+03 1,2,3,4,6,7,8-HpCDD | 2.59e+05 | 1.24e+02 | 2.1e+03 | 2.49e+05 | 1.16e+02 | 2.1e+03 16 OCDD | 3.54e+05 | 1.16e+02 | 3.1e+03 | 3.93e+05 | 9.60e+01 | 4.1e+03 17 18 13C-2,3,7,8-TCDF | 1.19e+07 | 9.16e+02 | 1.3e+04 | 1.52e+07 | 8.68e+02 | 1.8e+04 19 13C-1,2,3,7,8-PeCDF | 1.68e+07 | 1.12e+02 | 1.5e+05 | 1.07e+07 | 1.96e+02 | 5.5e+04 20 13C-1,2,3,4,7,8-HxCDF | 1.80e+07 | 2.84e+02 | 6.3e+04 | 3.45e+07 | 4.24e+02 | 8.1e+04 21 13C-1,2,3,4,6,7,8-HpCDF | 1.10e+07 | 5.33e+03 | 2.1e+03 | 2.45e+07 | 7.77e+03 | 3.2e+03 1.22e+07 5.60e+02 22 13C-2,3,7,8-TCDD | 9.42e+06 | 1.58e+03 | 6.0e+03 | 2.2e+04 23 13C-1,2,3,7,8-PeCDD | 1.15e+07 | 4.68e+02 | 2.5e+04 | 7.23e+06 | 1.52e+02 | 4.8e+04 24 13C-1,2,3,6,7,8-HxCDD 2.20e+07 4.52e+02 4.9e+04 1.75e+07 3.00e+02 5.8e+04 25 13C-1,2,3,4,6,7,8-HpCDD | 1.49e+07 | 4.20e+02 | 3.6e+04 | 1.44e+07 | 1.60e+02 | 9.0e+04 13C-OCDD | 1.83e+07 | 1.12e+02 | 1.6e+05 | 2.02e+07 | 1.08e+02 | 1.9e+05 26 27 13C-1,2,3,4-TCDD | 8.91e+06 | 1.58e+03 | 5.7e+03 | 1.13e+07 | 5.60e+02 | 2.0e+04 28 13C-1,2,3,7,8,9-HxCDD | 2.08e+07 | 4.52e+02 | 4.6e+04 | 1.67e+07 | 3.00e+02 | 5.6e+04

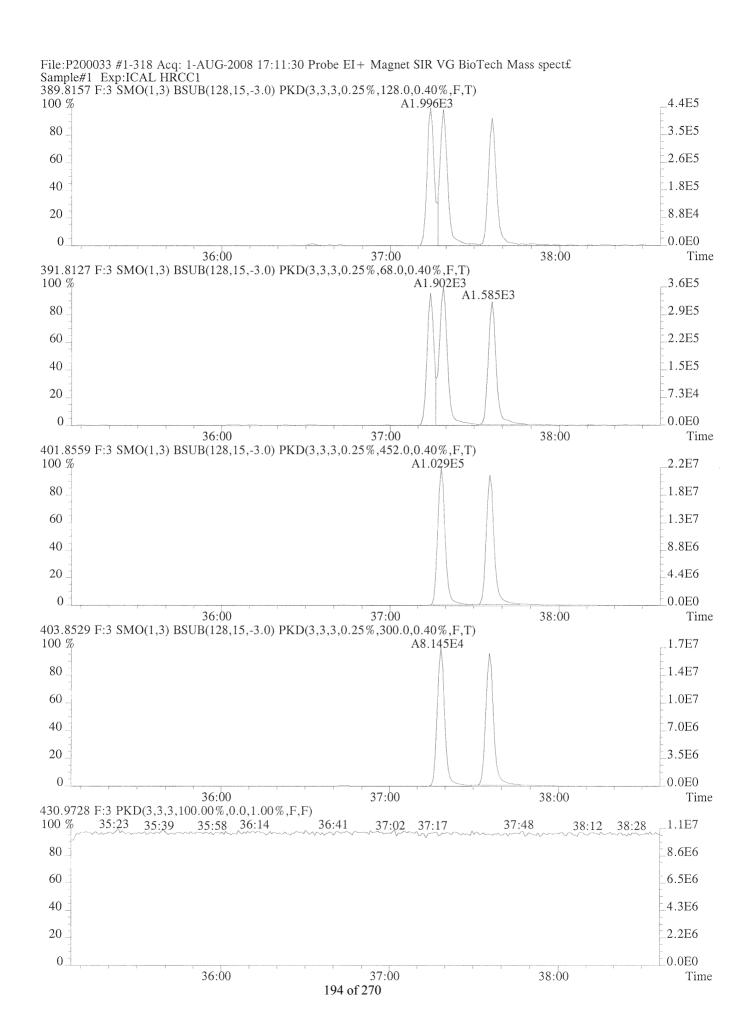

37Cl-2,3,7,8-TCDD | 3.87e+05 | 1.44e+02 | 2.7e+03

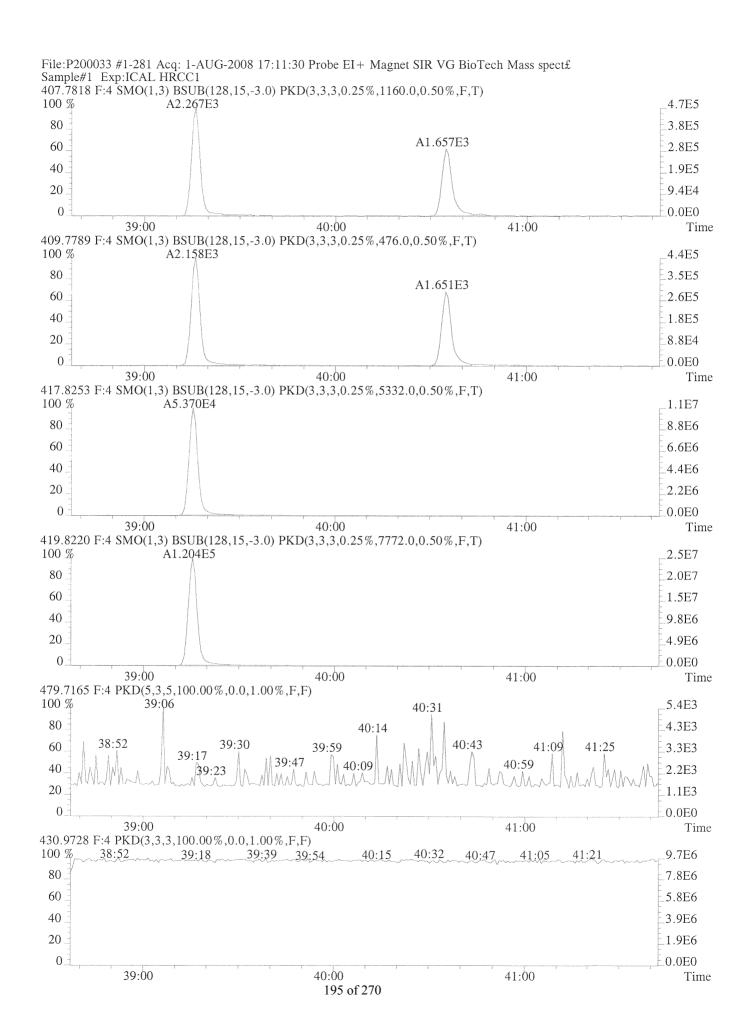

Houston, TX 77084

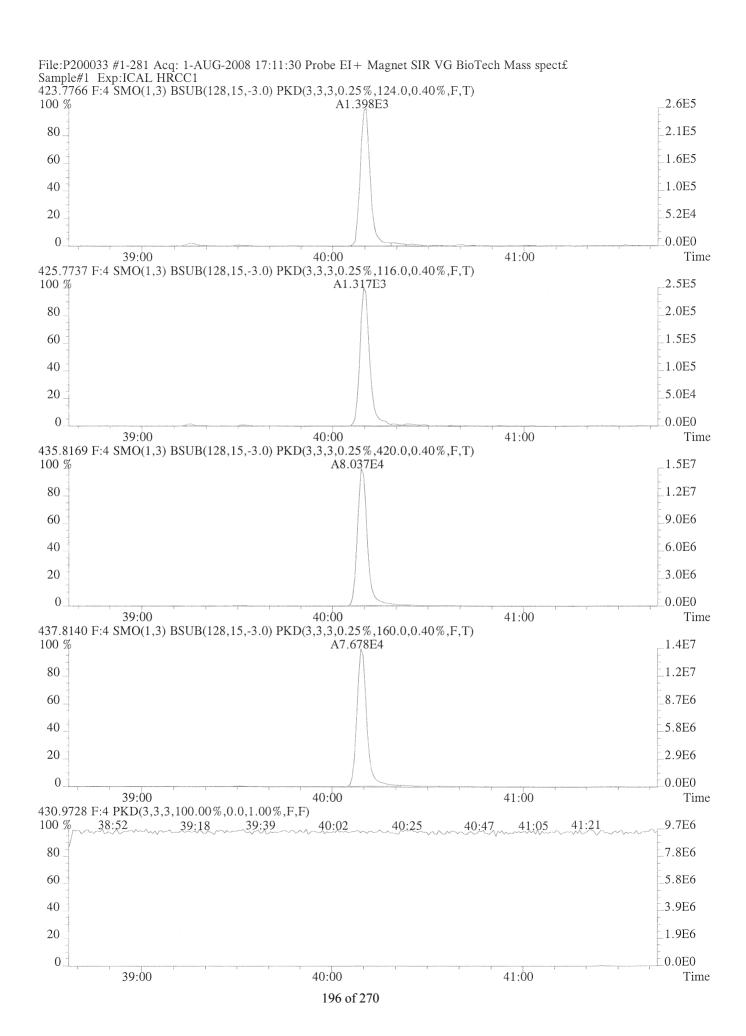

29


Office: (713)266-1599. Fax: (713)266-0130

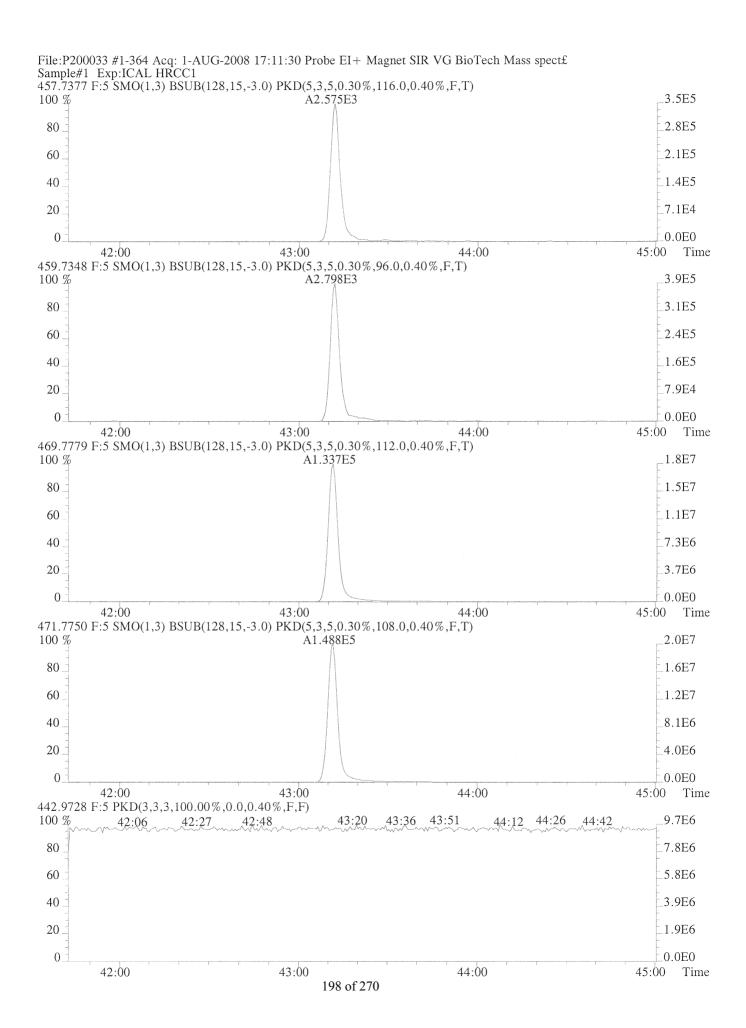

Columbia Analytical Services, Inc. 19408 Park Row, Suite 320















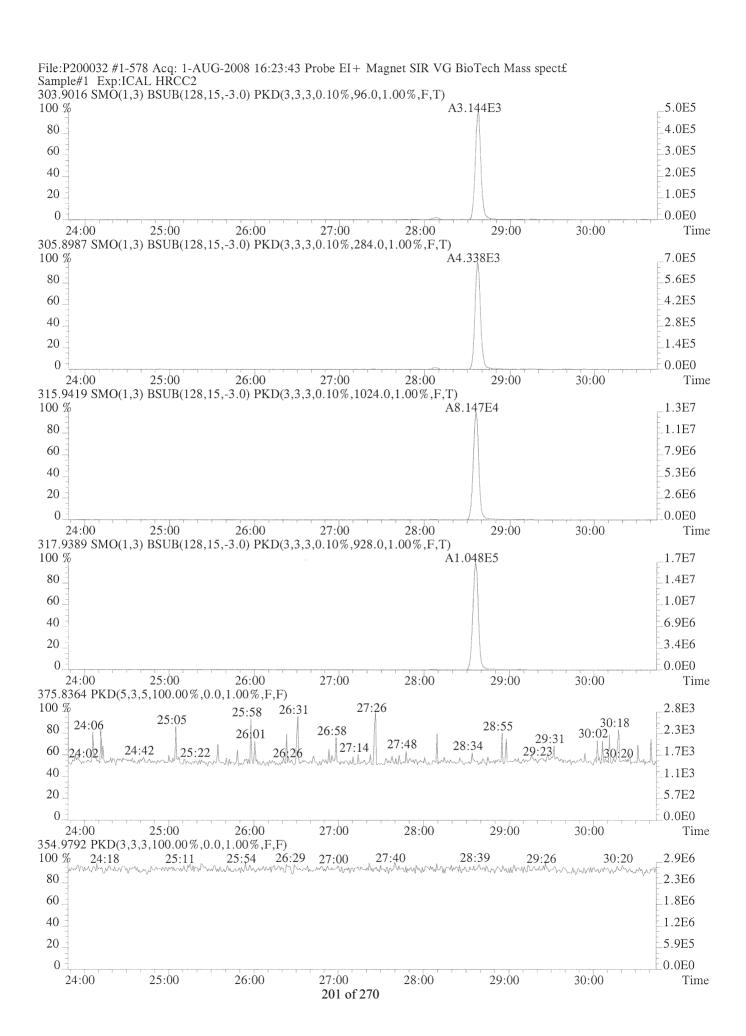

### Columbia Analytical Services, Inc. a Analytical Services, as Sample Response Summary

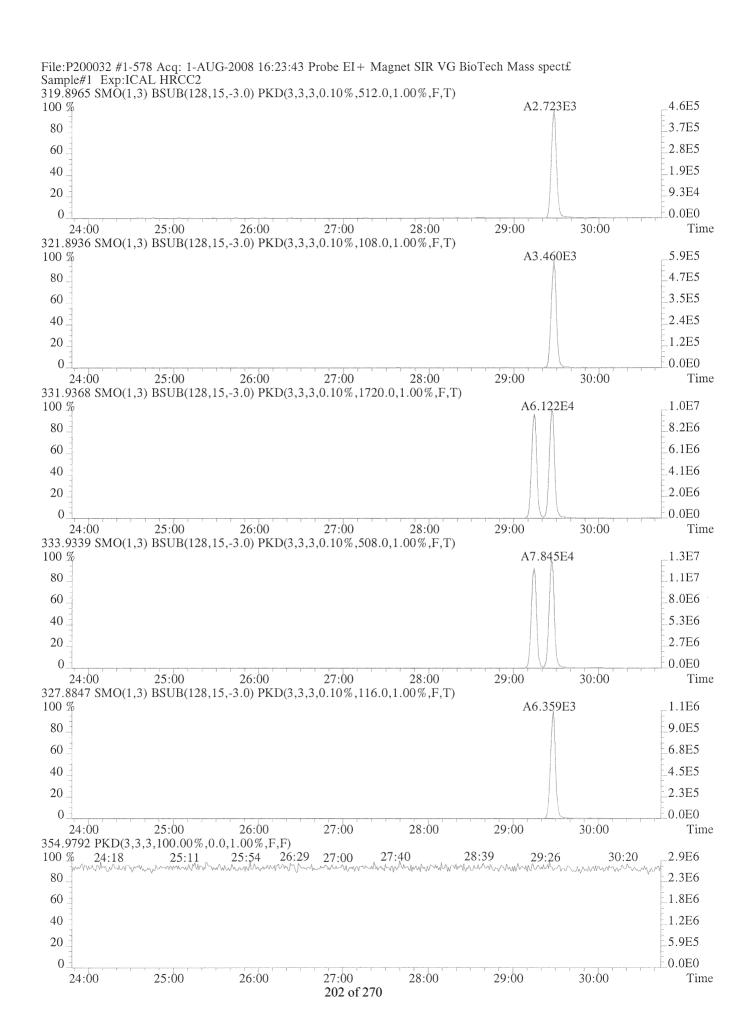
CLIENT ID. ICAL HRCC2

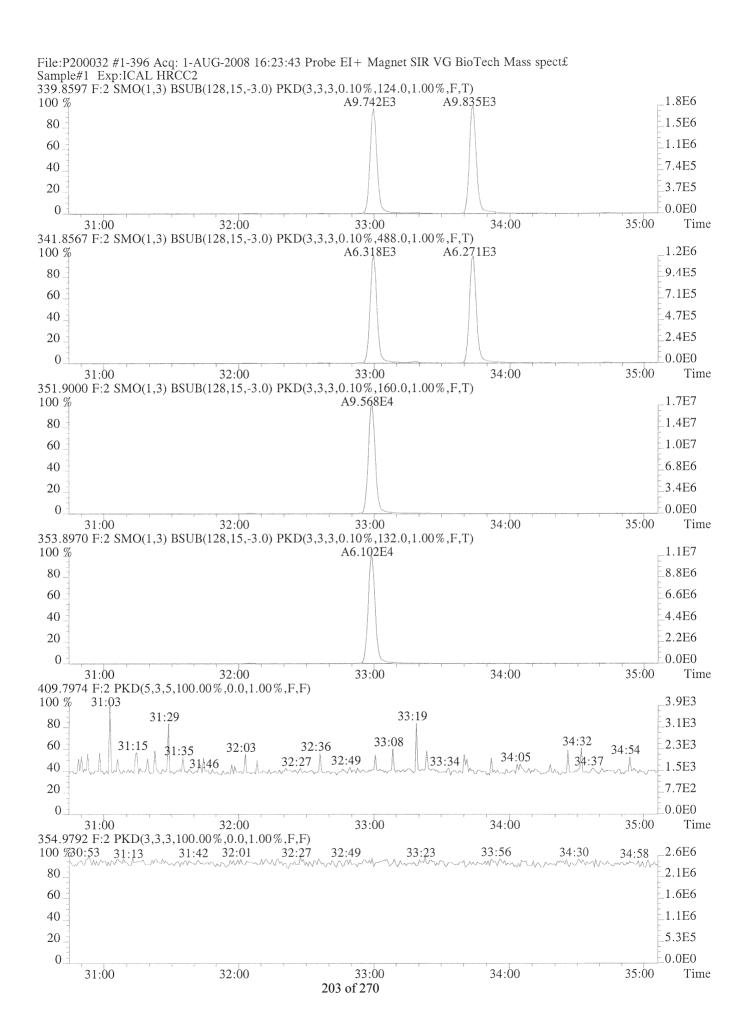
Run #2 Filename P200032 #1 Samp: 1 Inj: 1 Acquired: 1-AUG-08 16:23:43 Processed: 14-APR-10 10:16:05 LAB. ID: ICAL HRCC2

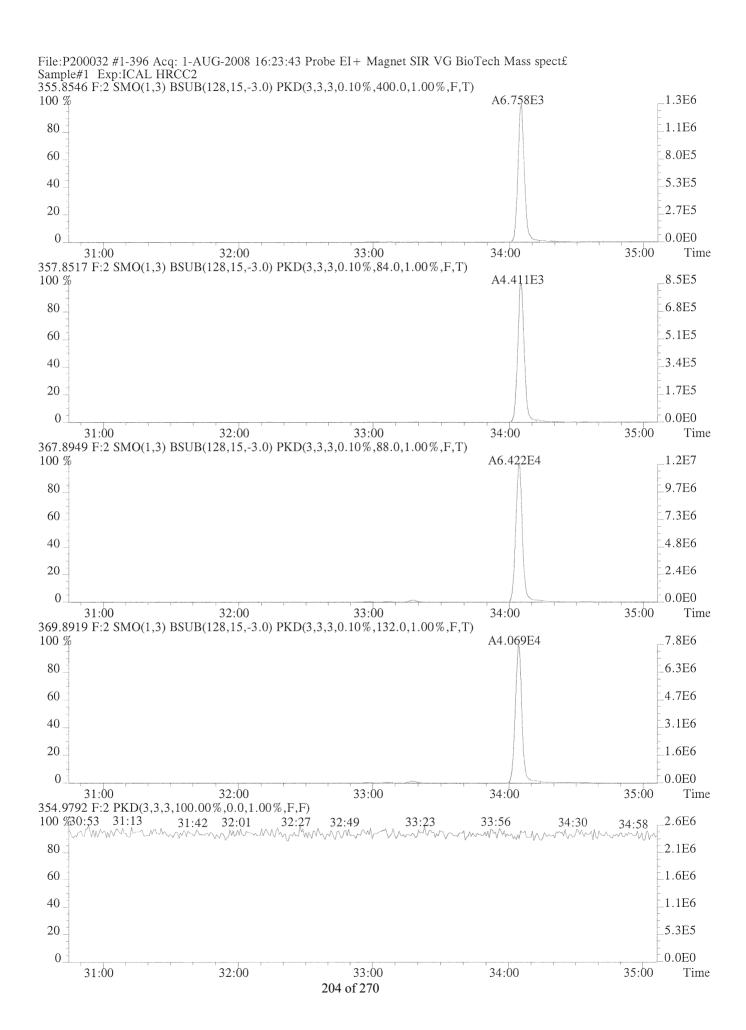
	Тур	Name	RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?	RRT
1	Unk	2,3,7,8-TCDF	28:37	3.144e+03	4.338e+03	0.72	yes	l no	1.001
2	Unk	1,2,3,7,8-PeCDF	1	9.742e+03	6.318e+03	1.54	yes	no	1.001
3	Unk	2,3,4,7,8-PeCDF	33:44	9.835e+03	6.271e+03	1.57	yes	no	1.023
4	Unk	1,2,3,4,7,8-HxCDF	36:33	8.041e+03	6.559e+03	1.23	yes	no	1.000
5	Unk	1,2,3,6,7,8-HxCDF	36:39	8.405e+03	6.664e+03	1.26	yes	no	1.003
6	Unk	2,3,4,6,7,8-HxCDF	37:08	7.397e+03	6.076e+03	1.22	yes	no	1.016
7	Unk	1,2,3,7,8,9-HxCDF	37:50	6.292e+03	5.220e+03	1.21	yes	no	1.036
8	Unk	1,2,3,4,6,7,8-HpCDF	39:16	6.178e+03	6.250e+03	0.99	yes	no	1.000
9	Unk	1,2,3,4,7,8,9-HpCDF	40:35	4.362e+03	4.515e+03	0.97	yes	no	1.034
10	Unk	OCDF	43:22	7.938e+03	8.840e+03	0.90	yes	no	1.004
11	Unk	2,3,7,8-TCDD	1	2.723e+03	3.460e+03	0.79	yes	no	1.001
12	Unk	1,2,3,7,8-PeCDD	1	6.758e+03	4.411e+03	1.53	yes	no	1.000
13	Unk	1,2,3,4,7,8-HxCDD		5.127e+03	4.119e+03	1.24	yes	no	0.998
14	Unk	1,2,3,6,7,8-HxCDD	37:20	6.059e+03	4.831e+03	1.25	yes	no	1.000
15	Unk	1,2,3,7,8,9-HxCDD		5.539e+03	4.491e+03	1.23	yes	no	1.008
16	Unk	1,2,3,4,6,7,8-HpCDD	,	3.782e+03	3.637e+03	1.04	yes	no	1.000
17	Unk	OCDD	43:13	6.836e+03	7.662e+03	0.89	yes	no	1.000
18	IS	13C-2,3,7,8-TCDF		8.147e+04	1.048e+05	0.78	yes	no	0.978
19	IS	13C-1,2,3,7,8-PeCDF		9.568e+04	6.102e+04	1.57	yes	no	1.128
20	IS	13C-1,2,3,4,7,8-HxCDF		9.339e+04	1.796e+05	0.52	yes	no	0.972
21		.3C-1,2,3,4,6,7,8-HpCDF		5.838e+04	1.327e+05	0.44	yes	no	1.044
22	IS	13C-2,3,7,8-TCDD		6.122e+04	7.845e+04	0.78	yes	no	1.007
23	IS	13C-1,2,3,7,8-PeCDD		6.422e+04	4.069e+04	1.58	yes	no	1.165
24	IS	13C-1,2,3,6,7,8-HxCDD		1.152e+05	9.112e+04	1.26	yes	no	0.992
25		.3C-1,2,3,4,6,7,8-HpCDD		8.794e+04	8.432e+04	1.04	yes	no	1.068
26	IS	13C-OCDD	43:12	1.452e+05	1.620e+05	0.90	yes	no	1.149
	S/RT	13C-1,2,3,4-TCDD		5.803e+04	7.263e+04	0.80	yes	no	*
	S/RT	13C-1,2,3,7,8,9-HxCDD		1.169e+05	9.122e+04	1.28	yes	no	*
29	C/Up	37Cl-2,3,7,8-TCDD	29:28	6.359e+03				no	1.008

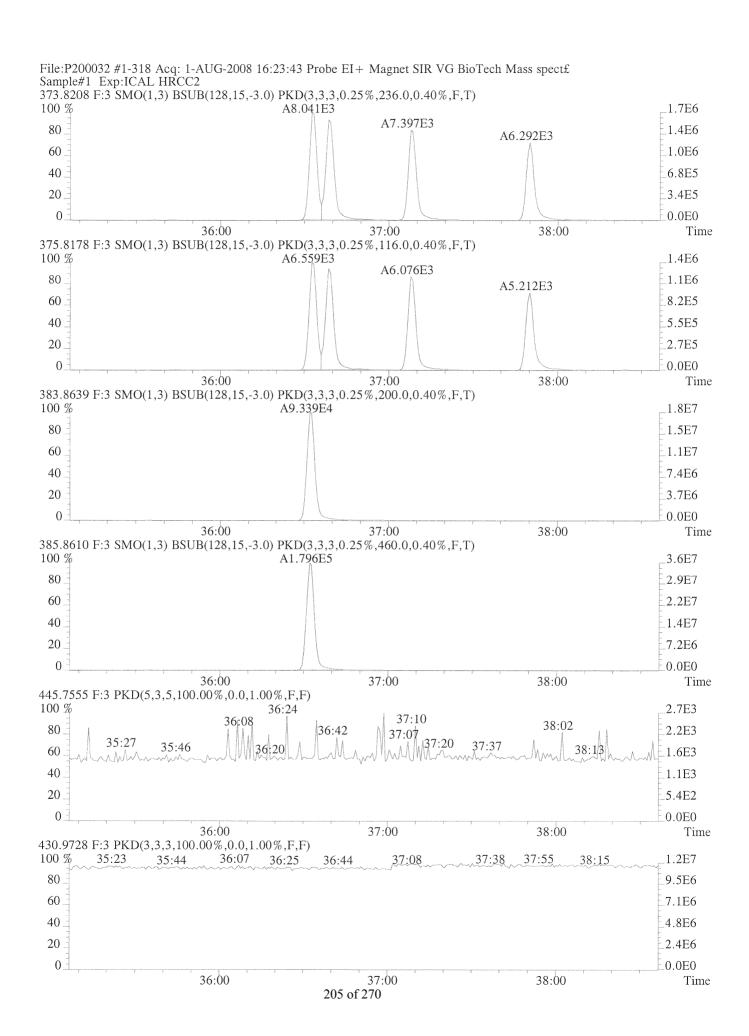
#### Columbia Analytical Services, Inc. Signal/Noise Height Ratio Summary CLIENT ID.

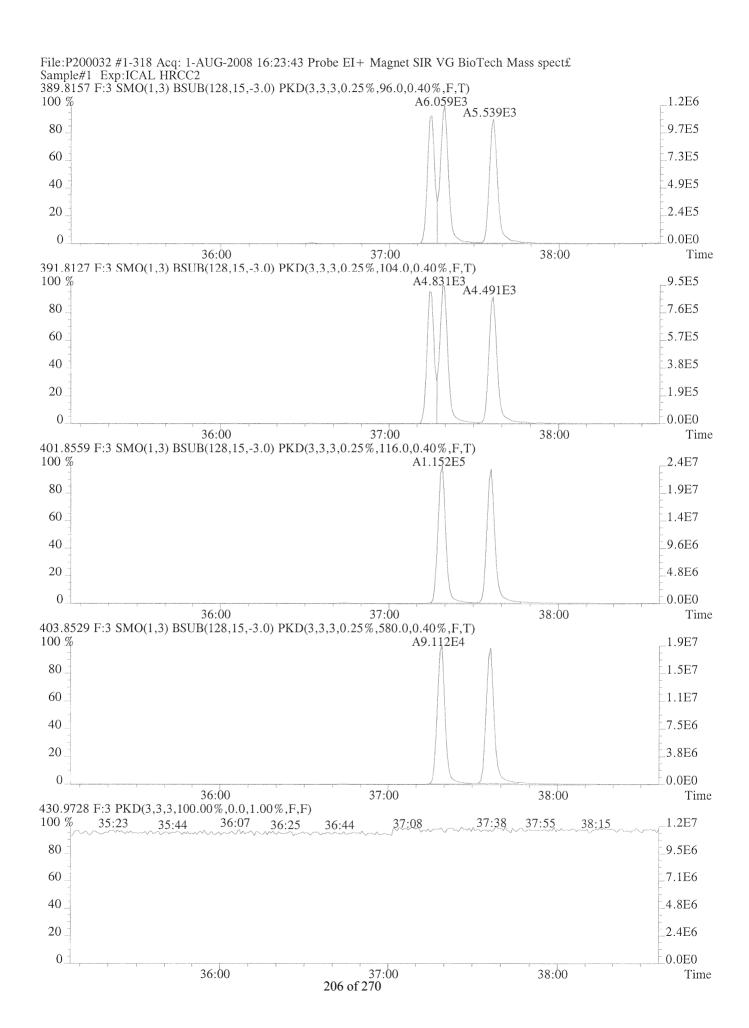

ICAL HRCC2

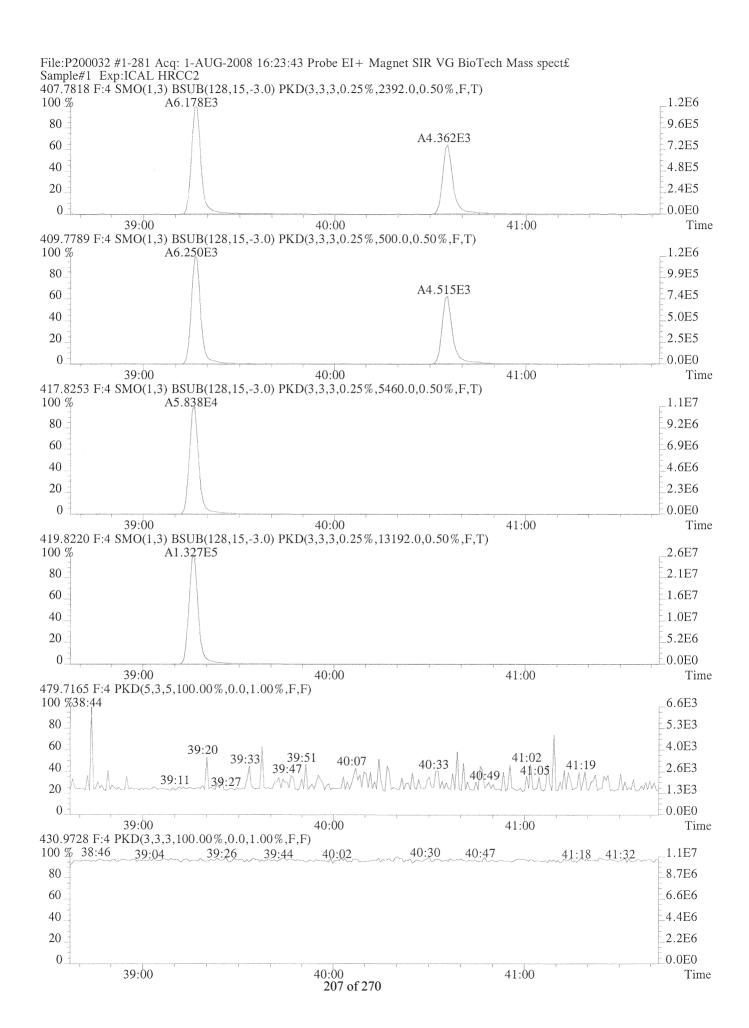

Run #2 Filename P200032 Samp: 1 Inj: 1 Acquired: 1-AUG-08 16:23:43 Processed: 14-APR-10 10:16:051 LAB. ID: ICAL HRCC2

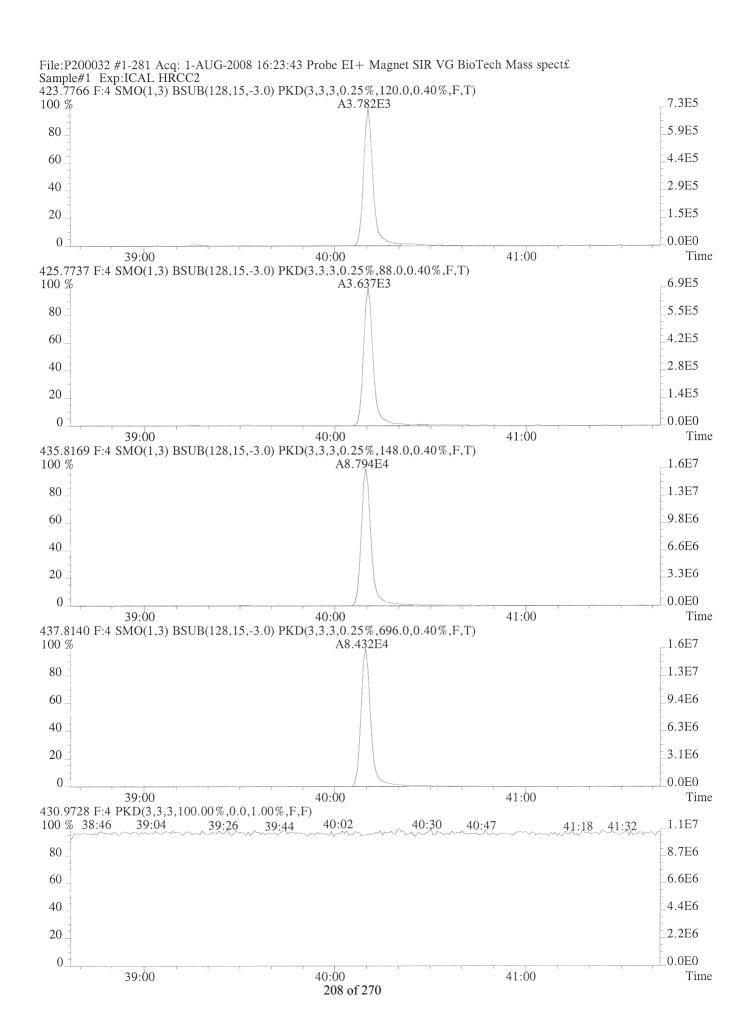

	Name	Signal 1	Noise 1	S/N Rat.1	Signal 2	Noise 2   S	S/N Rat.2
1	2,3,7,8-TCDF	5.00e+05	9.60e+01	5.2e+03	7.03e+05	2.84e+02	2.5e+03
2	1,2,3,7,8-PeCDF	1.79e+06	1.24e+02	1.4e+04	1.18e+06	4.88e+02	2.4e+03
3	2,3,4,7,8-PeCDF	1.84e+06	1.24e+02	1.5e+04	1.17e+06	4.88e+02	2.4e+03
4	1,2,3,4,7,8-HxCDF	1.70e+06	2.36e+02	7.2e+03	1.37e+06	1.16e+02	1.2e+04
5	1,2,3,6,7,8-HxCDF	1.59e+06	2.36e+02	6.7e+03	1.30e+06	1.16e+02	1.1e+04
6	2,3,4,6,7,8-HxCDF	1.43e+06	2.36e+02	6.0e+03	1.19e+06	1.16e+02	1.0e+04
7	1,2,3,7,8,9-HxCDF	1.23e+06	2.36e+02	5.2e+03	9.87e+05	1.16e+02	8.5c+03
8	1,2,3,4,6,7,8-HpCDF	1.19e+06	2.39e+03	5.0e+02	1.24e+06	5.00e+02	2.5e+03
9	1,2,3,4,7,8,9-HpCDF	7.69e+05	2.39e+03	3.2e+02	7.72e+05	5.00e+02	1.5e+03
10	OCDF	1.05e+06	1.80e+02	5.8e+03	1.18e+06	3.76e+02	3.1e+03
	1	1	ı	1	'	1	
11	2,3,7,8-TCDD	4.64e+05	5.12e+02	9.1e+02	5.91e+05	1.08e+02	5.5e+03
12	1,2,3,7,8-PeCDD	1.33e+06	4.00e+02	3.3e+03	8.48e+05	8.40e+01	1.0e+04
13	1,2,3,4,7,8-HxCDD	1.13e+06	9.60e+01	1.2e+04	9.03e+05	1.04e+02	8.7e+03
14	1,2,3,6,7,8-HxCDD	1.21e+06	9.60e+01	1.3e+04	9.45e+05	1.04e+02	9.1e+03
15	1,2,3,7,8,9-HxCDD	1.09e+06	9.60e+01	1.1e+04	8.67e+05	1.04e+02	8.3e+03
16	1,2,3,4,6,7,8-HpCDD	7.32e+05	1.20e+02	6.1e+03	6.92e+05	8.80e+01	7.9e+03
17	OCDD	9.36e+05	1.08e+02	8.7e+03	1.05e+06	1.28e+02	8.2e+03
	·		·		,	'	
18	13C-2,3,7,8-TCDF	1.32e+07	1.02e+03	1.3e+04	1.71e+07	9.28e+02	1.8e+04
19	13C-1,2,3,7,8-PeCDF	1.71e+07	1.60e+02	1.1e+05	1.10e+07	1.32e+02	8.3e+04
20	13C-1,2,3,4,7,8-HxCDF	1.84e+07	2.00e+02	9.2e+04	3.58e+07	4.60e+02	7.8e+04
21	13C-1,2,3,4,6,7,8-HpCDF	1.15e+07	5.46e+03	2.1e+03	2.60e+07	1.32e+04	2.0e+03
22	13C-2,3,7,8-TCDD	1.02e+07	1.72e+03	5.9e+03	1.33e+07	5.08e+02	2.6e+04
23	13C-1,2,3,7,8-PeCDD	1.21e+07	8.80e+01	1.4e+05	7.82e+06	1.32e+02	5.9e+04
24	13C-1,2,3,6,7,8-HxCDD	2.39e+07	1.16e+02	2.1e+05	1.88e+07	5.80e+02	3.2e+04
25	13C-1,2,3,4,6,7,8-HpCDD	1.64e+07	1.48e+02	1.1e+05	1.57e+07	6.96e+02	2.3e+04
26	13C-OCDD	1.99e+07	1.24e+02	1.6e+05	2.22e+07	1.44e+02	1.5e+05
27	13C-1,2,3,4-TCDD	9.88e+06	1.72e+03	5.7e+03	1.24e+07	5.08e+02	2.4e+04
28	13C-1,2,3,7,8,9-HxCDD	2.33e+07	1.16e+02	2.0e+05	1.84e+07	5.80e+02	3.2e+04
29	37Cl-2,3,7,8-TCDD	1.13e+06	1.16e+02	9.7e+03			

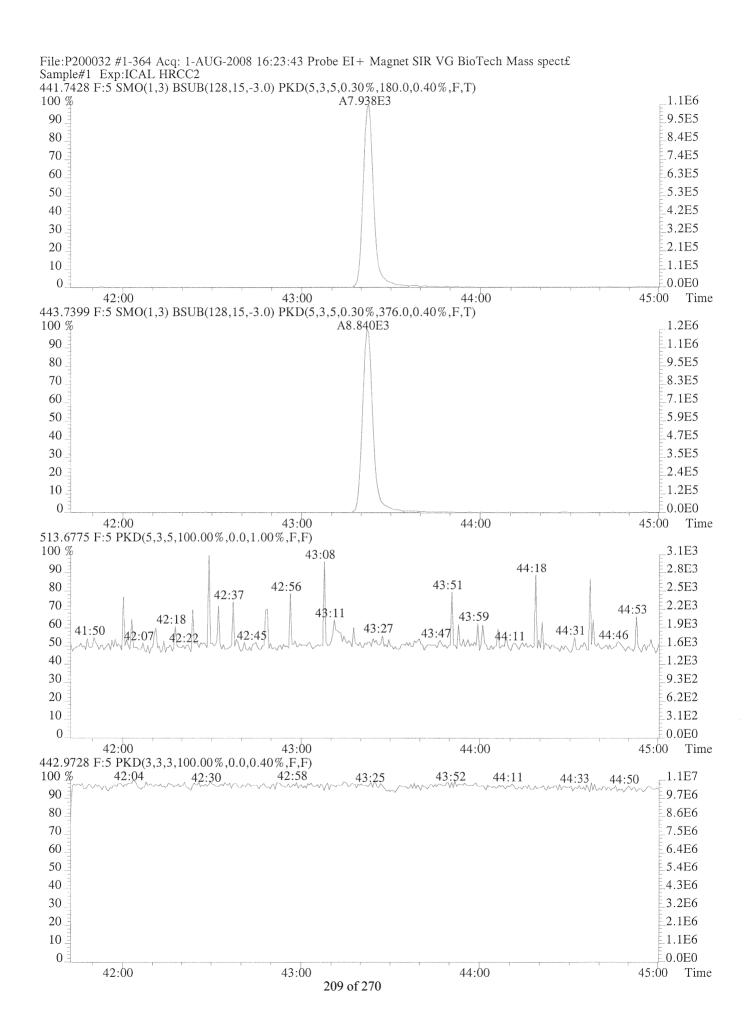

Houston, TX 77084

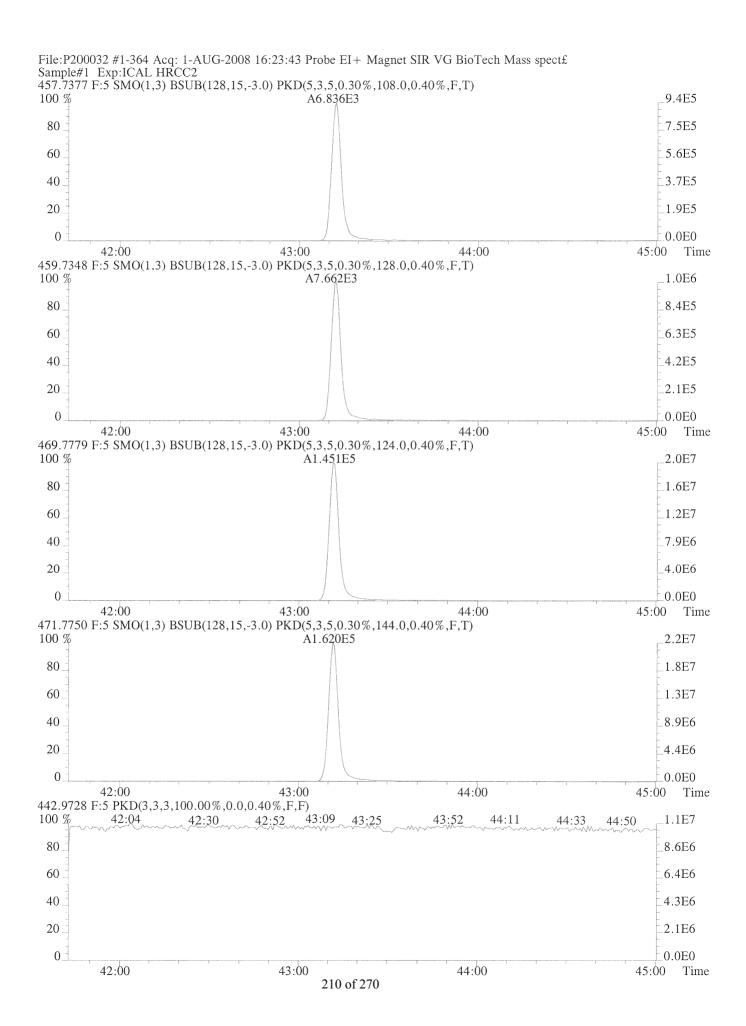

Office: (713)266-1599. Fax: (713)266-0130














# Columbia Analytical Services, Inc. Sample Response Summary CLIENT ID.

ICAL HRCC3

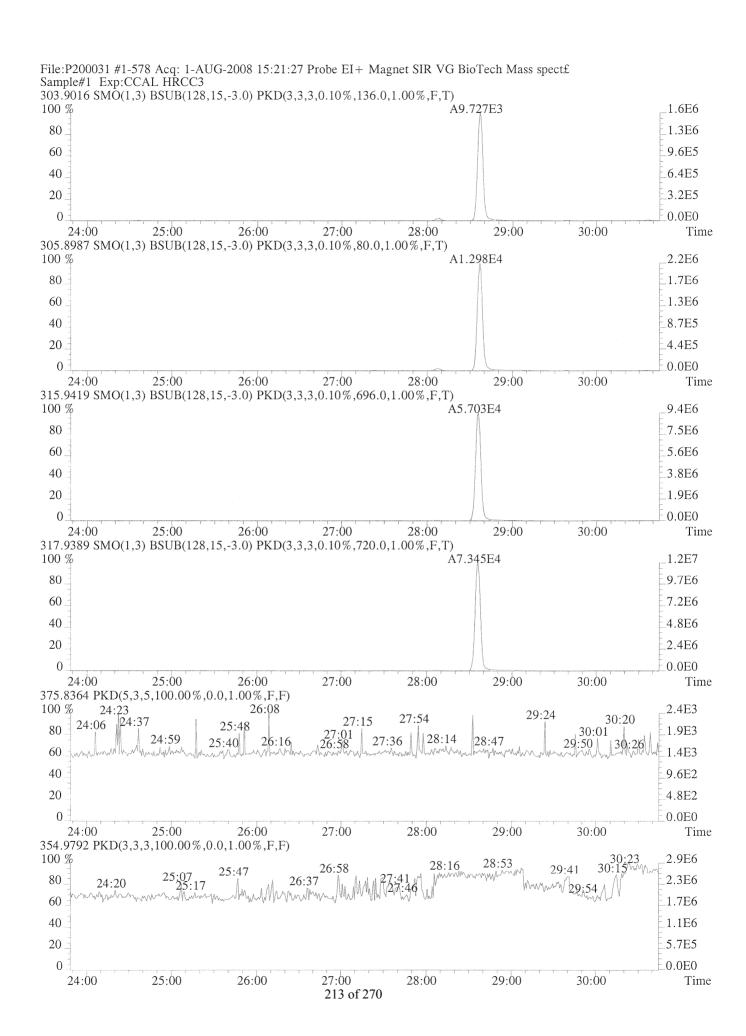
Run #3 Filename P200031 #1 Samp: 1 Inj: 1 Acquired: 1-AUG-08 15:21:27 Processed: 14-APR-10 10:16:05 LAB. ID: ICAL HRCC3

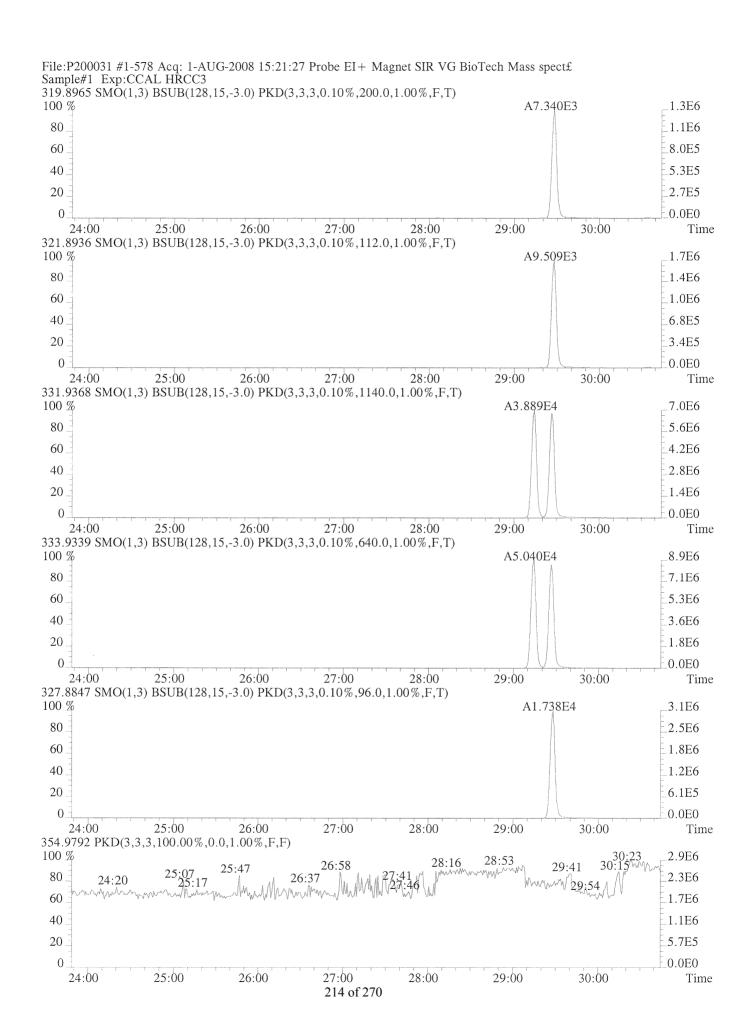
	Тур	Name	RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?	RRT
1	Unk	2,3,7,8-TCDF	28:37	9.727e+03	1.298e+04	0.75	yes	no	1.001
2	Unk	1,2,3,7,8-PeCDF	1	3.258e+04	2.104e+04	1.55	yes	no	1.000
3	Unk	2,3,4,7,8-PeCDF	ı	3.270e+04	2.157e+04	1.52	yes	no	1.022
4	Unk	1,2,3,4,7,8-HxCDF		2.534e+04	2.050e+04	1.24	yes	no	1.000
5	Unk	1,2,3,6,7,8-HxCDF		2.738e+04	2.264e+04	1.21	yes	no	1.003
6	Unk	2,3,4,6,7,8-HxCDF	1	2.448e+04	1.998e+04	1.23	yes	no	1.016
7	Unk	1,2,3,7,8,9-HxCDF		2.083e+04	1.696e+04	1.23	yes	no	1.036
8	Unk	1,2,3,4,6,7,8-HpCDF		2.179e+04	2.116e+04	1.03	yes	no	1.000
9	Unk	1,2,3,4,7,8,9-HpCDF		1.573e+04	1.523e+04	1.03	yes	no	1.034
10	Unk		43:22	2.717e+04	3.003e+04	0.90	yes	no	1.004
			•	•	,				
11	Unk	2,3,7,8-TCDD	29:28	7.340e+03	9.509e+03	0.77	yes	no	1.001
12	Unk	1,2,3,7,8-PeCDD	34:05	2.325e+04	1.509e+04	1.54	yes	no	1.000
13	Unk	1,2,3,4,7,8-HxCDD	37:14	1.867e+04	1.514e+04	1.23	yes	no	0.998
14	Unk	1,2,3,6,7,8-HxCDD	37:19	2.060e+04	1.644e+04	1.25	yes	no	1.000
15	Unk	1,2,3,7,8,9-HxCDD	37:36	1.940e+04	1.499e+04	1.29	yes	no	1.008
16	Unk	1,2,3,4,6,7,8-HpCDD	40:10	1.322e+04	1.289e+04	1.03	yes	no	1.000
17	Unk	OCDD :	43:12	2.356e+04	2.615e+04	0.90	yes	no	1.000
18	IS	13C-2,3,7,8-TCDF	l .	5.703e+04	7.345e+04	0.78	yes	no	0.978
19	IS	13C-1,2,3,7,8-PeCDF	,	7.516e+04	4.772e+04	1.58	yes	no	1.128
20	IS	13C-1,2,3,4,7,8-HxCDF	1	7.242e+04	1.389e+05	0.52	yes	no	0.972
21		3C-1,2,3,4,6,7,8-HpCDF		4.872e+04	1.104e+05	0.44	yes	no	1.044
22	IS	13C-2,3,7,8-TCDD	•	3.900e+04	4.946e+04	0.79	yes	no	1.007
23	IS	13C-1,2,3,7,8-PeCDD		5.386e+04	3.398e+04	1.58	yes	no	1.165
24	IS	13C-1,2,3,6,7,8-HxCDD		1.047e+05	8.324e+04	1.26	yes	no	0.992
25		3C-1,2,3,4,6,7,8-HpCDD		7.599e+04	7.263e+04	1.05	yes	no	1.068
26	IS	13C-OCDD	43:12	1.221e+05	1.345e+05	0.91	yes	no	1.149
	,								
	S/RT	13C-1,2,3,4-TCDD	l .	3.889e+04	5.040e+04	0.77	yes	no	*
	S/RT	13C-1,2,3,7,8,9-HxCDD		1.056e+05	8.337e+04	1.27	yes	no	*
29	C/Up	37Cl-2,3,7,8-TCDD	29:28	1.738e+04				no	1.008

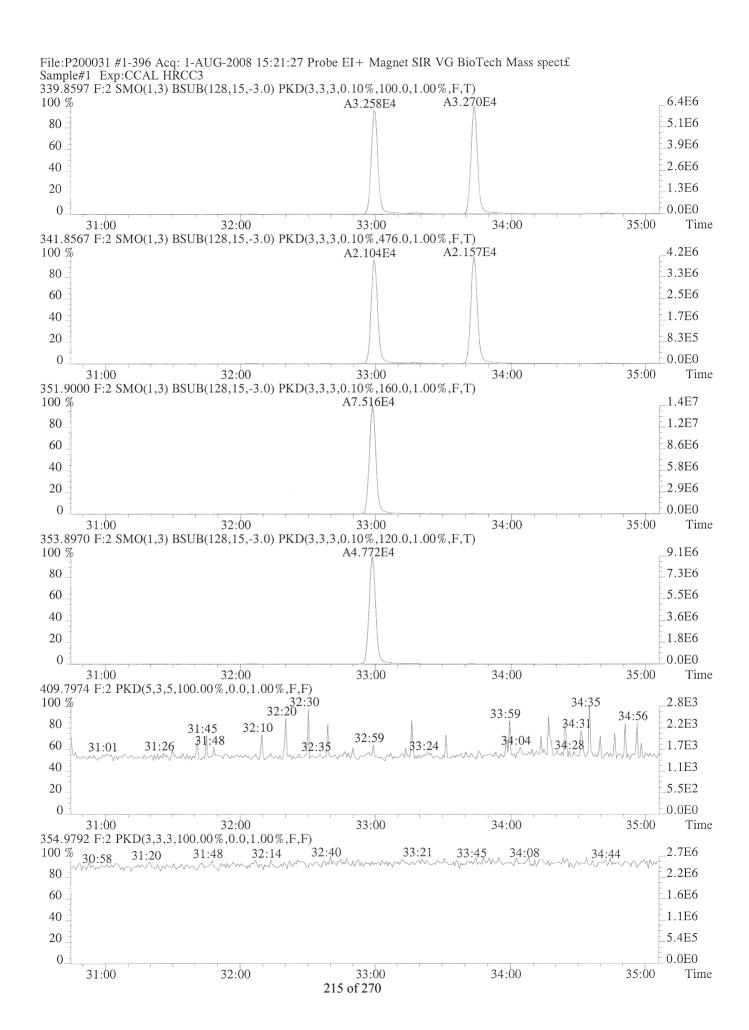
## Columbia Analytical Services, Inc. Signal/Noise Height Ratio Summary

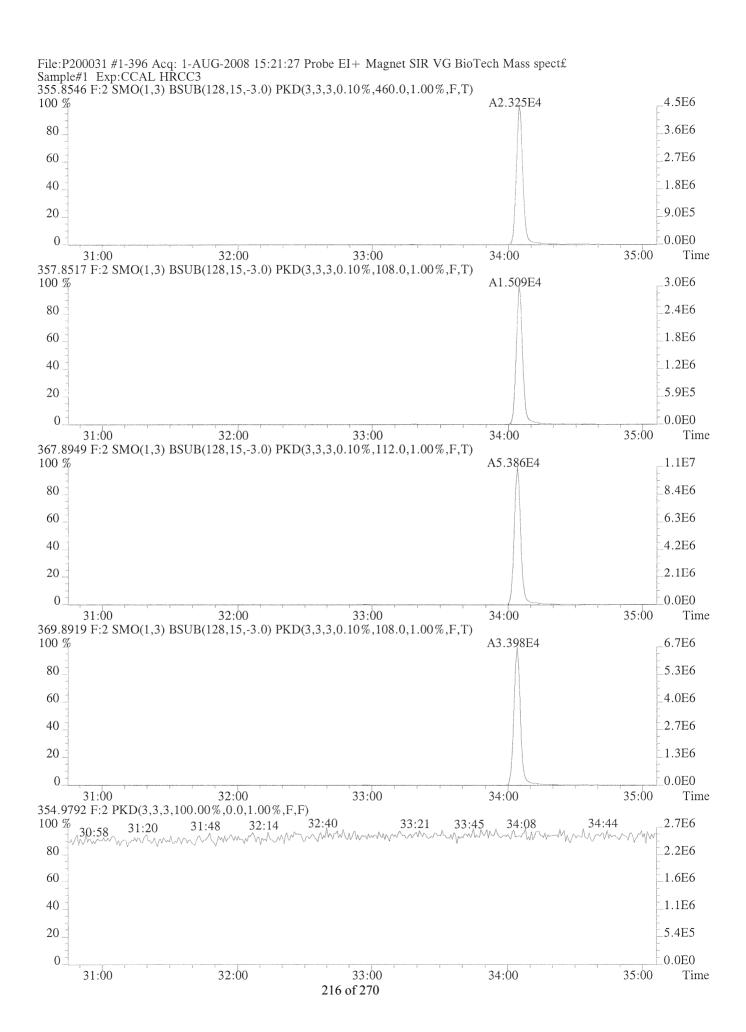
CLIENT ID. ICAL HRCC3

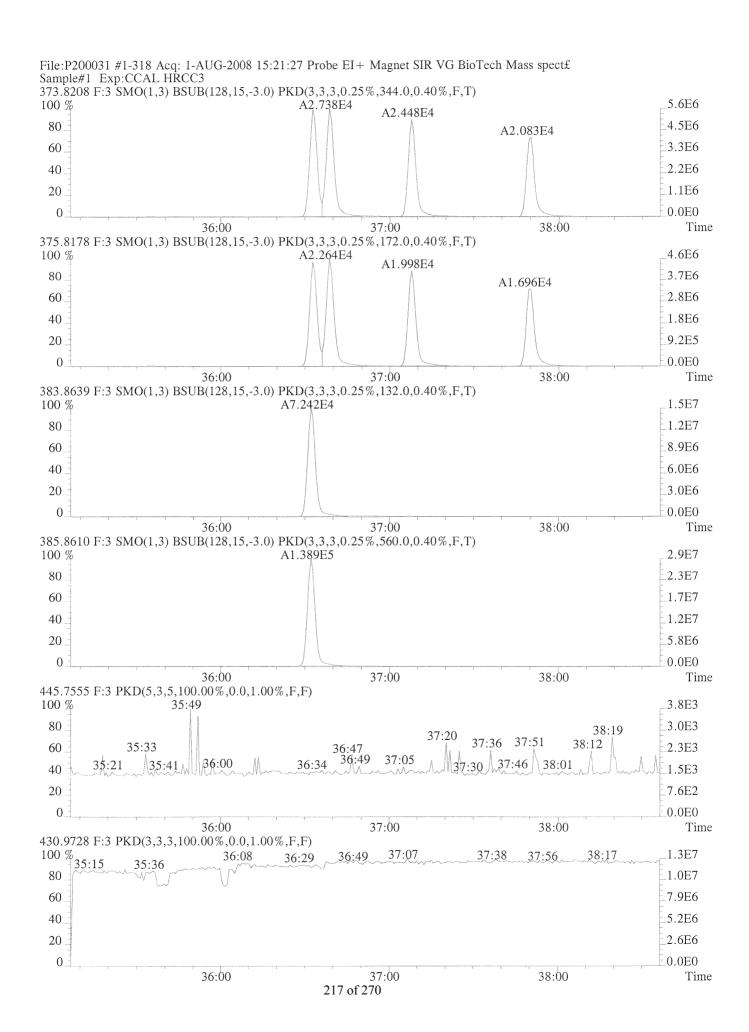
Run #3 Filename P200031 Samp: 1 Inj: 1 Acquired: 1-AUG-08 15:21:27 Processed: 14-APR-10 10:16:051 LAB. ID: ICAL HRCC3 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 2,3,7,8-TCDF | 1.60e+06 | 1.36e+02 | 1.2e+04 | 2.18e+06 | 8.00e+01 | 2.7e+04 2 1,2,3,7,8-PeCDF | 6.18e+06 | 1.00e+02 | 6.2e+04 | 4.03e+06 | 4.76e+02 | 8.5e+03 6.42e+06 | 1.00e+02 | 6.4e+04 | 4.17e+06 | 4.76e+02 | 8.8e+03 3 2,3,4,7,8-PeCDF 5.53e+06 | 3.44e+02 | 1.6e+04 | 1,2,3,4,7,8-HxCDF 4.47e+06 1.72e+02 2.6e+04 5 1,2,3,6,7,8-HxCDF 5.57e+06 | 3.44e+02 | 1.6e+04 | 4.58e+06 | 1.72e+02 | 2.7e+04 2,3,4,6,7,8-HxCDF 5.02e+06 | 3.44e+02 | 1.5e+04 | 4.07e+06 | 1.72e+02 | 2.4e+04 6 7 1,2,3,7,8,9-HxCDF 4.09e+06 | 3.44e+02 | 1.2e+04 | 3.27e+06 | 1.72e+02 | 1.9e+04 1,2,3,4,6,7,8-HpCDF 4.49e+06 | 1.30e+03 | 3.5e+03 | 4.45e+06 | 1.18e+03 | 3.8e+03 1.18e+03 | 2.4e+03 9 1,2,3,4,7,8,9-HpCDF | 2.86e+06 | 1.30e+03 | 2.2e+03 | 2.81e+06 | OCDF | 3.74e+06 | 7.60e+01 | 4.9e+04 | 4.12e+06 | 4.84e+02 | 8.5e+03 10 11 2,3,7,8-TCDD | 1.33e+06 | 2.00e+02 | 6.6e+03 | 1.70e+06 | 1.12e+02 | 1.5e + 0412 1,2,3,7,8-PeCDD 4.51e+06 4.60e+02 9.8e+03 2.97e+06 1.08e+02 2.8e+04 13 1,2,3,4,7,8-HxCDD| 4.13e+06| 1.36e+02| 3.0e+04| 3.35e+06| 1.28e+02| 2.6e+04 1,2,3,6,7,8-HxCDD 4.21e+06 1.36e+02 3.1e+04 3.36e+06 1.28e+02 2.6e+04 14 15 1,2,3,7,8,9-HxCDD 3.80e+06 | 1.36e+02 | 2.8e+04 | 3.06e+06 | 1.28e+02 | 2.4e+04 1,2,3,4,6,7,8-HpCDD| 2.53e+06| 3.20e+02| 7.9e+03 | 2.42e+06 | 5.60e+01 4.3e+04 16 17 OCDD 3.27e+06 1.16e+02 2.8e+04 3.68e+06 1.08e+02 3.4e+04 18 13C-2,3,7,8-TCDF | 9.37e+06 | 6.96e+02 | 1.3e+04 | 1.21e+07 | 7.20e+02 1.7e+04 13C-1,2,3,7,8-PeCDF | 1.44e+07 | 1.60e+02 | 9.0e+04 | 9.09e+06 1.20e+02 | 7.6e+04 19 1.49e+07 13C-1,2,3,4,7,8-HxCDF 1.32e+02 | 1.1e+05 | 2.89e+07 5.60e+02 5.2e + 0420 5.44e+03 | 4.2e+03 9.98e+06 | 5.04e+03 | 2.0e+03 | 2.26e+07 | 21 13C-1,2,3,4,6,7,8-HpCDF 1.14e+03 | 5.9e+03 | 8.54e+06 | 6.40e+02 | 1.3e+04 22 13C-2,3,7,8-TCDD 6.78e+06 23 1.05e+07 | 1.12e+02 | 9.4e+04 | 6.66e+06 | 1.08e+02 | 6.2e+04 13C-1,2,3,7,8-PeCDD 2.20e+02 | 1.0e+05 | 1.75e+07 | 2.88e+02 | 6.1e+04 13C-1,2,3,6,7,8-HxCDD | 2.19e+07| 25 13C-1,2,3,4,6,7,8-HpCDD | 1.41e+07 | 7.52e+02 | 1.9e+04 | 1.36e+07 | 3.72e+02 | 3.6e+04 13C-OCDD | 1.71e+07 | 1.16e+02 | 1.5e+05 | 1.90e+07 | 9.60e+01 2.0e+05 26 27 13C-1,2,3,4-TCDD 6.97e+06 1.14e+03 6.1e+03 8.89e+06 6.40e+02 1.4e+04

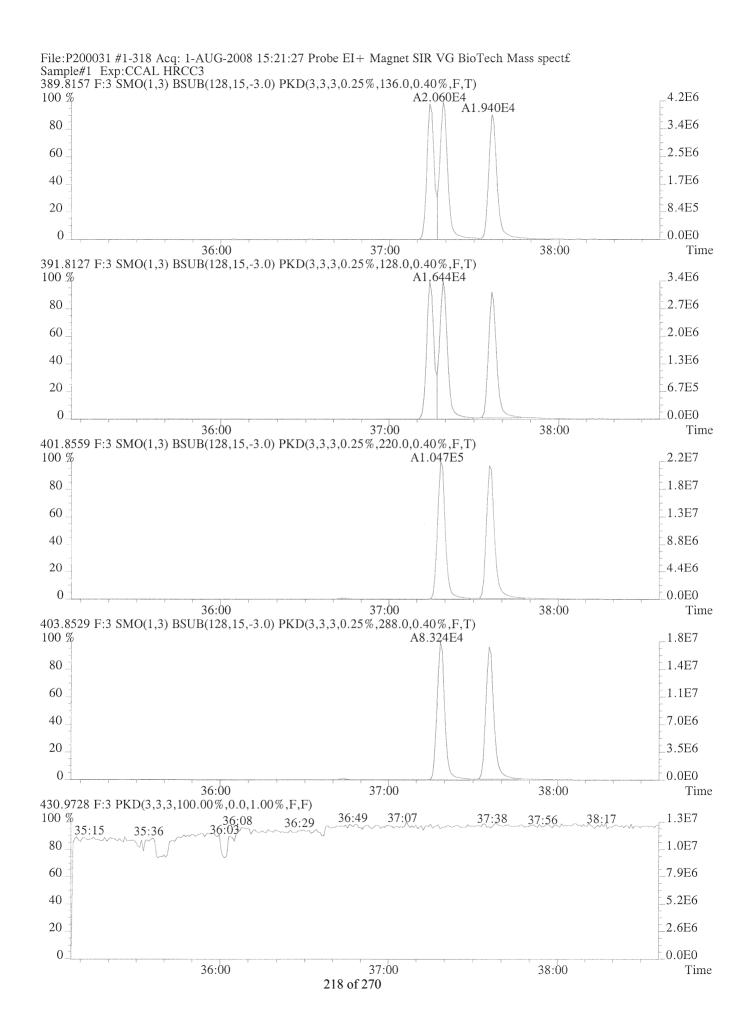

13C-1,2,3,7,8,9-HxCDD 2.11e+07 2.20e+02 9.6e+04 1.68e+07 2.88e+02 5.8e+04

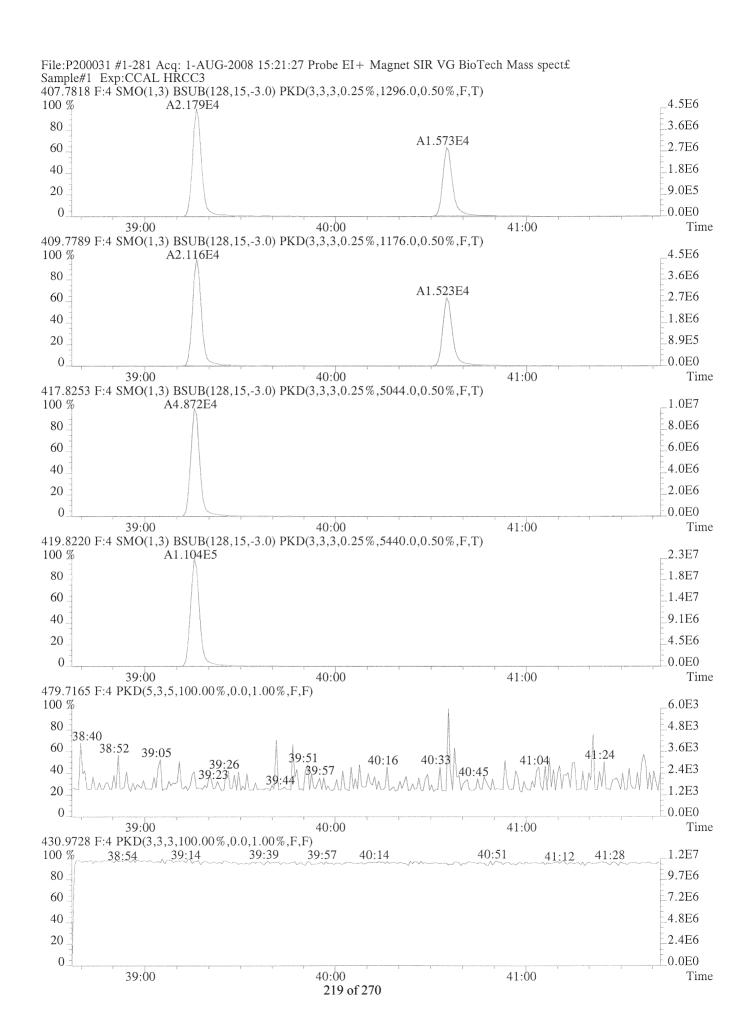

37Cl-2,3,7,8-TCDD 3.07e+06 9.60e+01 3.2e+04

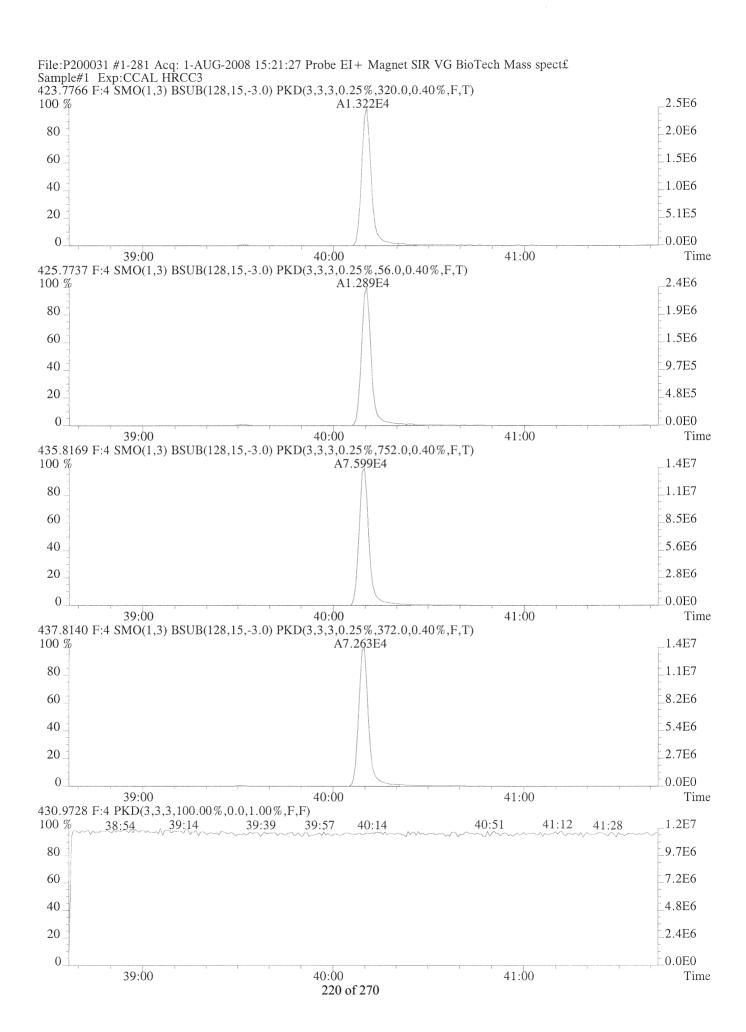

28

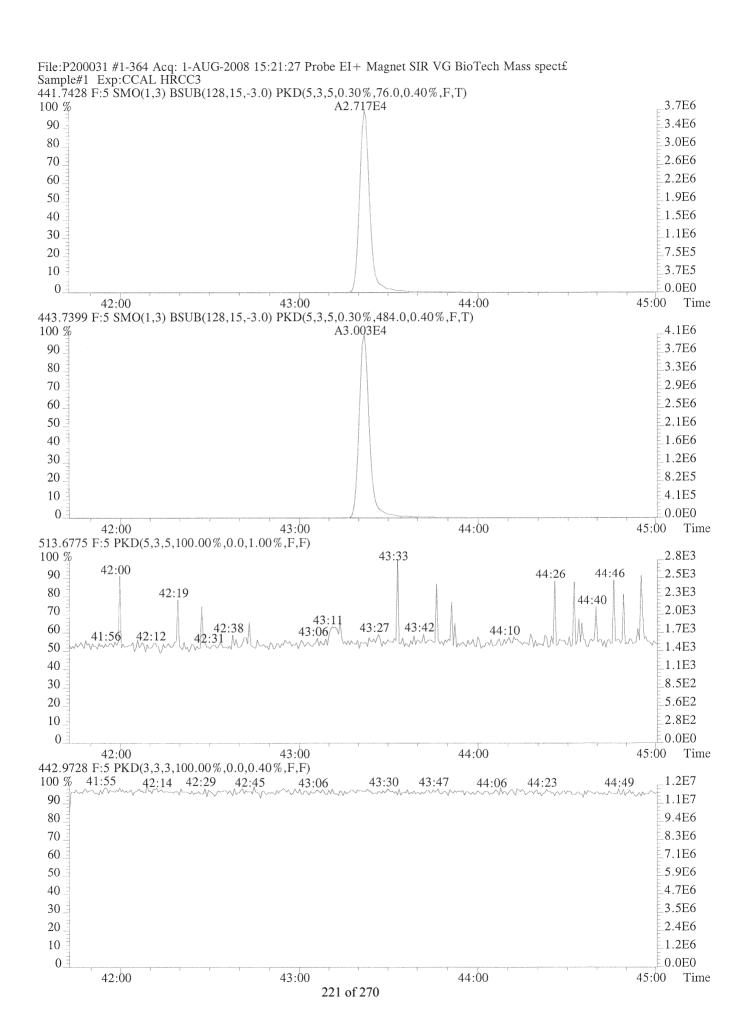

29

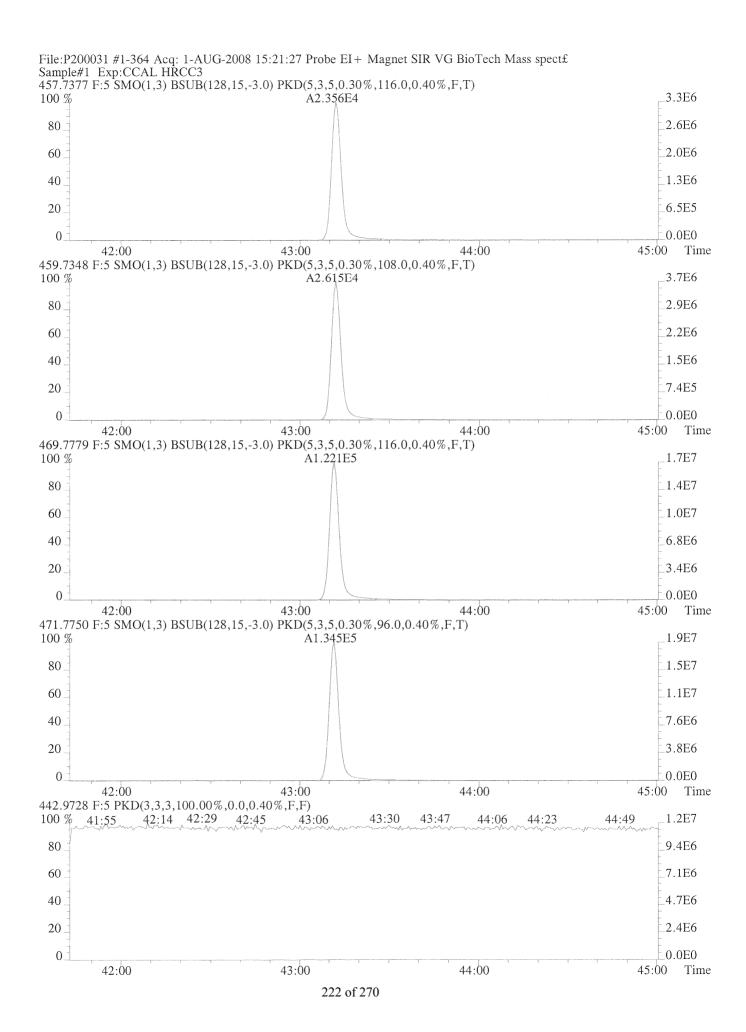

Columbia Analytical Services, Inc. 19408 Park Row, Suite 320 Houston, TX 77084 Office: (713) 266-1599. Fax: (713) 266-0130














#### Columbia Analytical Services, Inc. Sample Response Summary

CLIENT ID. ICAL HRCC4

Run #4 Filename P200034 #1 Samp: 1 Inj: 1 Acquired: 1-AUG-08 18:16:07

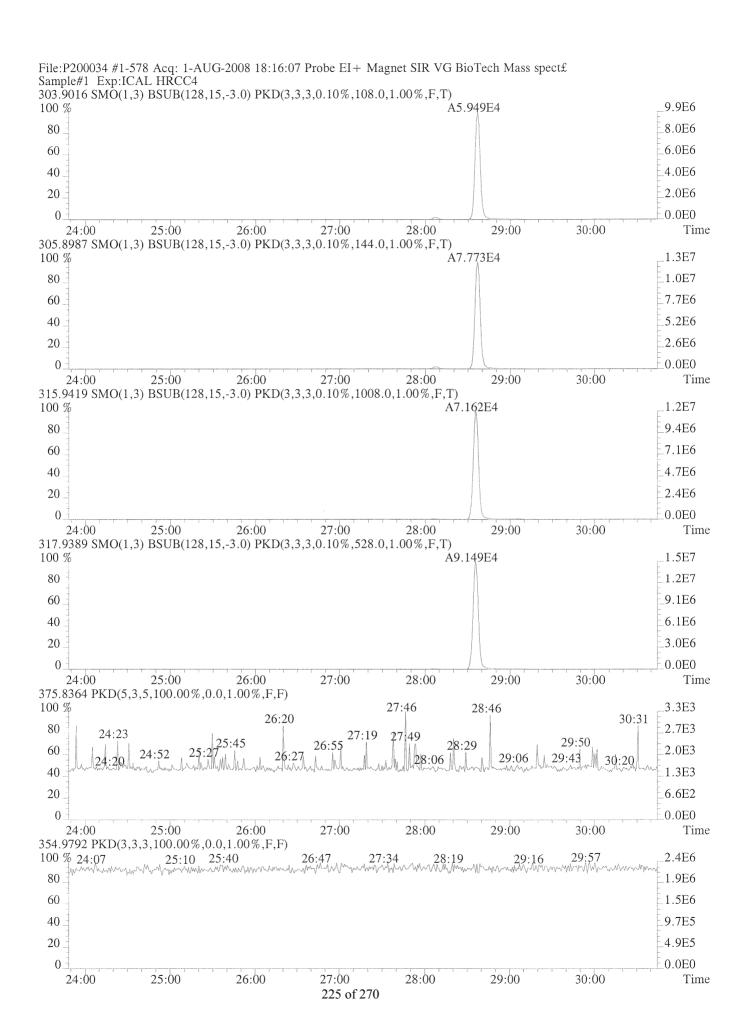
Processed: 14-APR-10 10:16:05 LAB.	D: ICAL	HRCC4
------------------------------------	---------	-------

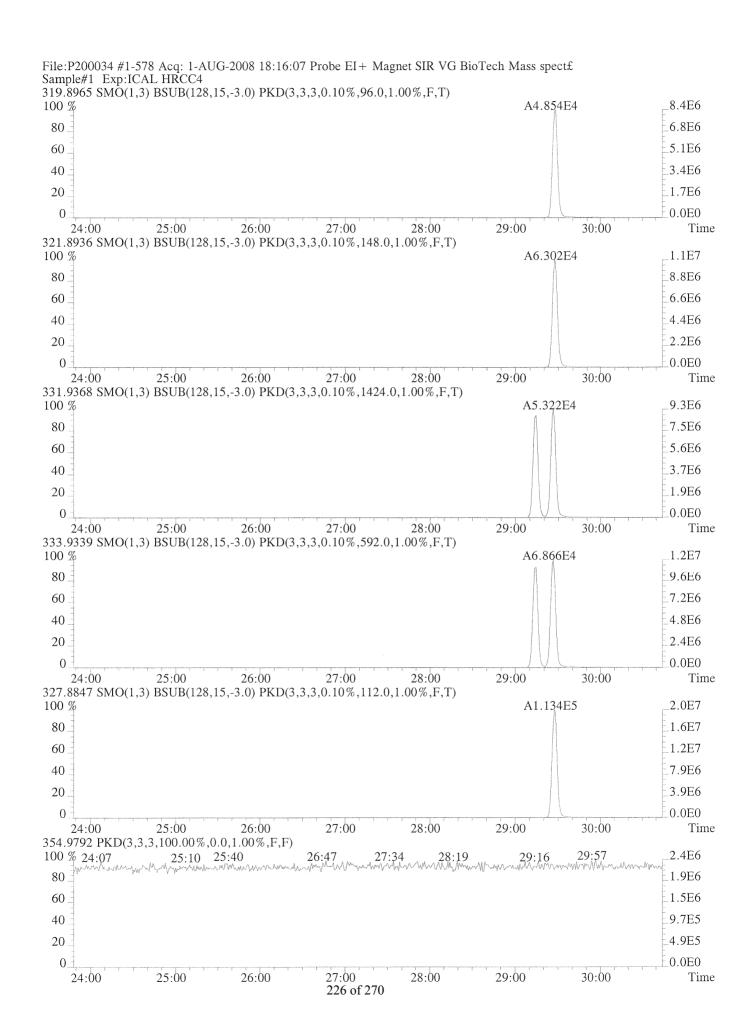
	Тур	Name	RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?	RRT
1	Unk	2,3,7,8-TCDF	128.37	5.949e+04	7.773e+04	0.77	ves	no	1.001
2	Unk	1,2,3,7,8-PeCDF		1.730e+05	1.129e+05	1.53	yes	no	1.000
3	Unk	2,3,4,7,8-PeCDF		1.777e+05	1.155e+05	1.54	yes	no	1.022
4	Unk	1,2,3,4,7,8-HxCDF		1.393e+05	1.145e+05	1.22	yes	no	1.000
5	Unk	1,2,3,4,7,6 HACDF	1	1.488e+05	1.220e+05	1.22	yes	no	1.003
6	Unk	2,3,4,6,7,8-HxCDF	1	1.316e+05	1.070e+05	1.23	yes	no	1.016
7	Unk	1,2,3,7,8,9-HxCDF	!	1.106e+05	9.316e+04	1.19	yes	no	1.036
8	Unk	1,2,3,4,6,7,8-HpCDF	1	1.136e+05	1.120e+05	1.01	yes	no	1.000
9	Unk	1,2,3,4,7,8,9-HpCDF	1	8.587e+04	8.403e+04	1.02	yes	no	1.034
10	Unk		43:22	1.225e+05	1.373e+05	0.89	yes	no	1.004
			1	1		1 1	2 [		
11	Unk	2,3,7,8-TCDD	29:27	4.854e+04	6.302e+04	0.77	yes	no	1.001
12	Unk	1,2,3,7,8-PeCDD		1.219e+05	7.885e+04	1.55	yes	no	1.000
13	Unk	1,2,3,4,7,8-HxCDD	1	9.252e+04	7.438e+04	1.24	yes	no	0.998
14	Unk	1,2,3,6,7,8-HxCDD		1.077e+05	8.529e+04	1.26	yes	no	1.000
15	Unk	1,2,3,7,8,9-HxCDD		9.630e+04	7.703e+04	1.25	yes	no	1.008
16	Unk	1,2,3,4,6,7,8-HpCDD		7.095e+04	6.797e+04	1.04	yes	no	1.000
17	Unk		43:12	1.024e+05	1.151e+05	0.89	yes	no	1.000
			•	1	1	' '	- '		
18	IS	13C-2,3,7,8-TCDF	28:35	7.162e+04	9.149e+04	0.78	yes	no	0.978
19	IS	13C-1,2,3,7,8-PeCDF	32:59	8.269e+04	5.270e+04	1.57	yes	no	1.128
20	IS	13C-1,2,3,4,7,8-HxCDF	36:32	8.145e+04	1.578e+05	0.52	yes	no	0.972
21	IS1	3C-1,2,3,4,6,7,8-HpCDF	39:15	5.170e+04	1.185e+05	0.44	yes	no	1.044
22	IS	13C-2,3,7,8-TCDD	29:26	5.322e+04	6.866e+04	0.78	yes	no	1.007
23	IS	13C-1,2,3,7,8-PeCDD	34:04	5.592e+04	3.620e+04	1.54	yes	no	1.165
24	IS	13C-1,2,3,6,7,8-HxCDD	37:18	9.932e+04	7.945e+04	1.25	yes	no	0.992
25	IS1	3C-1,2,3,4,6,7,8-HpCDD	40:09	7.950e+04	7.584e+04	1.05	yes	no	1.068
26	IS	13C-OCDD	43:11	1.074e+05	1.203e+05	0.89	yes	no	1.148
	S/RT	13C-1,2,3,4-TCDD	i	5.015e+04	6.372e+04	0.79	yes	no	*
	S/RT	13C-1,2,3,7,8,9-HxCDD		9.942e+04	7.911e+04	1.26	yes	no	*
29	C/Up	37Cl-2,3,7,8-TCDD	29:27	1.134e+05				no	1.007

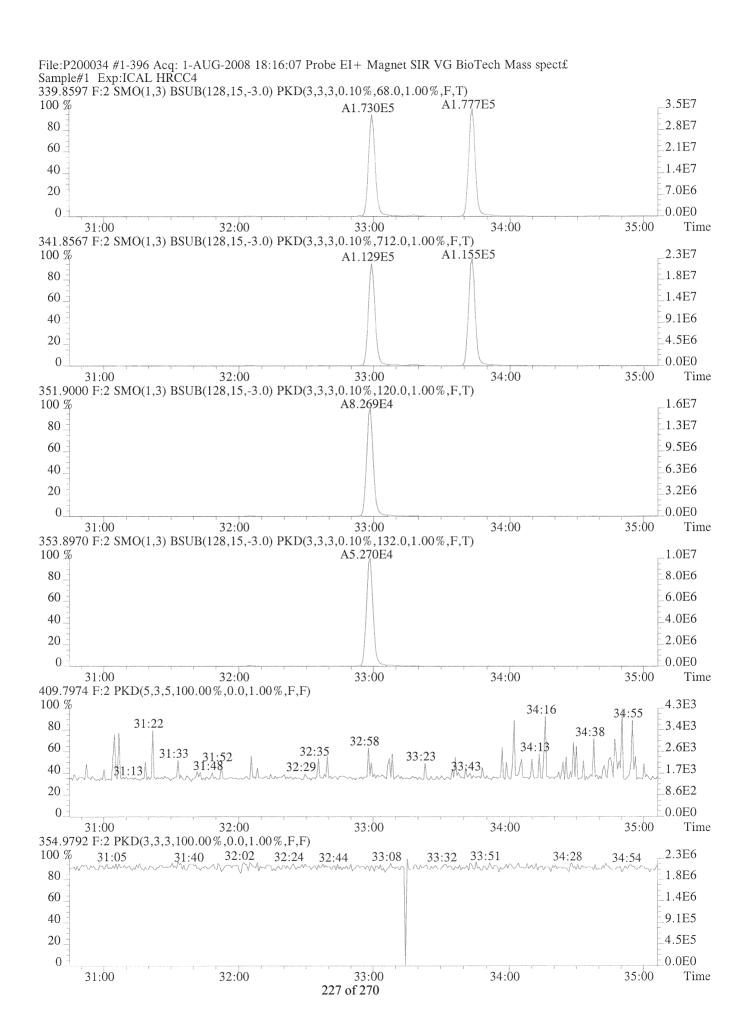
## Columbia Analytical Services, Inc. Signal/Noise Height Ratio Summary

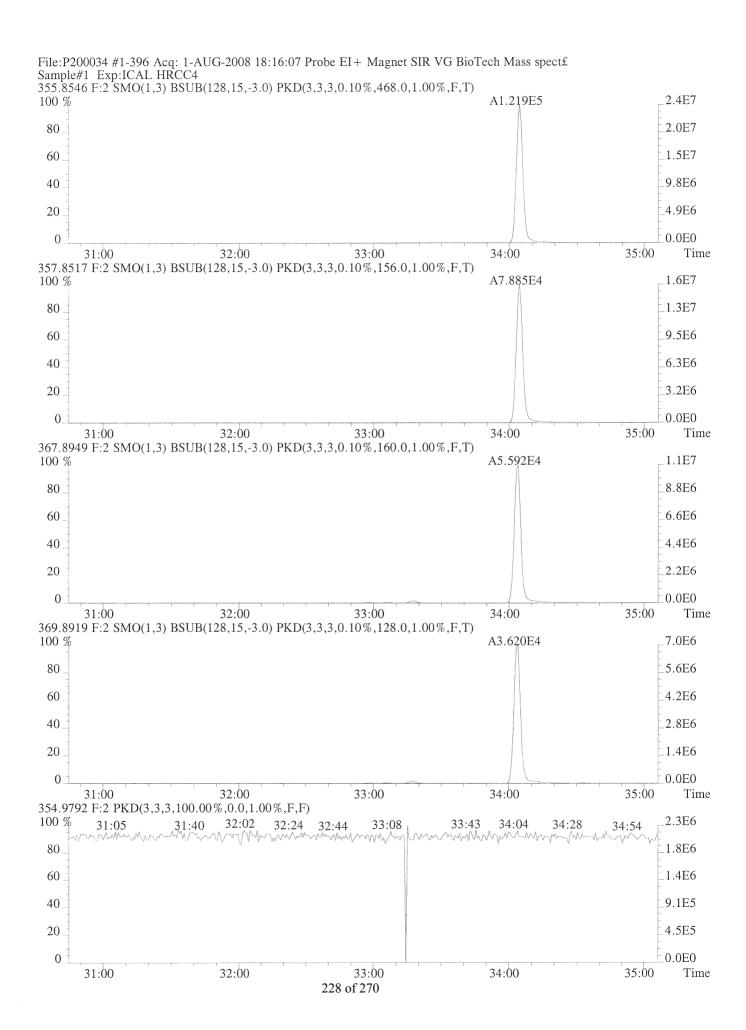
CLIENT ID. ICAL HRCC4

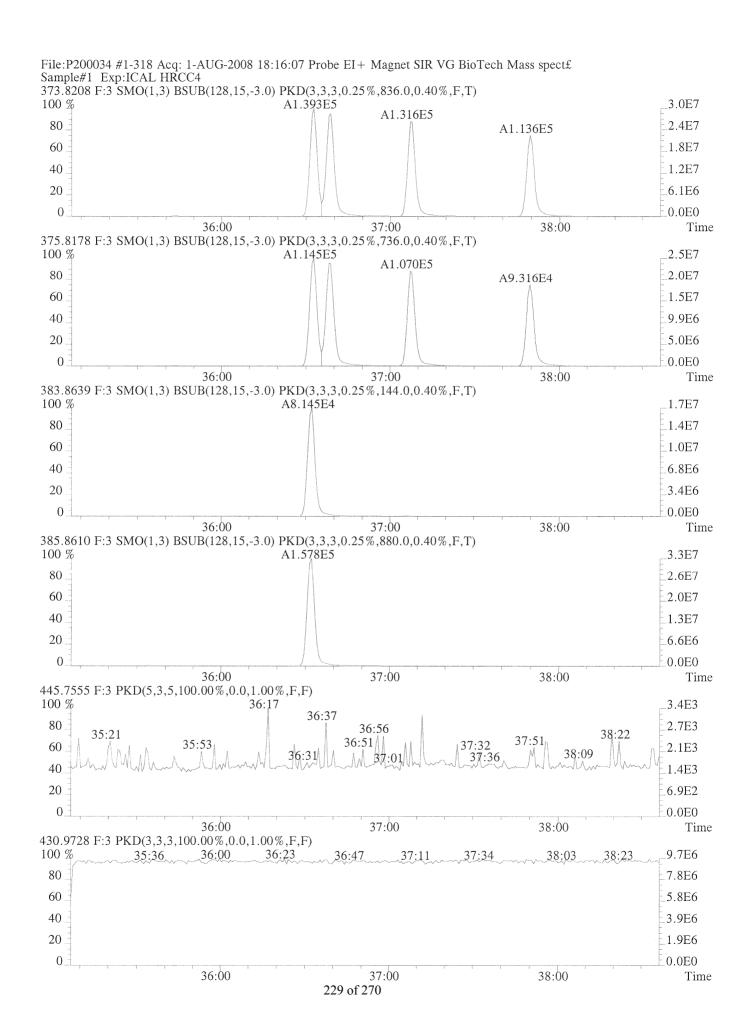
Run #4 Filename P200034 Samp: 1 Acquired: 1-AUG-08 18:16:07 Inj: 1 Processed: 14-APR-10 10:16:051 LAB. ID: ICAL HRCC4 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 1 2,3,7,8-TCDF 9.94e+06 | 1.08e+02 | 9.2e+04 | 1.29e+07 | 1.44e+02 | 8.9e+04 2 1,2,3,7,8-PeCDF  $3.32e+07 \mid 6.80e+01 \mid 4.9e+05 \mid 2.17e+07 \mid 7.12e+02 \mid 3.0e+04$ 3 2,3,4,7,8-PeCDF  $3.51e+07 \mid 6.80e+01 \mid 5.2e+05 \mid 2.27e+07 \mid 7.12e+02 \mid 3.2e+04$ 1,2,3,4,7,8-HxCDF 4  $3.05e+07 \mid 8.36e+02 \mid 3.6e+04 \mid$ 2.48e+07 7.36e+02 3.4e+045 1,2,3,6,7,8-HxCDF 2.90e+07 | 8.36e+02 | 3.5e+04 | 2.38e+07 | 7.36e+02 | 3.2e+04 6 2,3,4,6,7,8-HxCDF 2.68e+07 | 8.36e+02 | 3.2e+04 | 2.20e+07 | 7.36e+02 3.0e+04 7 1,2,3,7,8,9-HxCDF 2.28e+07 | 8.36e+02 | 2.7e+04 | 1.87e+07 | 7.36e+02 | 2.5e+04 1,2,3,4,6,7,8-HpCDF 2.34e+07 | 7.66e+03 | 3.1e+03 | 2.29e+07 | 6.00e+03 | 3.8e+03 9 1,2,3,4,7,8,9-HpCDF | 1.57e+07 | 7.66e+03 | 2.0e+03 | 1.52e+07 | 6.00e+03 | 2.5e+03 OCDF | 1.71e+07 | 4.72e+02 | 3.6e+04 | 1.94e+07 | 3.00e+02 | 6.5e+04 1.0 11 2,3,7,8-TCDD | 8.44e+06 | 9.60e+01 | 8.8e+04 | 1.10e+07 | 1.48e+02 | 7.5e+04 12 1,2,3,7,8-PeCDD 2.44e+07 4.68e+02 5.2e+04 1.58e+07 1.56e+02 1.0e+05 1.3 1,2,3,4,7,8-HxCDD | 2.13e+07 | 5.20e+02 | 4.1e+04 | 1.69e+07 | 1.60e+02 | 1.1e+05 1,2,3,6,7,8-HxCDD 2.20e+07 | 5.20e+02 | 4.2e+04 | 1.75e+07 | 1.60e+02 | 1.1e+05 14 15 1,2,3,7,8,9-HxCDD 2.07e+07 5.20e+02 | 4.0e+04 | 1.64e+07 1.60e+02 1.0e+05 16 1,2,3,4,6,7,8-HpCDD 1.37e+07 1.00e+03 | 1.4e+04 | 1.33e+07 | 8.56e+02 | 1.5e+04 17 OCDD | 1.43e+07 | 1.24e+02 | 1.2e+05 | 1.62e+07 | 1.24e+02 | 1.3e+05 18 13C-2,3,7,8-TCDF 1.18e+07 | 1.01e+03 | 1.2e+04 | 1.52e+07 | 5.28e+02 | 2.9e+04 1.58e+07 | 1.20e+02 | 1.3e+05 | 1.00e+07 | 1.32e+02 | 7.6e+04 19 13C-1,2,3,7,8-PeCDF 1.70e+07 20 13C-1,2,3,4,7,8-HxCDF 1.44e+02 | 1.2e+05 | 3.29e+07 8.80e+02 3.7e + 0421 13C-1,2,3,4,6,7,8-HpCDF 1.08e+07 2.71e+03 | 4.0e+03 | 2.43e+07 | 8.02e+03 | 3.0e+03 22 13C-2,3,7,8-TCDD 9.31e+06 | 1.42e+03 | 6.5e+03 | 1.20e+07 | 5.92e+02 2.0e+04 23 13C-1,2,3,7,8-PeCDD  $1.10e+07 \mid 1.60e+02 \mid 6.9e+04 \mid 7.00e+06 \mid 1.28e+02 \mid 5.5e+04$ 13C-1,2,3,6,7,8-HxCDD 2.15e+07 | 3.24e+02 | 6.6e+04 | 1.71e+07 | 5.48e+02 | 3.1e+04 1.54e+07 | 1.51e+03 | 1.0e+04 | 1.47e+07 | 25 13C-1,2,3,4,6,7,8-HpCDD 7.16e+02 2.1e + 0413C-OCDD | 1.47e+07 | 1.96e+02 | 7.5e+04 | 1.68e+07 | 2.56e+02 | 6.6e+04 26 27 13C-1,2,3,4-TCDD 8.81e+06 1.42e+03 6.2e+03 1.11e+07 5.92e+02 1.9e+04 28 13C-1,2,3,7,8,9-HxCDD 2.11e+07 3.24e+02 6.5e+04 1.68e+07 5.48e+02 3.1e+04

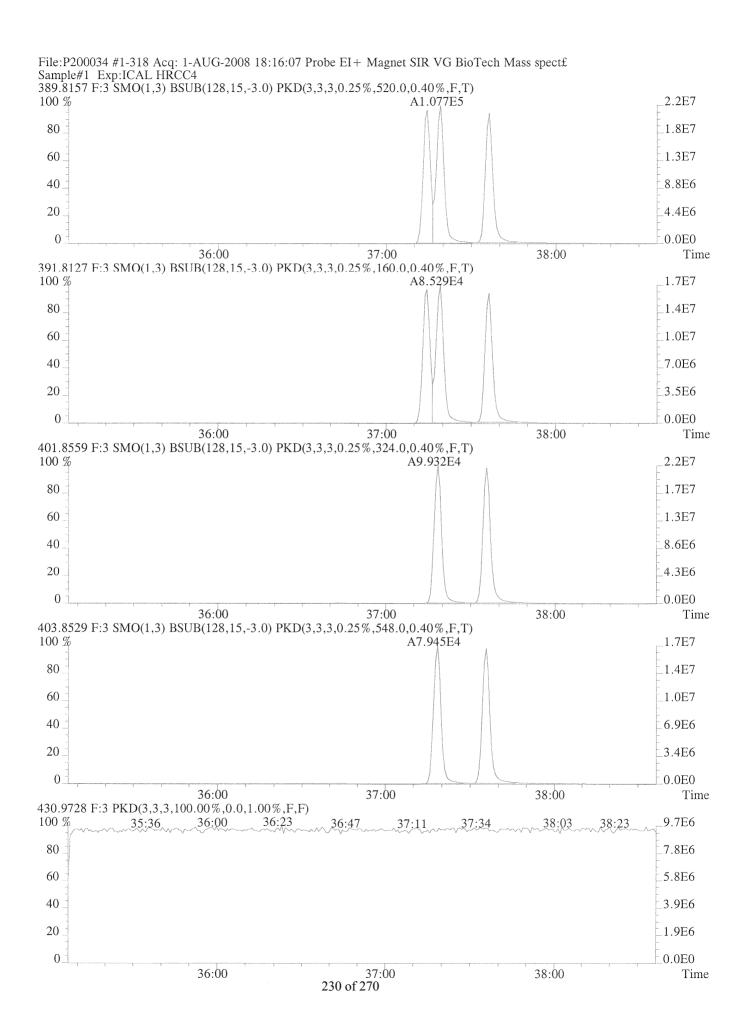

37Cl-2,3,7,8-TCDD 1.97e+07 1.12e+02 1.8e+05

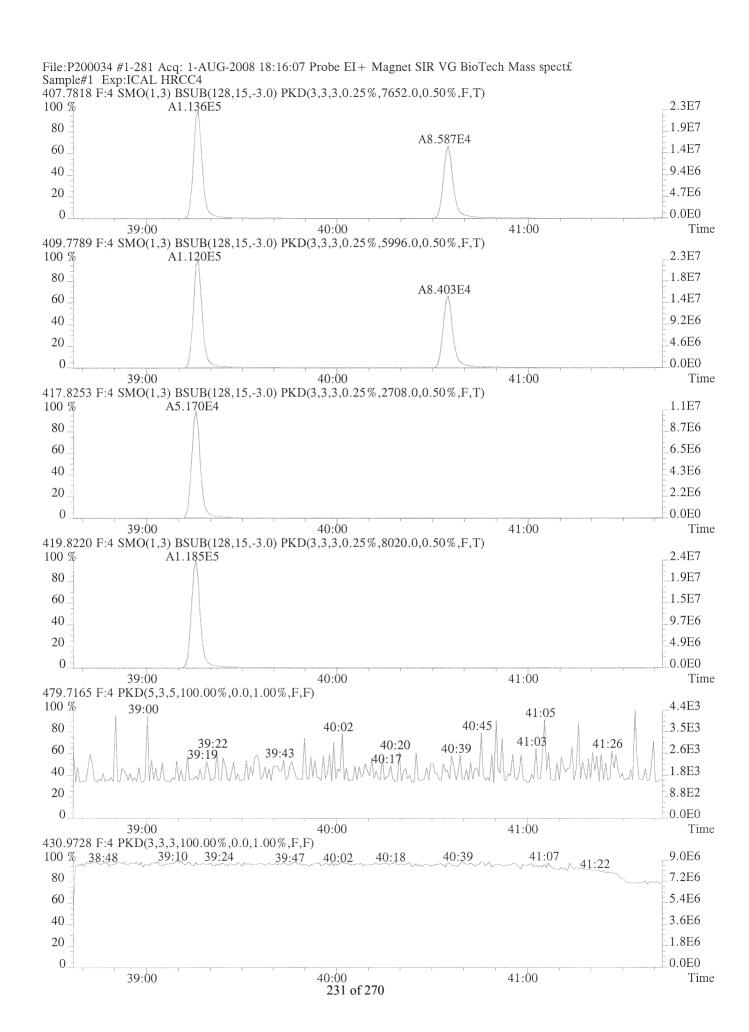

Houston, TX 77084

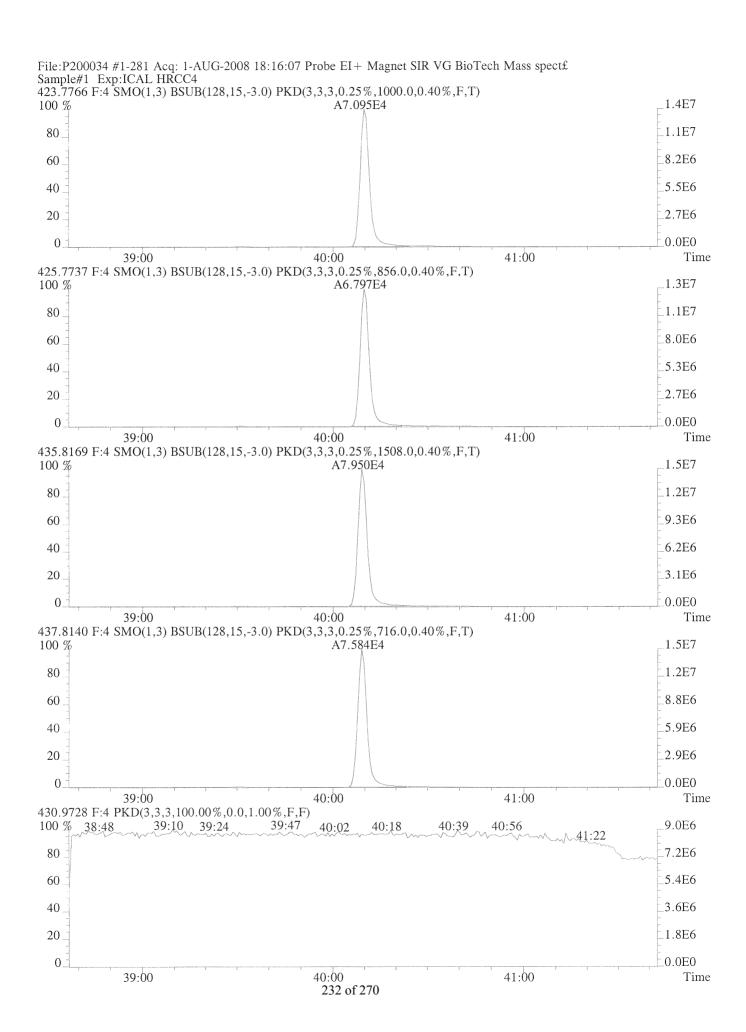

29

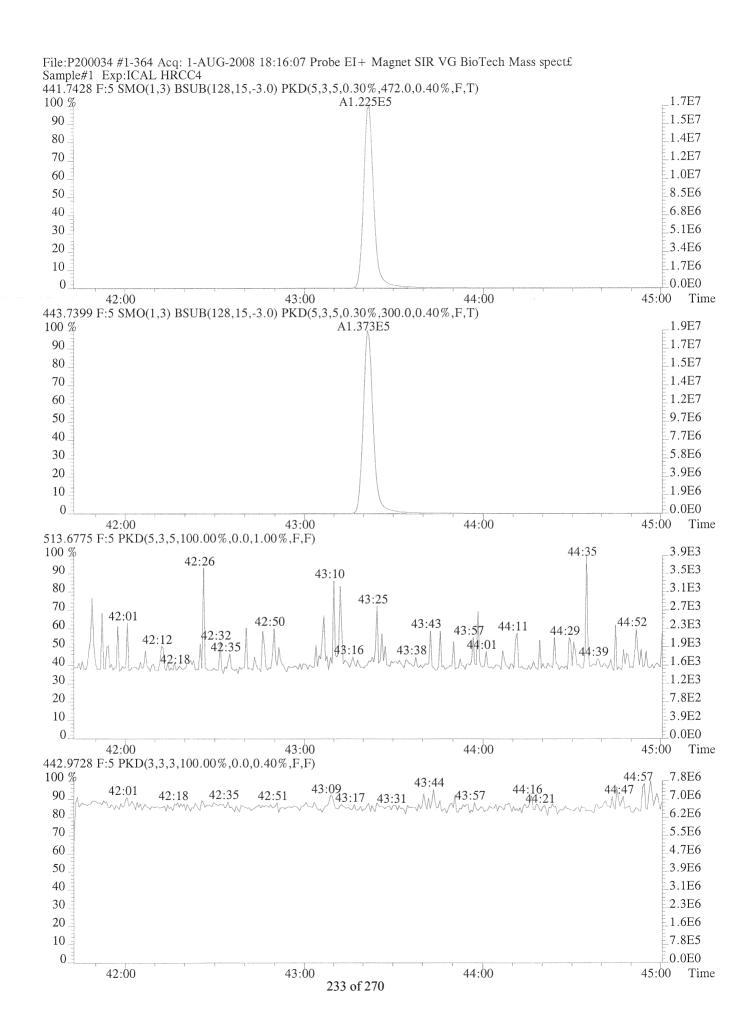

Office: (713) 266-1599. Fax: (713) 266-0130

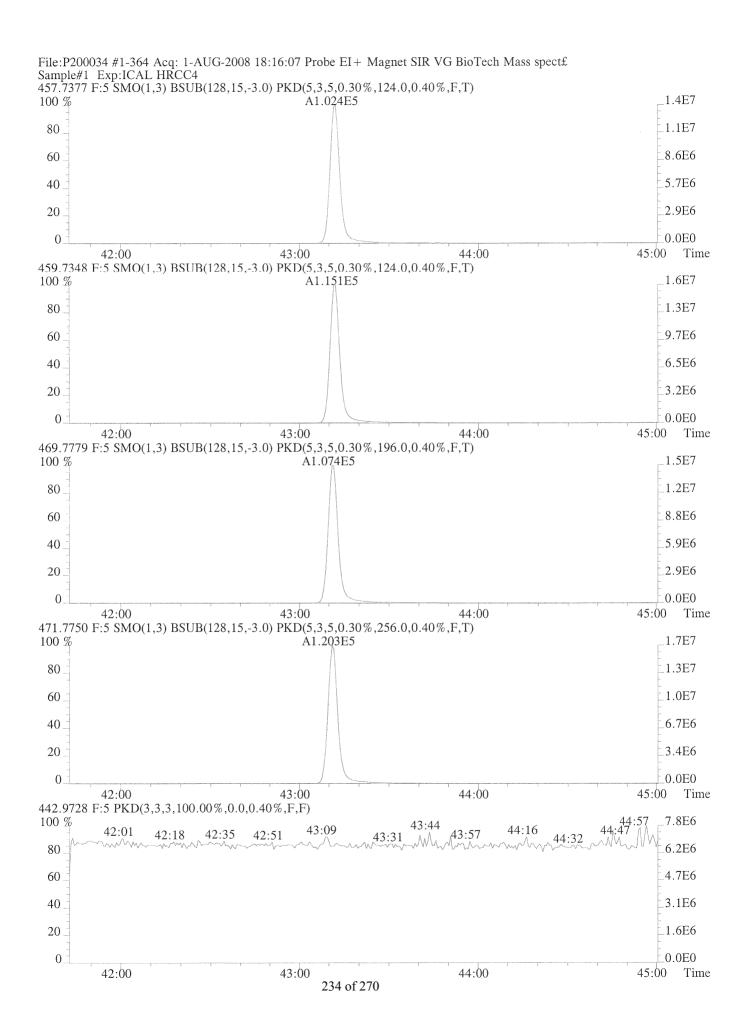

Columbia Analytical Services, Inc. 19408 Park Row, Suite 320














#### Columbia Analytical Services, Inc. Sample Response Summary

CLIENT ID. ICAL HRCC5

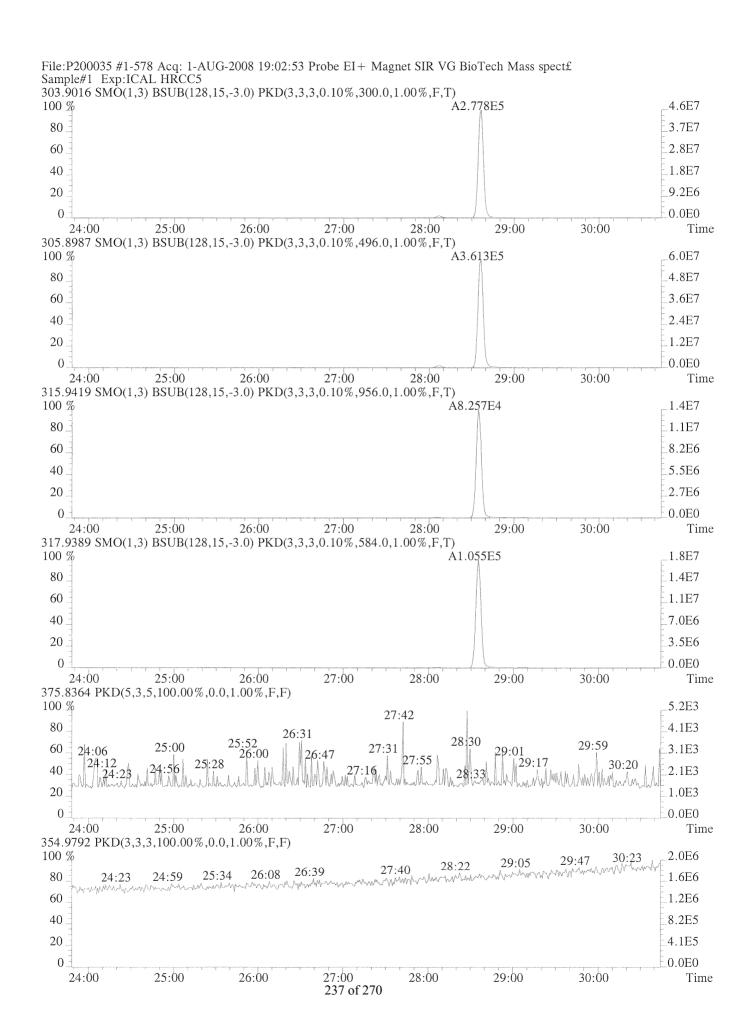
Run #5 Filename P200035 #1 Samp: 1 Inj: 1 Acquired: 1-AUG-08 19:02:53

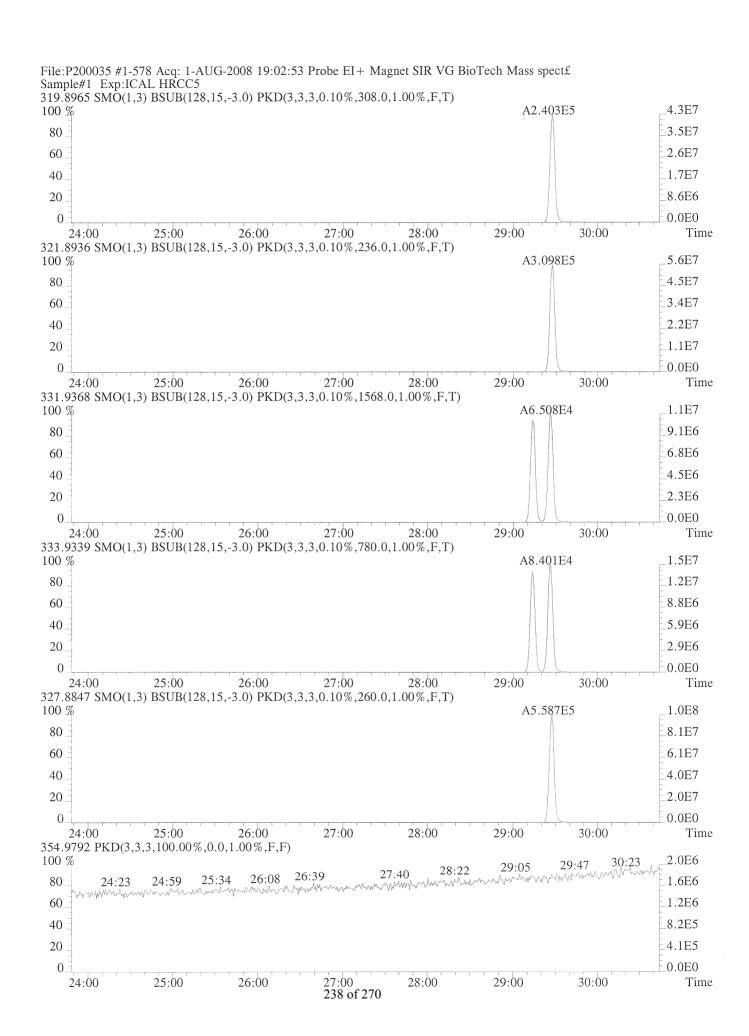
	Processed:	14-APR-10	10:16:05	LAB.	ID:	ICAL HR	.CC5
--	------------	-----------	----------	------	-----	---------	------

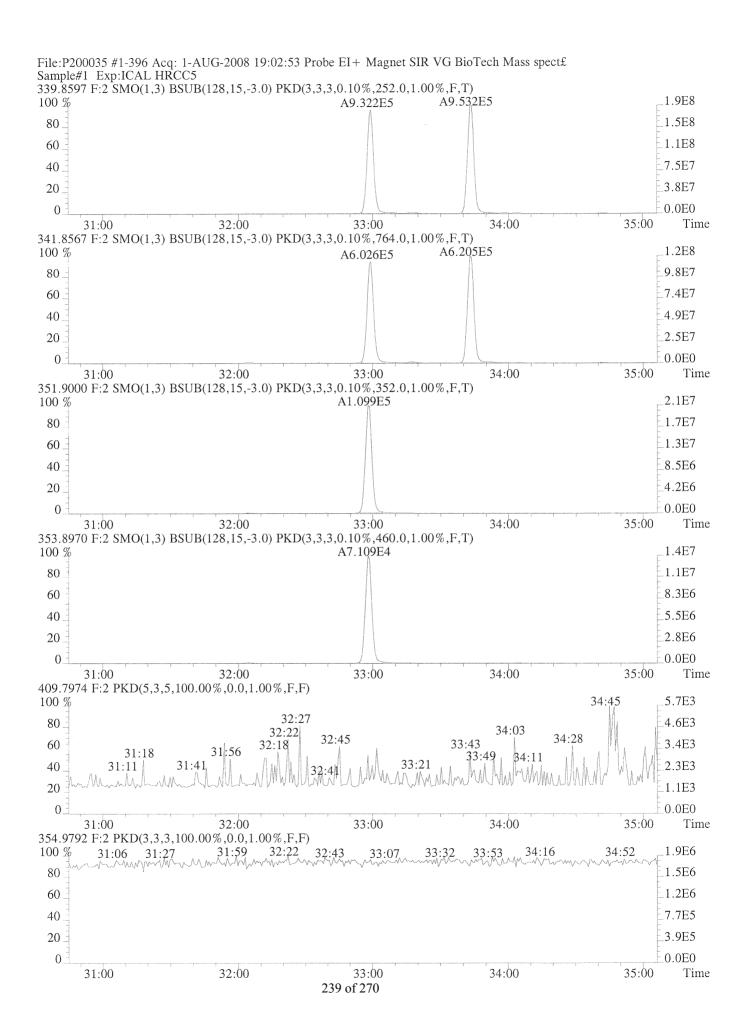
	Тур	Name	RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?	RRT
1	Unk	2,3,7,8-TCDF	28.37	2.778e+05	3.613e+05	0.77	yes	no	1.001
2	Unk	1,2,3,7,8-PeCDF		9.322e+05	6.026e+05	1.55	yes	no	1.001
3	Unk	2,3,4,7,8-PeCDF	I	9.532e+05	6.205e+05	1.54	yes	no	1.023
4	Unk	1,2,3,4,7,8-HxCDF		8.312e+05	6.806e+05	1.22	yes	no	1.000
5	Unk	1,2,3,6,7,8-HxCDF	•	8.708e+05	7.082e+05	1.23	yes	no	1.003
6	Unk	2,3,4,6,7,8-HxCDF	1	7.911e+05	6.456e+05	1.23	yes	no	1.016
7	Unk	1,2,3,7,8,9-HxCDF		6.855e+05	5.576e+05	1.23	yes	no	1.036
8	Unk	1,2,3,4,6,7,8-HpCDF		6.364e+05	6.238e+05	1.02	yes	no	1.000
9	Unk			4.796e+05	4.689e+05	1.02	yes	no	1.034
10	Unk		43:22	9.366e+05	1.046e+06	0.90	yes	no	1.004
			ı		1	, ,	- '		
11	Unk	2,3,7,8-TCDD	29:27	2.403e+05	3.098e+05	0.78	yes	no	1.001
12	Unk	1,2,3,7,8-PeCDD	34:05	7.049e+05	4.546e+05	1.55	yes	no	1.001
13	Unk	1,2,3,4,7,8-HxCDD	37:14	5.947e+05	4.721e+05	1.26	yes	no	0.998
14	Unk	1,2,3,6,7,8-HxCDD	37:19	6.719e+05	5.342e+05	1.26	yes	no	1.000
15	Unk	1,2,3,7,8,9-HxCDD	37:36	6.157e+05	4.966e+05	1.24	yes	no	1.008
16	Unk	1,2,3,4,6,7,8-HpCDD	40:10	4.218e+05	4.060e+05	1.04	yes	no	1.000
17	Unk	OCDD	43:12	8.683e+05	9.782e+05	0.89	yes	no	1.000
18	IS	13C-2,3,7,8-TCDF	28:35	8.257e+04	1.055e+05	0.78	yes	no	0.978
19	IS	13C-1,2,3,7,8-PeCDF	I	1.099e+05	7.109e+04	1.55	yes	no	1.128
20	IS	13C-1,2,3,4,7,8-HxCDF	I .	1.196e+05	2.284e+05	0.52	yes	no	0.972
21	IS1	3C-1,2,3,4,6,7,8-HpCDF	I	7.259e+04	1.645e+05	0.44	yes	no	1.044
22	IS	13C-2,3,7,8-TCDD	i .	6.508e+04	8.401e+04	0.77	yes	no	1.007
23	IS	13C-1,2,3,7,8-PeCDD	1	7.915e+04	5.063e+04	1.56	yes	no	1.165
24	IS	13C-1,2,3,6,7,8-HxCDD		1.553e+05	1.236e+05	1.26	yes	no	0.992
25		3C-1,2,3,4,6,7,8-HpCDD	1	1.176e+05	1.132e+05	1.04	yes	no	1.068
26	IS	13C-OCDD	43:12	2.227e+05	2.491e+05	0.89	yes	no	1.149
	S/RT	13C-1,2,3,4-TCDD	1	6.008e+04	7.642e+04	0.79	yes	no	*
	S/RT	13C-1,2,3,7,8,9-HxCDD		1.569e+05	1.263e+05	1.24	yes	no	*
29	C/Up	37Cl-2,3,7,8-TCDD	29:27	5.587e+05				no	1.007

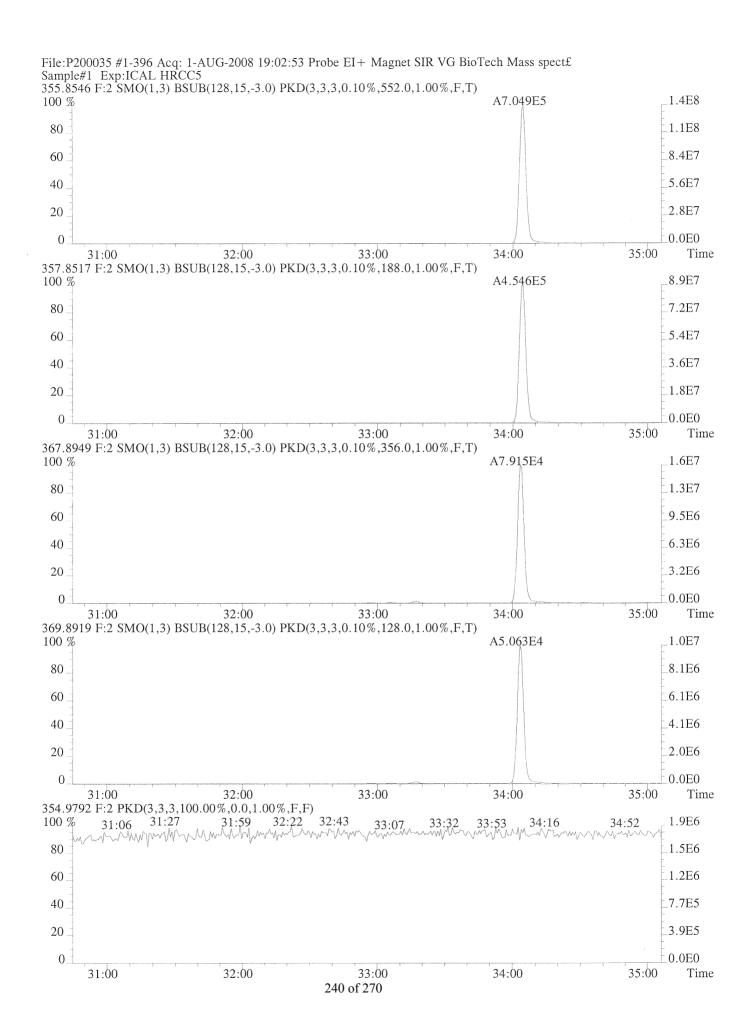
CLIENT ID. ICAL HRCC5

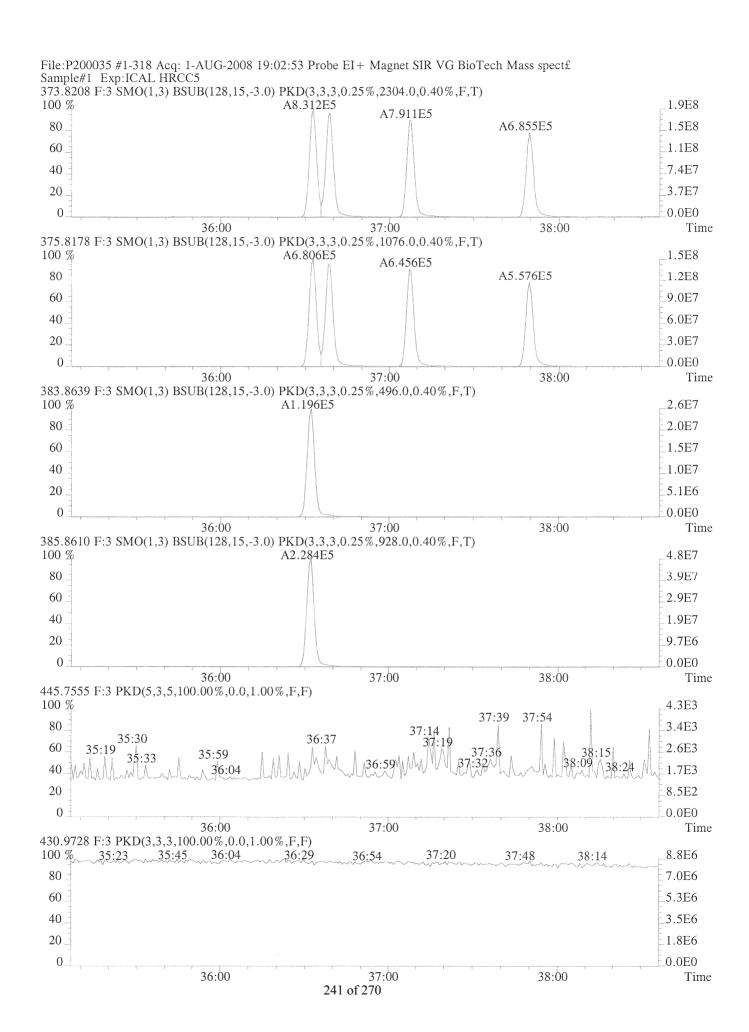
Run #5 Filename P200035 Samp: 1 Inj: 1 Acquired: 1-AUG-08 19:02:53 Processed: 14-APR-10 10:16:051 LAB. ID: ICAL HRCC5 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 1 2,3,7,8-TCDF | 4.60e+07 | 3.00e+02 | 1.5e+05 | 5.95e+07 | 4.96e+02 | 1.2e+05 1,2,3,7,8-PeCDF | 1.81e+08 | 2.52e+02 | 7.2e+05 | 1.16e+08 | 7.64e+02 | 1.5e+05 3 2,3,4,7,8-PeCDF | 1.88e+08 | 2.52e+02 | 7.5e+05 | 1.23e+08 | 7.64e+02 | 1.6e+05 1,2,3,4,7,8-HxCDF 1.85e+08 | 2.30e+03 | 8.0e+04 | 1.50e+08 | 1.08e+03 | 1.4e+05 4 1.78e+08 | 2.30e+03 | 7.7e+04 | 1.44e+08 | 1.08e+03 | 1.3e+05 5 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1.65e+08 | 2.30e+03 | 7.2e+04 | 1.36e+08 | 1.08e+03 | 1.3e+05 6 7 1,2,3,7,8,9-HxCDF 1.44e+08 | 2.30e+03 | 6.3e+04 | 1.18e+08 | 1.08e+03 | 1.1e+05 1,2,3,4,6,7,8-HpCDF | 1.37e+08 | 3.50e+04 | 3.9e+03 | 1.34e+08 | 1.74e+04 | 7.7e+03 9 1,2,3,4,7,8,9-HpCDF | 9.45e+07 | 3.50e+04 | 2.7e+03 | 9.17e+07 | 1.74e+04 | 5.3e+03 OCDF | 1.39e+08 | 1.36e+02 | 1.0e+06 | 1.54e+08 | 5.12e+02 | 3.0e+05 10 11 2,3,7,8-TCDD | 4.32e+07 | 3.08e+02 | 1.4e+05 | 5.59e+07 | 2.36e+02 | 2.4e+05 12 1,2,3,7,8-PeCDD | 1.40e+08 | 5.52e+02 | 2.5e+05 | 8.94e+07 | 1.88e+02 | 4.8e+05 13 1,2,3,4,7,8-HxCDD| 1.39e+08| 8.12e+02| 1.7e+05| 1.10e+08| 5.16e+02| 2.1e+05 14 1,2,3,6,7,8-HxCDD | 1.41e+08 | 8.12e+02 | 1.7e+05 | 1.13e+08 | 5.16e+02 | 2.2e+05 1,2,3,7,8,9-HxCDD| 1.34e+08| 8.12e+02| 1.6e+05| 1.08e+08| 5.16e+02| 2.1e+05 15 16 1,2,3,4,6,7,8-HpCDD  $8.74e+07 \mid 1.59e+03 \mid 5.5e+04 \mid 8.47e+07 \mid 1.03e+03 \mid$ 8.2e+04 17 OCDD | 1.33e+08 | 1.36e+02 | 9.8e+05 | 1.49e+08 | 1.04e+02 | 1.4e+06 1.37e+07 | 9.56e+02 | 1.4e+04 | 1.76e+07 | 5.84e+02 | 3.0e+04 1.8 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 2.12e+07 | 3.52e+02 | 6.0e+04 | 1.38e+07 | 4.60e+02 | 3.0e+04 19 2.55e+07 | 4.96e+02 | 5.1e+04 | 4.85e+07 | 9.28e+02 | 5.2e+04 13C-1,2,3,4,7,8-HxCDF 20 21 13C-1,2,3,4,6,7,8-HpCDF 1.57e+07 3.83e+03 | 4.1e+03 | 3.54e+07 | 5.94e+03 | 6.0e+03 22 13C-2,3,7,8-TCDD | 1.14e+07 | 1.57e+03 | 7.2e+03 | 1.47e+07 | 7.80e+02 | 1.9e+04 23 13C-1,2,3,7,8-PeCDD 1.58e+07 | 3.56e+02 | 4.4e+04 | 1.02e+07 | 1.28e+02 7.9e+04 13C-1,2,3,6,7,8-HxCDD| 3.46e+07| 2.84e+02| 1.2e+05| 2.75e+07| 8.88e+02| 3.1e+04 25 13C-1,2,3,4,6,7,8-HpCDD| 2.45e+07| 1.56e+03| 1.6e+04| 2.34e+07| 2.64e+02| 8.9e+04 13C-OCDD | 3.42e+07 | 1.16e+02 | 2.9e+05 | 3.79e+07 | 1.08e+02 | 3.5e+05 26 27 13C-1,2,3,4-TCDD | 1.07e+07 | 1.57e+03 | 6.8e+03 | 1.36e+07 | 7.80e+02 | 1.7e+04 13C-1,2,3,7,8,9-HxCDD 3.39e+07 2.84e+02 1.2e+05 2.72e+07 8.88e+02 3.1e+04 28

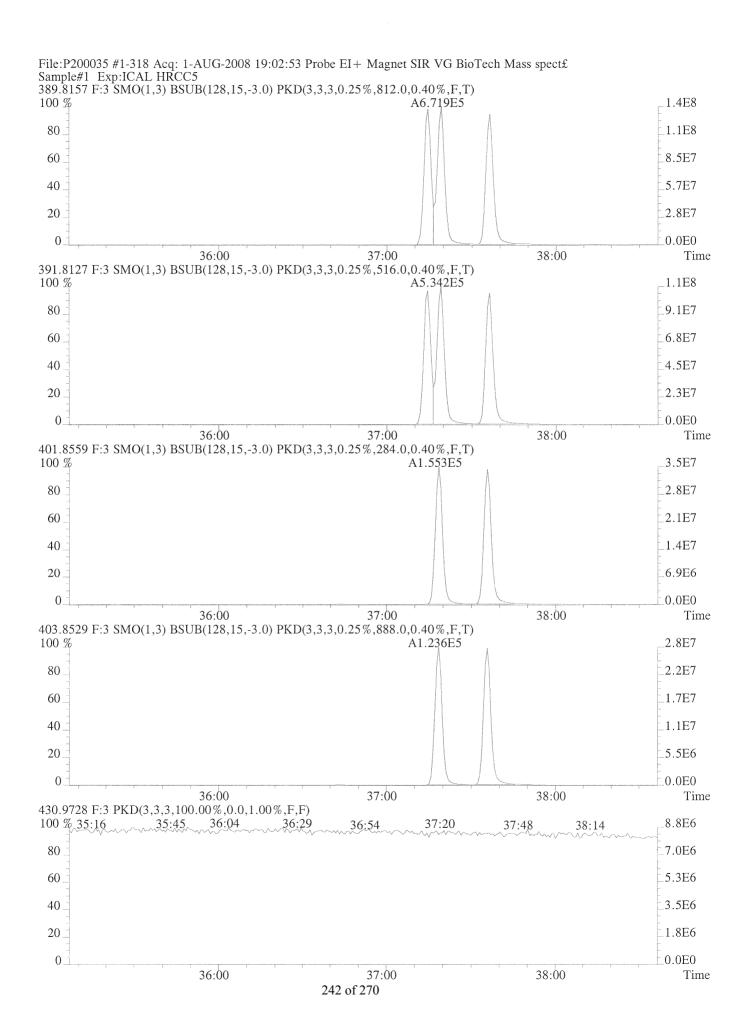

37Cl-2,3,7,8-TCDD | 1.01e+08 | 2.60e+02 | 3.9e+05

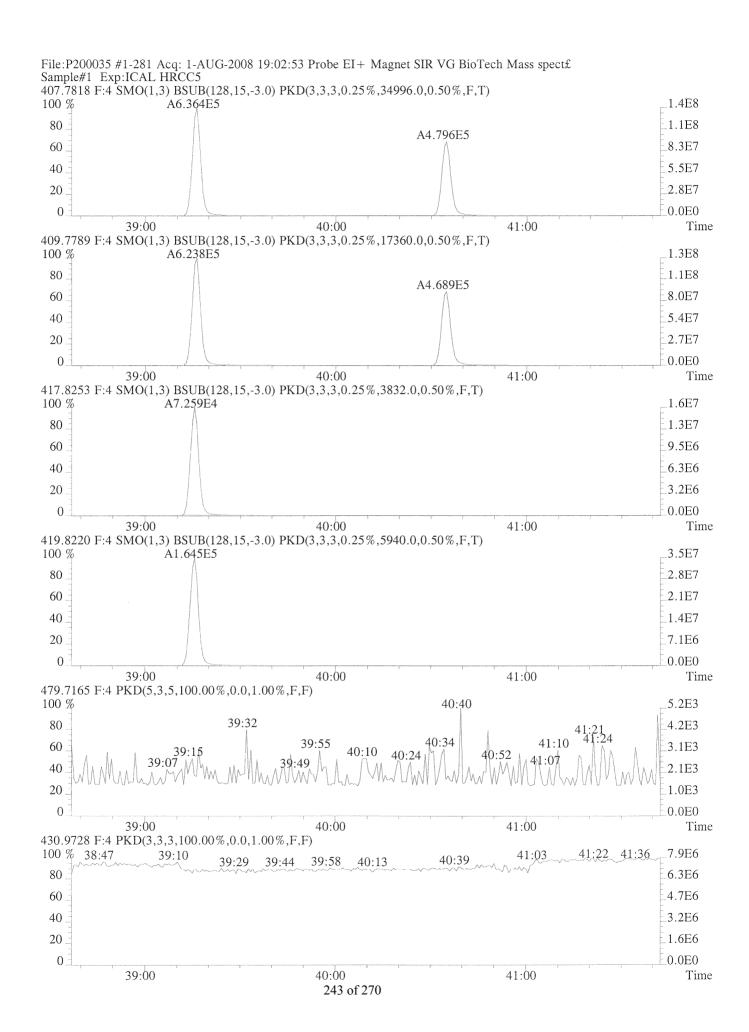

Houston, TX 77084

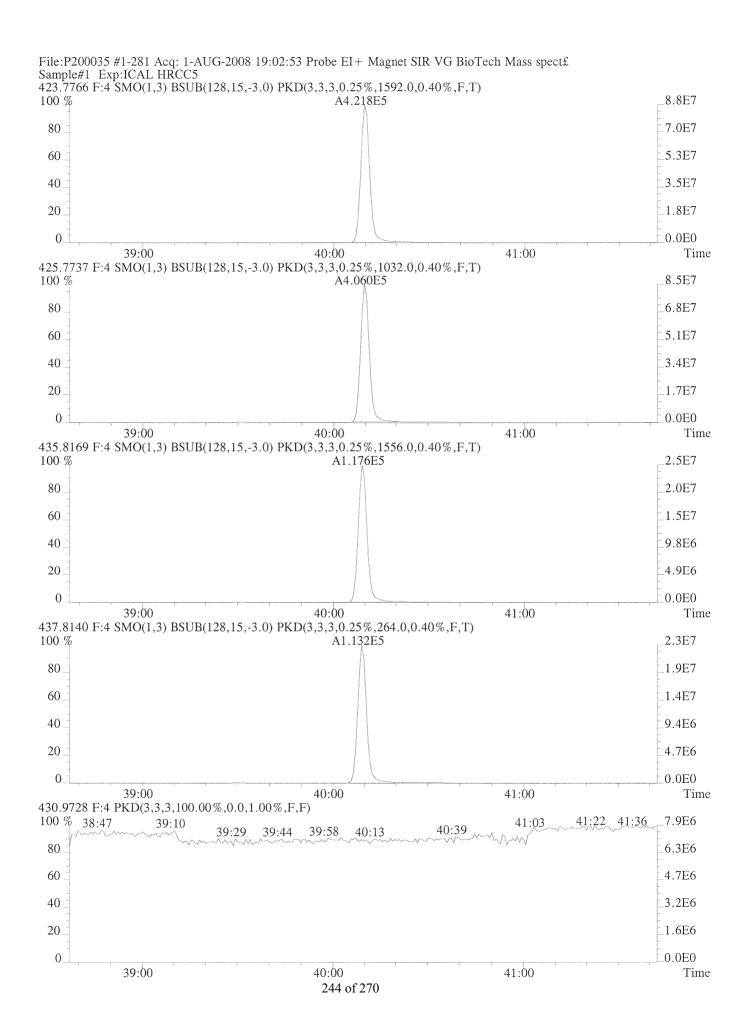

29

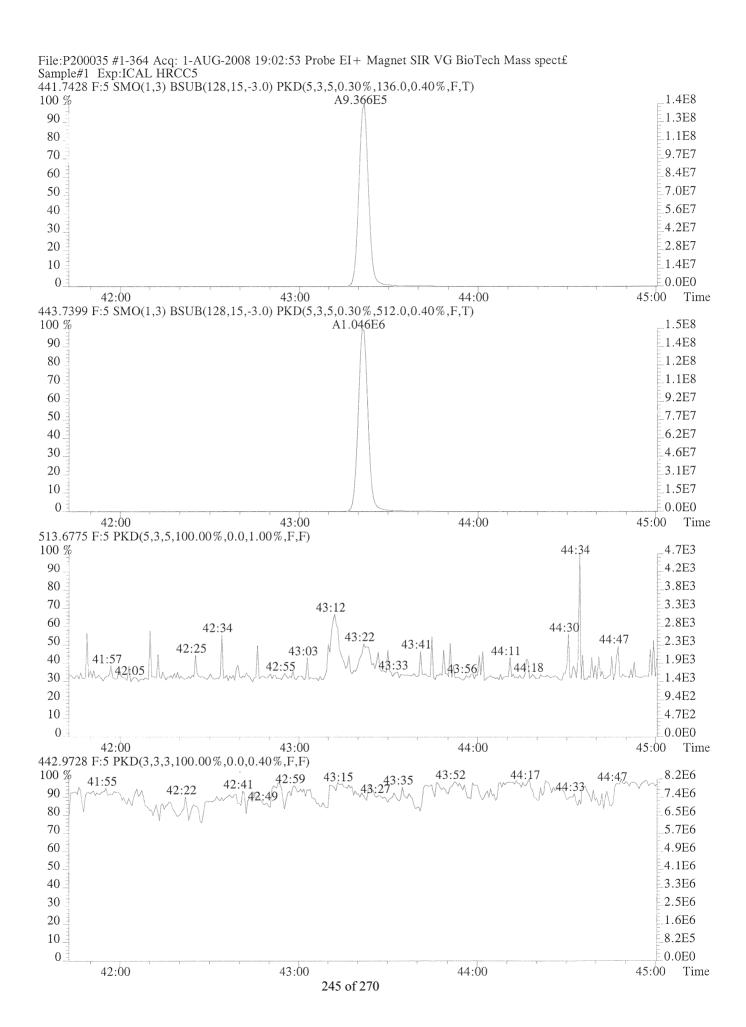

Office: (713) 266-1599. Fax: (713) 266-0130

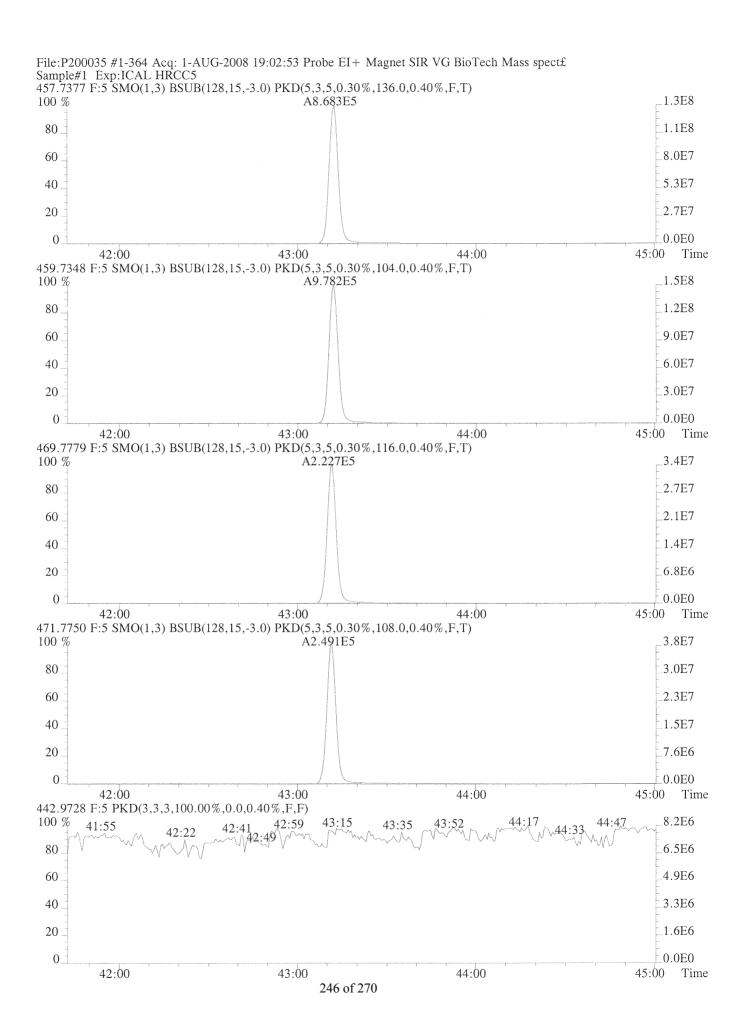

Columbia Analytical Services, Inc. 19408 Park Row, Suite 320














## Initial Calibration QC Checklist

ICAL Name: ()70(217CDFA)		
Method: 1613 / 8290 / Tetra / TCDD Onl	y / CDF Conf/ 8280 /	642 / M22 / TO 0
Retention Window/Column Performance Check	Analyst	Second Check
Windows in and first and last eluters labeled	N.A.	NA
Column Performance shows less than or equal to 25% valley between column specific 2378 isomer and it's closest eluters		
No QC ion deflections affect column specific 2378 isomer or it's closest eluters		
Initial Calibration	Analyst	Second Check
Percent RSD within method criteria	V	
All relative abundance ratios meet method criteria		
No QC ion deflections of greater than 20%	V/	
Mass spectrometer resolution greater than or equal to 10,000 and documented		
2378-TCDD elutes at 25 minutes or later on the DB-5 column	N.A.	N/A
Signal-to-noise of all target analytes and their labeled standards at least 10:1		
Valley between labeled 123478 and 123678 HxCDD peaks less than or equal to 50%	N.A.	N/A
All Manual Intergrations signed and dated and first and final copies of Ical summary included		
Analyst:	Second QC:	MC

247 of 270

#### CAS HOUSTON INC. 5DFC

#### PCDD/PCDF ANALYTICAL SEQUENCE SUMMARY HIGH RESOLUTION

Name: Columbia Analytical Services, Houston Contract

Lab Code: TX01411 CASE No.: Client No: SDG No.:

Init. Calib. Date: 12/17/07

Init. Calib. Times: 16:11

THE ANALYTICAL SEQUENCE OF STANDARDS, SAMPLES, BLANKS, SPIKES AND DUPLICATES IS AS FOLLOWS:

EPA	LAB	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
		=========		
COLUMN PERFORM		U124666	17-DEC-07	16:11:13
ICAL CS1		U124667	17-DEC-07	16:58:32
ICAL CS2		U124668	17-DEC-07	17:25:10
ICAL CS3		U124669	17-DEC-07	18:02:45
ICAL CS4		U124670	17-DEC-07	18:37:40
ICAL CS5		U124671	17-DEC-07	19:12:26

# (.20

Reviewed by:

# HRGC/HRMS RUN LOG

Acq Method: 7207745 GC Method: 7207735

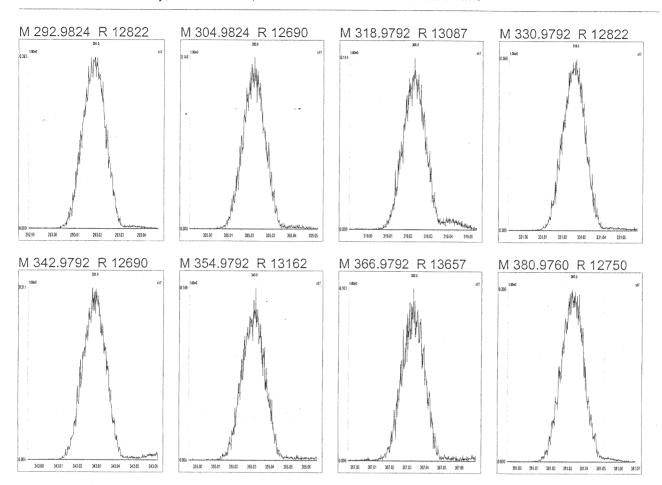
CAS HOUSTON 10655 Richmond Avenue, Suite 130-A Hous

Result File: 4 30/21/3 TC 0F L EDD File:

Houston, TX 77042



Instrument ID: <u>AutoSpec 1</u> An Employee Owned Company

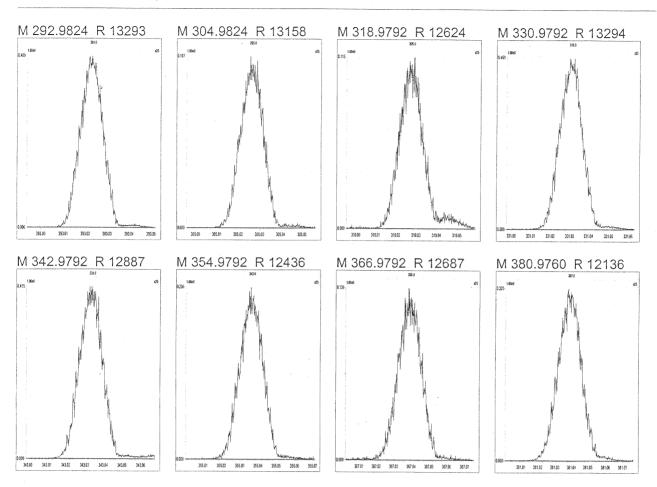

position   position	de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa del la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa del la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa della completa della completa della completa della completa della completa della completa della completa della completa della completa della completa della completa della completa della completa dell													Administrative and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and		
Comments	e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya del la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya del la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de										The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	1613	5.07			
Analyst	74			Page 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 and 19 a	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s						100					
Batch # Analyst	And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t				-	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPA									And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
				14-54-1	1-56-40	D4-13-1B	84-86-80	1-86-40	1-36-M	מאכי	8h-26-80					
CASE	4134663 KOJIII32-018	4124664 Ket11252 -013	21124665 Ko711252-019	16:11 Elle 4666 (3 luma perform 14-59-1	16:55 4124663 ICal C\$1	20c (CSX	2cal (53)	Ical 154	Zeaf (55	UIZUBL Colomo Pertumen.	CCR CO	Isst Plante	C124675 FOF C/199-011	474676 FU701251-CU	C/24677 FUJUIS 2-43	
	61044613	1144664	11024665	11144666	£ 99/5/1/2	13.25-41124668 7Ca	18:02 ella466 Zear	18:3) 4144676 Ical	19:12 41468 Ical	U124/19L	Chyl 33 CCA	463/12/10	C/246 PS	18962/19	Clayers	
3		OUTS and a substantial was an amount of the page of the page.	۴	11:91	16:56	J1.15	10:37	(8.3)	19:12							
2	69/67/1c		**************************************							}					The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	

File:

Experiment: tcdfcas.exp Reference: pfk.ref Function: 1 @ 200 (ppm)

Printed:

Monday, December 17, 2007 16:10:24 Central Standard Time




File:

Experiment: tcdfcas.exp Reference: pfk.ref Function: 1 @ 200 (ppm)

Printed:

Monday, December 17, 2007 19:56:44 Central Standard Time



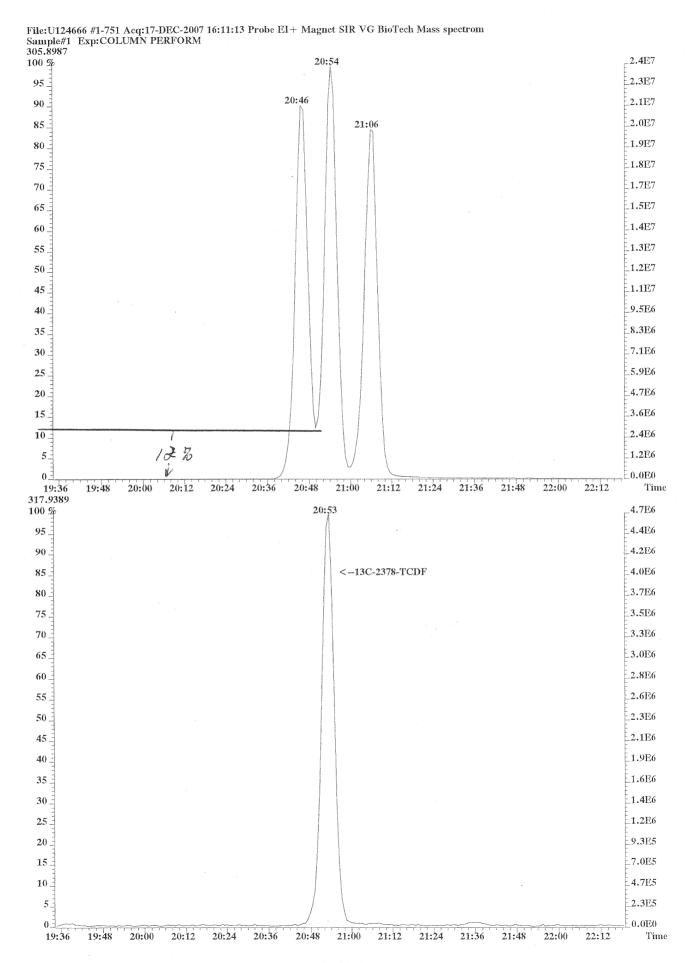
## USEPA - CLP

#### PCDD/PCDF WINDOW DEFINING MIX SUMMARY

EPA SAMPLE NO.

QUALITY COTROL (QC) LIMITS:

12%


2347-TCDF/2378-TCDF:

Percent Valley between the TCDF/TCDF isomers must be less than or equal to 25%.

Analyst Init:

FORM V-HR CDD-2

DLM02.0



#### FORM 3A TCDF INITIAL CALIBRATION RELATIVE RESPONSES

Lab Name: Columbia Analytical Services Episode No.:

Contract No.:

SDG No.:

Initial Calibration Date: 12/17/07

Instrument ID.: AutoSpec-Ultima GC Column ID: DB-225

HRCC1 Data Filename: U124667

HRCC4 Data Filename: U124670

HRCC2 Data Filename: U124668 HRCC5 Data Filename: U124671

HRCC3 Data Filename: U124669

		RELATIVE	RESPONSE	(RR)		MEAN RR	Cv (RSD)
NATIVE ANALYTE	HRCC1	HRCC2	HRCC3	HRCC4	HRCC5		(1)
2,3,7,8-TCDF	1.13	0.97	0.95	1.03	1.04	1.02	6.59
LABELED STANDARD							
13C-2,3,7,8-TCDF	1.25	1.28	1.21	1.27	1.25	1.25	1.99
CLEANUP STANDARD							
37Cl-2,3,7,8-TCDD	0.97	0.93	0.89	0.96	0.97	0.94	3.69

8290F3A

⁽¹⁾ The %RSD for the unlabeled standard must not exceed +/-20%, see Section 7.7.2.1, Method 8290.

## FORM 3B TCDF INITIAL CALIBRATION ION ABUNDANCE RATIOS

Lab Name: Columbia Analytical Services Episode No.:

Contract No.:

SDG No.:

Initial Calibration Date: 12/17/07

Instrument ID.: AutoSpec_Ultima GC Column ID: DB-225

CS1 Data Filename: U124667 CS4 Data Filename: U124670

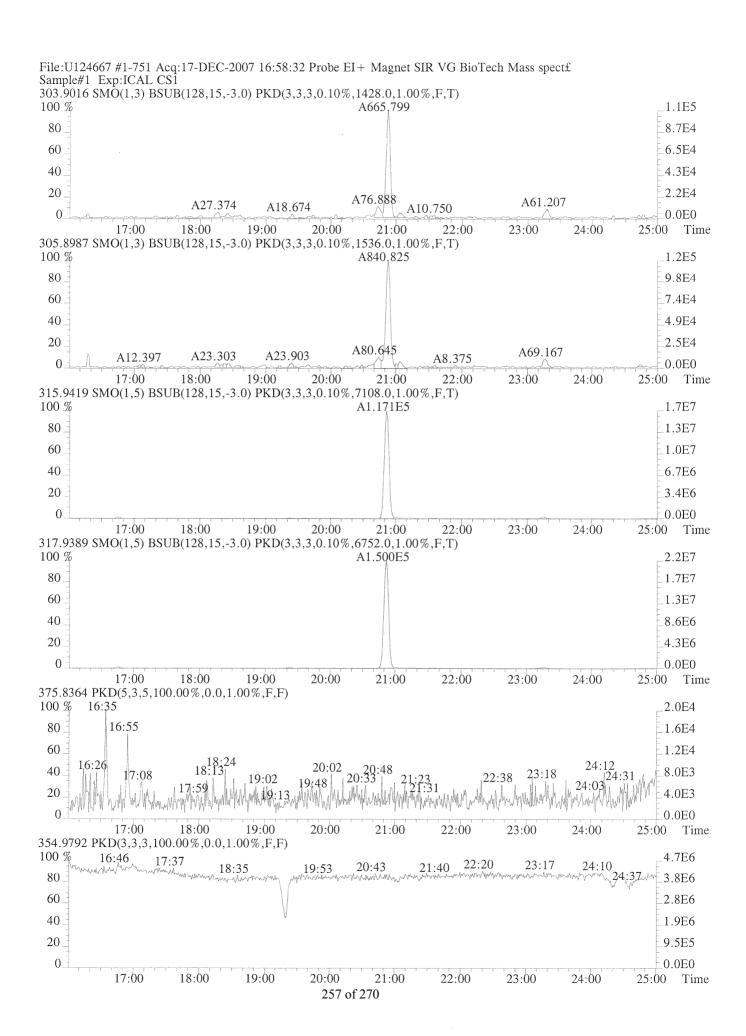
CS2 Data Filename: U124668 CS5 Data Filename: U124671

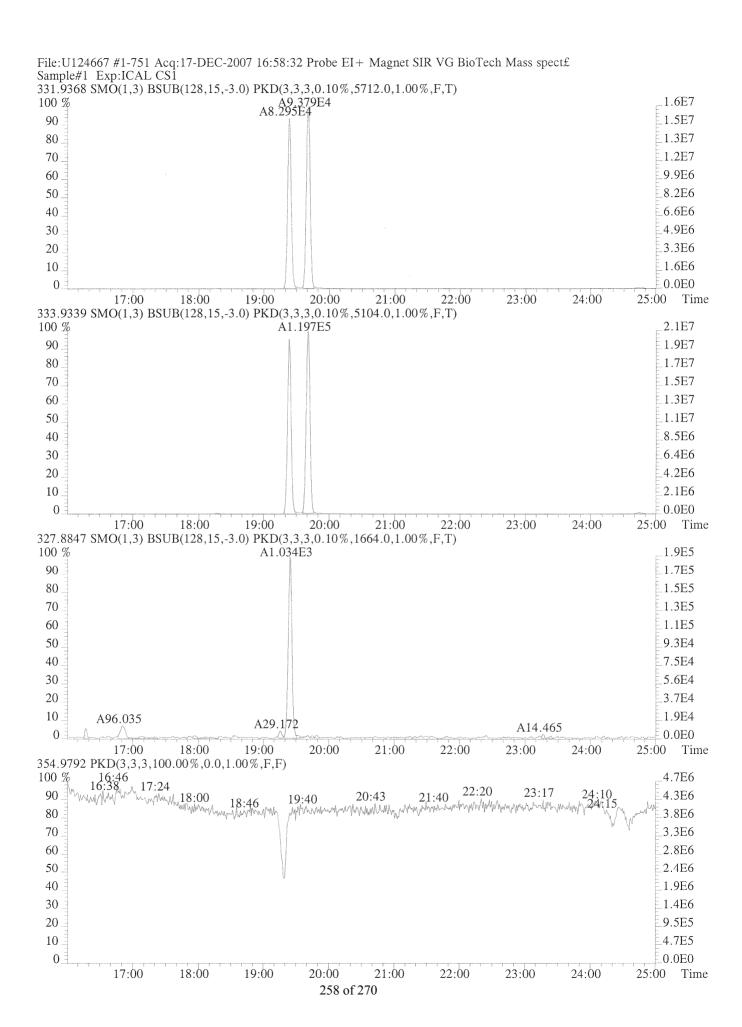
CS3 Data Filename: U124669

#### ION ABUNDANCE RATIOS

	CS1	CS2	CS3	CS4	CS5
NATIVE ANALYTE					
2,3,7,8-TCDF	0.79	0.84	0.77	0.79	0.79
LABELED STANDARD					
13C-2,3,7,8-TCDF	0.78	0.78	0.77	0.79	0.77
INTERNAL STANDARD					
13C-1,2,3,4-TCDD	0.78	0.79	0.79	0.79	0.78

1613F3B


⁽¹⁾ Ion Abundance Ratio Control Limits from Table 9, Method 1613

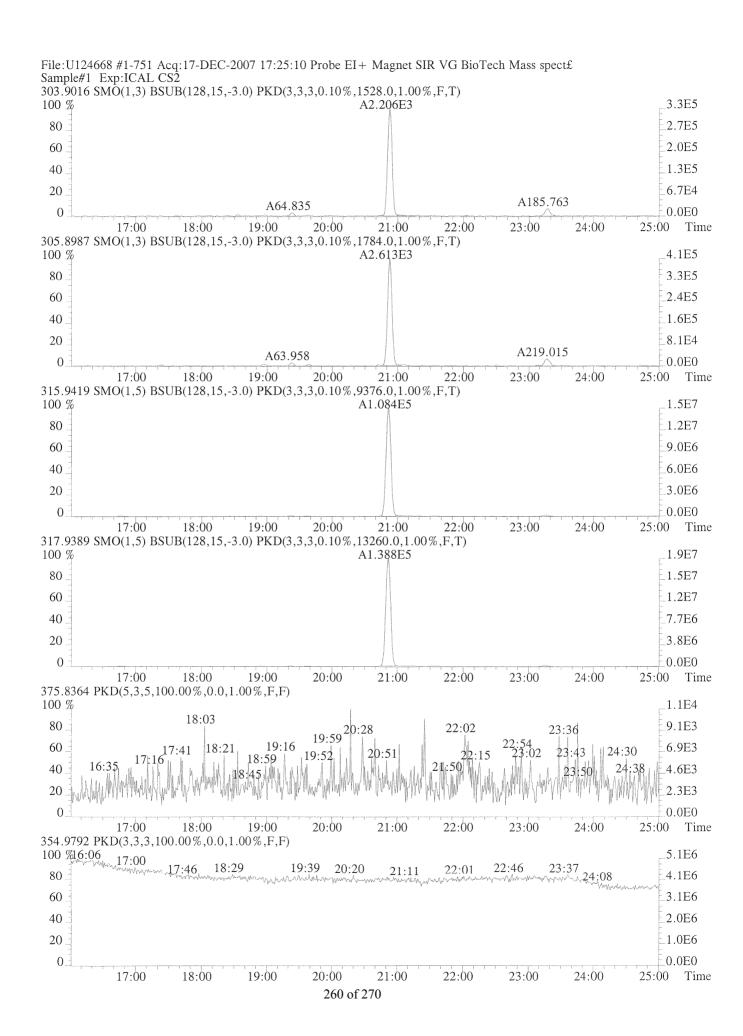

# Columbia Analytical Services, Inc. Page 1 Perponse Summary EPA SAMPLE NO.

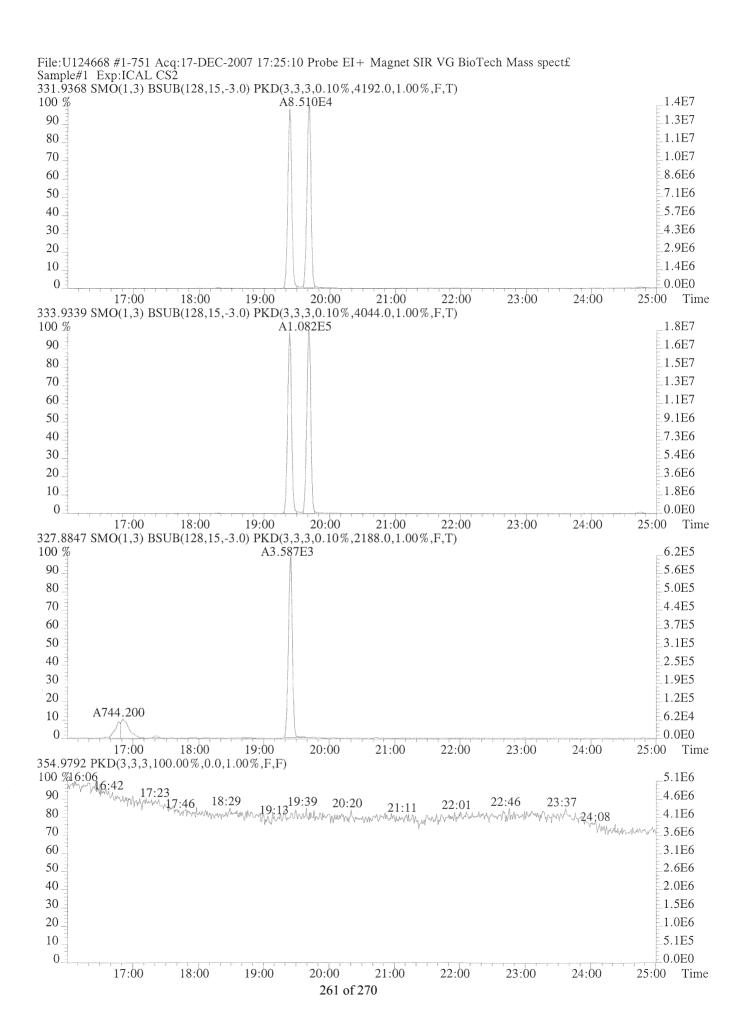
Page 1 of 5 ICAL CS1

Run #1	Filename U124667	Samp: 1	Inj: 1	Acquired:	17-DEC-07	16:58:32
Processed:	16-APR-10 09:47:05	Samp	ple ID: ICAL	CS1		
Тур	Name	RT-1	Resp 1	Resp 2	Ratio Me	eet Mod?
1 Unk 2 IS 3 RS/RT 4 C/Up	2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,4-TCDD 37C1-2,3,7,8-TCDD	20:52   1 19:41   9	5.658e+02 L.171e+05 9.379e+04 L.034e+03	8.408e+02 1.500e+05 1.197e+05	0.78	yes no yes no yes no
	3		ght Ratio Sum se 1  S/N Rat	mary 1 Signal 2 1	Noise 2  S,	/N
3	13C-2,3,7,8-TCDF   1.6 13C-1,2,3,4-TCDD   1.6	8e+07 7.11 4e+07 5.71	8e+03   7.5e+0 1e+03   2.4e+0 1e+03   2.9e+0 1.1e+0	2.15e+07 2.11e+07	1.54e+03   6.75e+03   5.10e+03	8.0e+01 3.2e+03 4.1e+03

Columbia Analytical Services, Inc. 19408 Park Row, Suite 320 Houston, TX 77084 Office(713)266-1599. Fax(713)266-0130





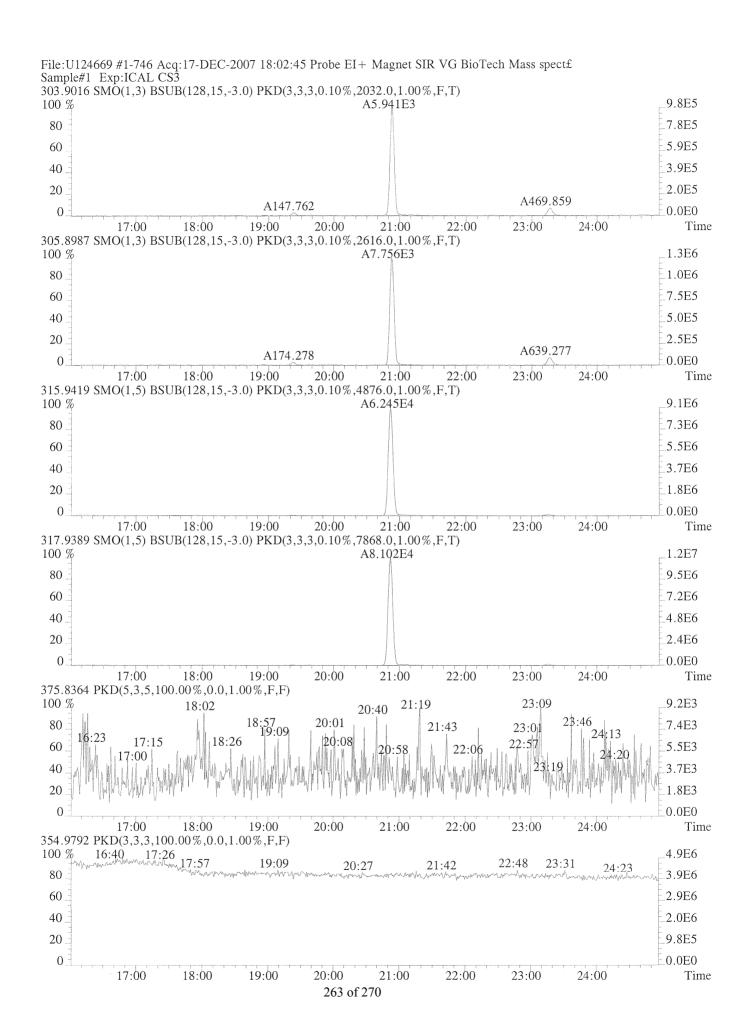


# Columbia Analytical Services, Inc. Page 2 Sample Response Summary EPA SAMPLE NO.

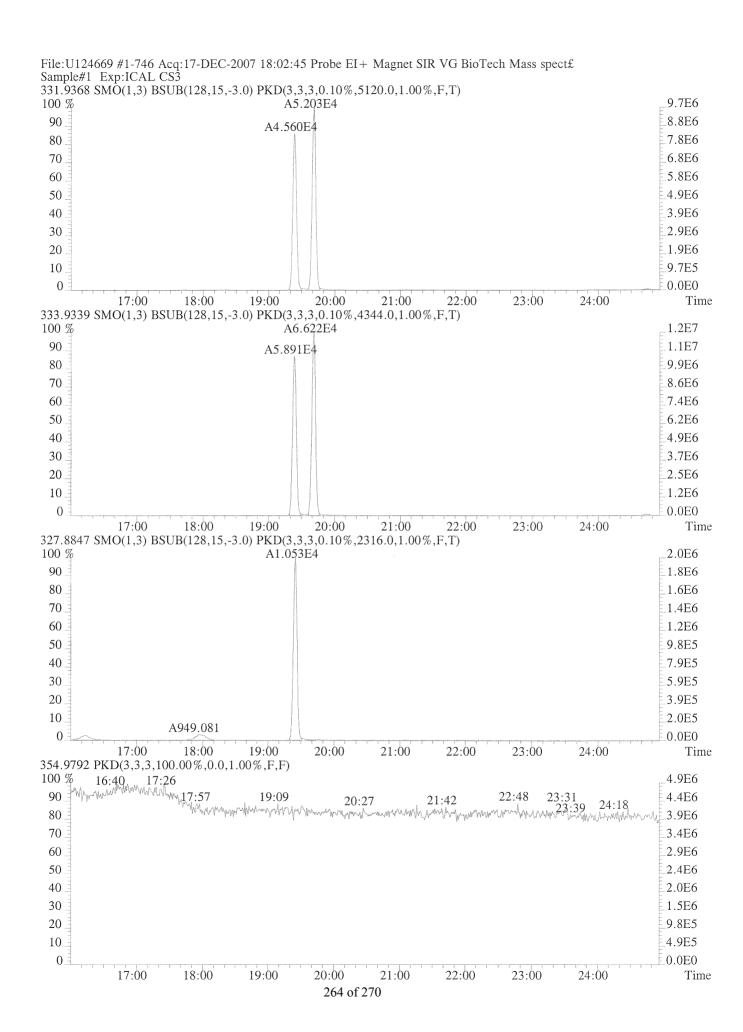
Page 2 of 5 ICAL CS2

Run #2		-	nj: 1	-	17-DEC-0	7 17:25:10
Processe	d: 16-APR-10 09:47:05	Sample II	D: ICAL C	S2		
Тур	Name RT	7-1 Res	sp 1	Resp 2	Ratio	Meet Mod?
1 Unk 2 IS 3 RS/RT 4 C/Up	2,3,7,8-TCDF   20 13C-2,3,7,8-TCDF   20 13C-1,2,3,4-TCDD   19 37C1-2,3,7,8-TCDD   19	0:52   1.084e 9:42   8.510e	e+05 e+04	2.613e+03 1.388e+05 1.082e+05	0.84   0.78   0.79	yes no yes no yes no
	Signal/No	oise Height Ra	atio Summa	ary		
	Signal	. 1  Noise 1	S/N Rat.	1 Signal 2 1	Noise 2	S/N
	Name					
1	2,3,7,8-TCDF 3.33e+	-05   1.53e+03	2.2e+02	4.04e+05	1.78e+03	3 2.3e+02
2	13C-2,3,7,8-TCDF   1.51e+	-07   9.38e+03	1.6e+03	1.92e+07	1.33e+04	1.4e+03
3	13C-1,2,3,4-TCDD   1.42e+	-07   4.19e+03	3.4e+03	1.81e+07	4.04e+03	4.5e+03
4	37Cl-2,3,7,8-TCDD   6.19e+	-05 2.19e+03	2.8e+02			

Columbia Analytical Services, Inc. 19408 Park Row, Suite 320 Houston, TX 77084 Office(713)266-1599. Fax(713)266-0130





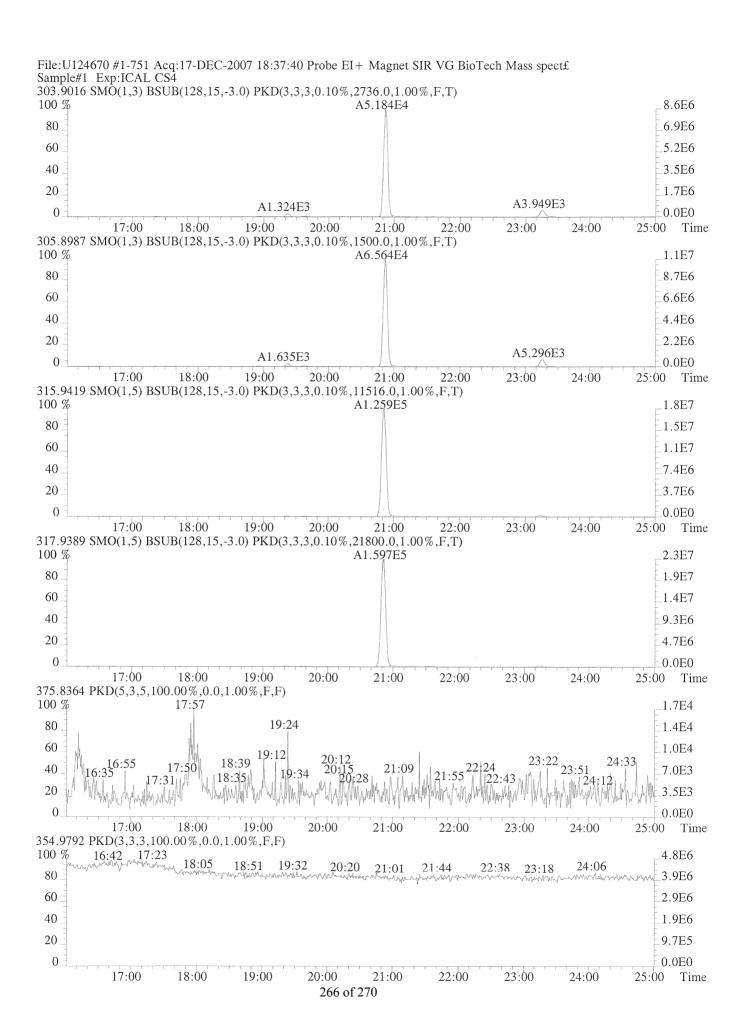


## Columbia Analytical Services, Inc. Page 3 Sample Response Summary EPA SAMPLE NO.

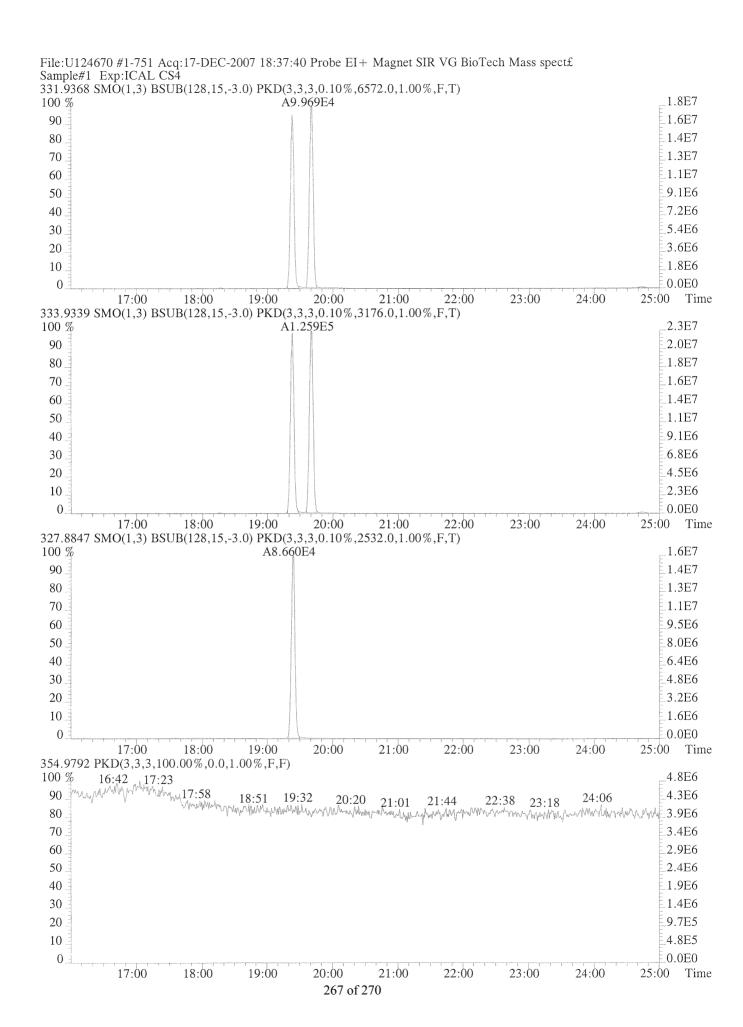
Page 3 of 5 ICAL CS3

Run #3	Filename U124669	Samp: 1	Inj: 1	Acquired:	17-DEC-0	7 18:02:45
Processe	d: 16-APR-10 09:47:05	Sample	e ID: ICAL	CS3		
Тур	Name I	RT-1	Resp 1	Resp 2	Ratio	Meet Mod?
1 Unk 2 IS 3 RS/RT 4 C/Up	2,3,7,8-TCDF 2 13C-2,3,7,8-TCDF 2 13C-1,2,3,4-TCDD 3 37C1-2,3,7,8-TCDD 1	20:52 6.: 19:42 5.:	941e+03   245e+04   203e+04   053e+04	7.756e+03 8.102e+04 6.622e+04	0.77     0.77     0.79	yes no yes no yes no
	Signal/N	Noise Heigh	t Ratio Sum	mary		
	Signa	al 1  Noise	1  S/N Rat	.1 Signal 2 1	Noise 2	S/N
	Name					
1 2 3 4	2,3,7,8-TCDF   9.736 13C-2,3,7,8-TCDF   9.136 13C-1,2,3,4-TCDD   9.736 37Cl-2,3,7,8-TCDD   1.976	e+06 4.88e e+06 5.12e	+03   1.9e+0 +03   1.9e+0	3   1.19e+07   3   1.23e+07	2.62e+03 7.87e+03 4.34e+03	1.5e+03

Columbia Analytical Services, Inc. 19408 Park Row, Suite 320 Houston, TX 77084 Office(713)266-1599. Fax(713)266-0130





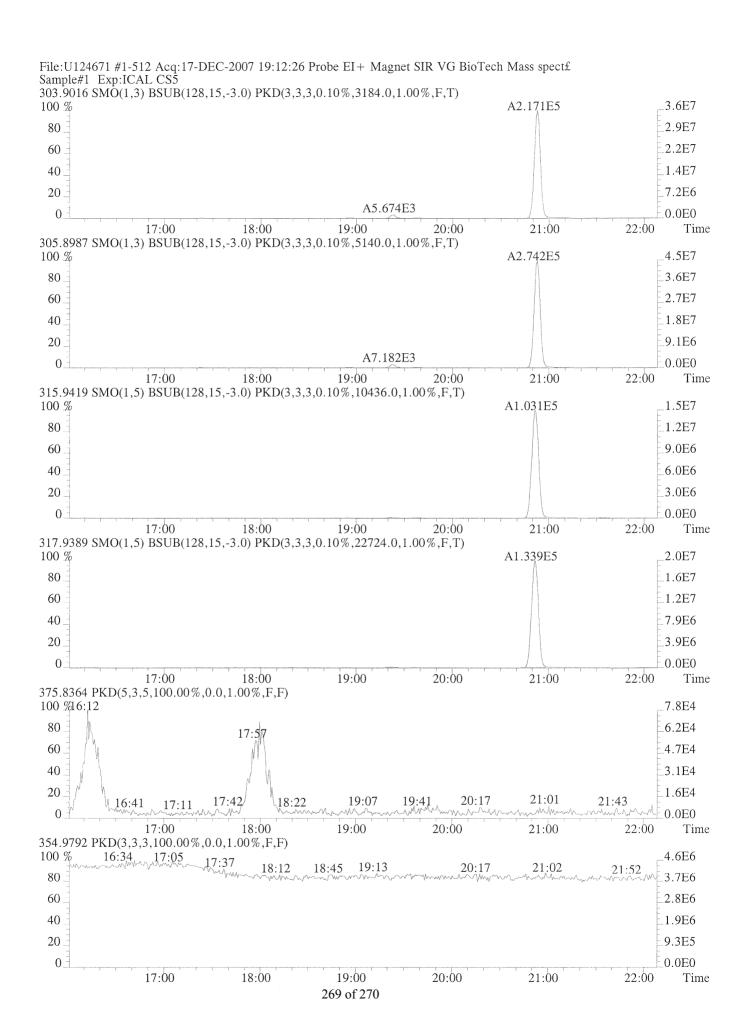


## Columbia Analytical Services, Inc. Sample Response Summary

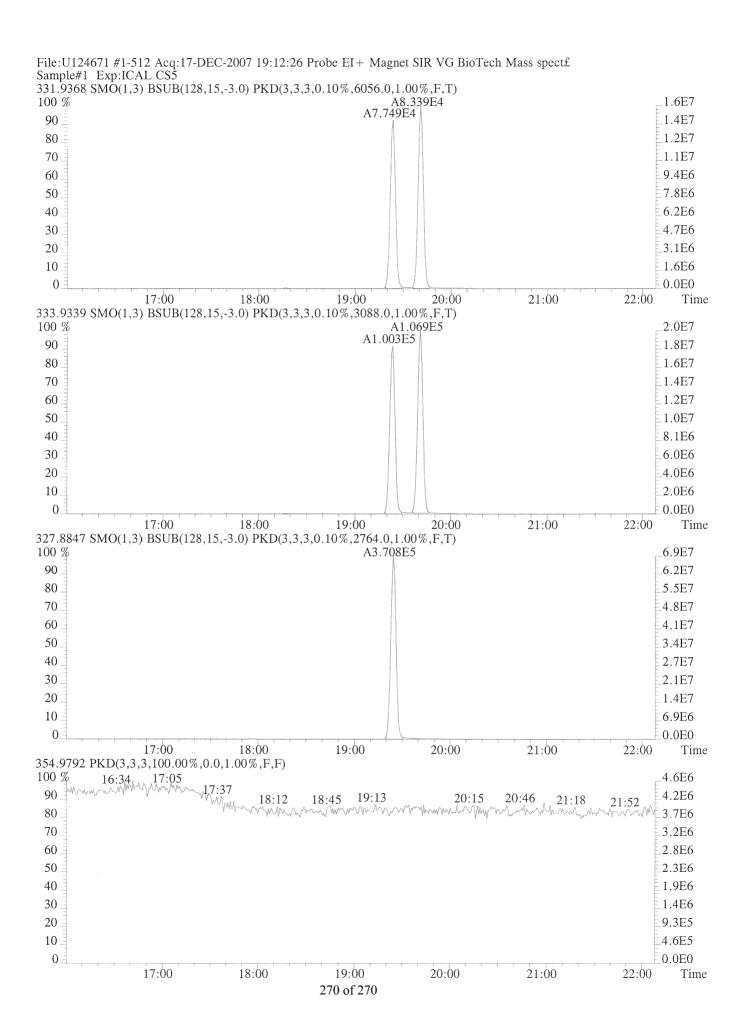
Page 4 of 5 EPA SAMPLE NO. ICAL CS4

Run #4 Processed	Filename U124670 : 16-APR-10 09:47:05	Samp: Sa	1 Inj: 1 ample ID: ICA	-	17-DEC-	-07 18:	37:40
Тур	Name	RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?
1 Unk 2 IS 3 RS/RT 4 C/Up	2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,4-TCDD 37C1-2,3,7,8-TCDD	20:51	5.184e+04 1.259e+05 9.969e+04 8.660e+04	6.564e+04 1.597e+05 1.259e+05	0.79 0.79 0.79	yes yes yes	no no no
	_		eight Ratio St	ummary at.1 Signal 2	Noise 2	s/n	
1 2 3 4	13C-2,3,7,8-TCDF 1.8 13C-1,2,3,4-TCDD 1.8	4e+07 1. 0e+07 6.	.74e+03   3.2e- .15e+04   1.6e- .57e+03   2.7e- .53e+03   6.3e-	+03 2.33e+07 +03 2.26e+07	1.50e+0 2.18e+0 3.18e+0	04 1.1	e+03 e+03 e+03

Columbia Analytical Services, Inc. 19408 Park Row, Suite 320 Houston, TX 77084 Office(713)266-1599. Fax(713)266-0130







# Columbia Analytical Services, Inc. Page 5 Sample Response Summary EPA SAMPLE NO.

Page 5 of 5 ICAL CS5

Run #5 Processed	Filename U124671: 16-APR-10 09:47:05	Samp: San	1 Inj: 1 mple ID: ICAL	Acquired: CS5	17-DEC-07	19:12:26
Тур	Name	RT-1	Resp 1	Resp 2	Ratio M	eet Mod?
1 Unk 2 IS 3 RS/RT 4 C/Up	2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,4-TCDD 37C1-2,3,7,8-TCDD	20:51   19:41   19:24	2.171e+05   1.031e+05   8.339e+04   3.708e+05	2.742e+05 1.339e+05 1.069e+05	0.77	yes  no yes  no yes  no
			_	t.1 Signal 2 I	Noise 2  S	/N
1. 2 3 4	13C-2,3,7,8-TCDF   1.5 13C-1,2,3,4-TCDD   1.5	0e+07 1.0 5e+07 6.0	18e+03   1.1e+ 04e+04   1.4e+ 06e+03   2.6e+ 76e+03   2.5e+	03   1.96e+07   03   2.01e+07	5.14e+03   2.27e+04   3.09e+03	8.8e+03 8.6e+02 6.5e+03

Columbia Analytical Services, Inc. 19408 Park Row, Suite 320 Houston, TX 77084 Office(713)266-1599. Fax(713)266-0130





## **Appendix D**

**Analytical Chemistry Results for 'Information Only' Sediment Samples** 

Table D-1. San Rafael Channel 2010 Sediment Chemistries – 'Information Only' Core Section Composites.

Analyte	Units	Bay Background (RWQCB 1998) ¹	HWRP Acceptance Criteria ²	SRC-2010-1-B	SRC-2010-2-B	SRC-2010-3-B	SRC-2010-4-B	SRC-2010-5-B	SRC-2010-6-B	SRC-2010-7-B	SRC-2010-8-B
Grain Size											
Gravel (>2.00 mm)	%, dry wt			15.80	15.40	33.50	35.30	15.60	14.10	4.64	11.8
Sand (0.0625 - 2.00 mm)	%, dry wt			51.8	12.3	23.7	21.6	21.4	21.5	18.2	32.8
Silt (0.0039 - 0.0625 mm)	%, dry wt	<100% fines	NA	16.20	25.10	19.70	18.60	26.40	23.50	40.60	28.6
Clay (< 0.0039 mm)	%, dry wt			17.80	40.00	22.30	23.30	36.20	38.10	39.00	17.4
Percent fines (Silt+Clay)	%, dry wt			34.0	65.1	42.0	41.9	62.6	61.6	79.6	46.0
% Solids	%	_	ı	50.4	50.9	49.2	51.4	49.1	45.6	53	51.0
TOC	%	-	-	1.33	1.36	1.27	1.299	1.497	1.56	1.64	4.33
Metals											
Arsenic	mg/kg, dry wt	15.3	15.3	11.1	12	11.3	11	12.3	12.6	12.40	11.4
Cadmium	mg/kg, dry wt	0.33	0.7	0.27	0.27	0.253	0.212	0.272	0.31	0.438	1.19
Chromium	mg/kg, dry wt	112	112	78.1	80	76.2	75.4	84.9	86.2	202	93.6
Copper	mg/kg, dry wt	68.1	68.1	54.3	57.5	53.4	54.7	62.4	72.5	65.3	117
Lead	mg/kg, dry wt	43.2	43.2	26.3	29.1	27.5	29.1	42.1	55.6	71.5	427
Mercury	mg/kg, dry wt	0.43	0.43	0.362	0.393	0.359	0.366	0.424	0.525	0.652	0.845
Nickel	mg/kg, dry wt	112	112	90.2	89.8	86.6	84	90.8	92.8	214	103
Selenium	mg/kg, dry wt	0.64	0.64	0.23	0.38	0.38	0.31	0.23	0.20	0.23	0.34
Silver	mg/kg, dry wt	0.58	0.58	0.308	0.329	0.332	0.335	0.423	0.518	0.358	0.71
Zinc	mg/kg, dry wt	158	158	126	129	140	134	154	169	155	306
Butyltins											
Tetra-n-butyltin	μg/kg, dry wt	-	-	< 0.86	< 0.85	< 0.89	< 0.85	< 0.88	< 0.95	< 0.82	5.9
Tri-n-butyltin Cation	μg/kg, dry wt	-	1	< 0.84	1.3 J	1.3 J	1.6 J	8.4	3.9	4.0	140
Di-n-butyltin Cation	μg/kg, dry wt	-	1	1.9 J	1.8 J	2.9	3.7	24	21	18	280
n-Butyltin Cation	μg/kg, dry wt	-	-	2.5	2.2	2.4	3.5	13	13	8.1	86
$\sum$ detected Butylins	μg/kg, dry wt	-	-	4.4	5.3	6.6	8.8	45.4	37.9	30.1	512
<i>PCBs</i>											
Aroclor 1016	μg/kg, dry wt	-	-	<2.1	<2.1	<2.2	<2.1	<2.2	<2.4	<2.1	<2.1
Aroclor 1221	μg/kg, dry wt	-	-	<2.1	<2.1	<2.2	<2.1	<2.2	<2.4	<2.1	<2.1
Aroclor 1232	μg/kg, dry wt	-	-	<2.1	<2.1	<2.2	<2.1	<2.2	<2.4	<2.1	<2.1
Aroclor 1242	μg/kg, dry wt	-	-	<2.1	<2.1	<7.6	<2.1	<2.2	24	49	<2.1
Aroclor 1248	μg/kg, dry wt	-	-	<2.1	<2.1	<2.2	<2.1	<2.2	<2.4	<2.1	160
Aroclor 1254	μg/kg, dry wt	-	-	<5.2	<8.9	<14	<12	<19	37	51	200
Aroclor 1260	μg/kg, dry wt	-	-	<6.7	<11	18	15	20	29	46	210
$\sum$ detected PCBs	μg/kg, dry wt	22.7	22.7	<6.7	<11	18	15	20	90	146	570

Pacific EcoRisk

Table D-1. San Rafael Channel 2010 Sediment Chemistries - 'Information Only' Core Section Composites. (continued)

Analyte	Units	Bay Background (RWQCB 1998) ¹	HWRP Acceptance Criteria ²	SRC-2010-1-B	SRC-2010-2-B	SRC-2010-3-B	SRC-2010-4-B	SRC-2010-5-B	SRC-2010-6-B	SRC-2010-7-B	SRC-2010-8-B
Organochlorine Pesticides											
Aldrin	μg/kg, dry wt	1.1	-	< 0.16	< 0.16	< 0.17	< 0.16	< 0.17	< 0.18	< 0.16	1.5
alpha-BHC	μg/kg, dry wt	-	-	< 0.11	< 0.11	< 0.12	< 0.11	< 0.12	< 0.13	< 0.11	< 0.11
beta-BHC	μg/kg, dry wt	-	-	< 0.18	< 0.18	< 0.19	< 0.18	< 0.19	< 0.20	< 0.18	< 0.18
delta-BHC	μg/kg, dry wt	-	-	< 0.074	< 0.074	< 0.076	< 0.079	< 0.076	< 0.082	< 0.074	< 0.98
gamma-BHC (lindane)	μg/kg, dry wt	-	-	< 0.080	< 0.080	< 0.082	< 0.080	< 0.082	0.12 J	0.13 J	0.27 J
alpha-Chlordane	μg/kg, dry wt	-	-	< 0.10	< 0.99	<1.1	< 0.10	<1.1	< 0.11	1.3	20
gamma-Chlordane	μg/kg, dry wt	-	-	0.17 J	0.37 J	0.13 J	0.33 J	0.32 J	0.82 J	3.4	39
Chlordane	μg/kg, dry wt	1.1	1.1	<3.6	<2.0	<3.1	<3.7	<5.8	7.6 J	24	280
4,4'-DDD	μg/kg, dry wt	-	-	0.87 J	1.3	1.4	0.92 J	1.3	2.4	16	100
4,4'-DDE	μg/kg, dry wt	-	-	1.3	2	2.1	1.6	2	3.4	7.1	24
4,4'-DDT	μg/kg, dry wt	-	-	0.51 J	< 0.59	< 0.53	< 0.55	<1.1	<1.7	1.8	15
2,4'-DDD	μg/kg, dry wt	-	-	< 0.33	< 0.37	< 0.26	0.72 J	< 0.46	2.4	2	12
2,4'-DDE	μg/kg, dry wt	-	-	< 0.51	< 0.99	<1.2	< 0.61	<1.1	<1.1	< 0.95	<5.1
2,4'-DDT	μg/kg, dry wt	-	_	0.66 J	0.52 J	0.42 J	0.43 J	0.75 J	2.6	<2.1	8.3
$\sum$ detected DDTs	μg/kg, dry wt	7.0	7.0	1.3	3.82	3.92	3.67	4.05	10.8	26.9	159
Dieldrin	μg/kg, dry wt	0.44	0.72	< 0.14	< 0.14	< 0.15	< 0.14	< 0.15	<1.4	< 0.95	1.4
Endosulfan I	μg/kg, dry wt	-	-	< 0.063	< 0.063	< 0.064	< 0.063	< 0.071	0.15 J	< 0.95	<3.5
Endosulfan II	μg/kg, dry wt	-	-	< 0.14	< 0.14	< 0.15	< 0.14	< 0.15	< 0.16	< 0.17	< 0.98
Endosulfan sulfate	μg/kg, dry wt	-	-	< 0.11	< 0.11	< 0.12	< 0.11	< 0.12	< 0.13	< 0.11	1.2
Endrin	μg/kg, dry wt	0.78	-	< 0.094	< 0.094	< 0.096	< 0.094	< 0.096	< 0.11	< 0.29	<2.0
Endrin aldehyde	μg/kg, dry wt	-	6.4	< 0.12	< 0.12	< 0.13	< 0.12	< 0.13	< 0.14	< 0.12	< 0.98
Heptachlor	μg/kg, dry wt	-	0.3	< 0.12	< 0.12	< 0.13	< 0.12	< 0.13	< 0.14	< 0.12	< 0.16
Heptachlor epoxide	μg/kg, dry wt	-	0.3	< 0.084	< 0.084	< 0.086	< 0.084	0.31 J	< 0.55	< 0.67	< 0.98
Toxaphene	μg/kg, dry wt	-	-	<11	<11	<13	<15	<26	<28	<32	<150
PAHs											
Naphthalene	μg/kg, dry wt	55.8	-	13	12	14	11	15	16	13	31
Acenaphthylene	μg/kg, dry wt	31.7	-	8.7	6.4	5.7	4.8 J	6.4	6.0	6.9	16
Acenaphthene	μg/kg, dry wt	26.6	-	6.7	3.7 J	3.9 J	4.1 J	4.4 J	4.0 J	3.6 J	37
Fluorene	μg/kg, dry wt	25.3	-	8.2	6.4	6.0	5.1	6.6	5.5	2.9 J	54
Phenanthrene	μg/kg, dry wt	237	-	83	50	46	38	70	42	30	360
Anthracene	μg/kg, dry wt	88	-	27	16	13	11	19	12	8.7	81
Fluoranthene	μg/kg, dry wt	514	-	150	120	130	100	180	140	170	850
Pyrene	μg/kg, dry wt	665	-	240	210	220	180	280	300	510	1300

D - 2

Table D-1. San Rafael Channel 2010 Sediment Chemistries - 'Information Only' Core Section Composites. (continued)

Analyte	Units	Bay Background (RWQCB 1998) ¹	HWRP Acceptance Criteria ²	SRC-2010-1-B	SRC-2010-2-B	SRC-2010-3-B	SRC-2010-4-B	SRC-2010-5-B	SRC-2010-6-B	SRC-2010-7-B	SRC-2010-8-B
PAHs											
Benzo(a)anthracene	μg/kg, dry wt	244	-	83	64	68	55	91	69	65	370
Chrysene	μg/kg, dry wt	289	-	94	73	79	63	120	56	56	330
Benzo(b)fluoranthene	μg/kg, dry wt	371	-	110	110	130	110	180	170	210	590
Benzo(k)fluoranthene	μg/kg, dry wt	258	-	34	33	38	31	55	45	53	190
Benzo(a)pyrene	μg/kg, dry wt	412	-	120	120	140	110	170	160	230	510
Indeno(1,2,3-cd)pyrene	μg/kg, dry wt	382	-	100	110	120	100	160	170	260	550
Dibenzo(a,h)anthracene	μg/kg, dry wt	32.7	-	14	12	12	12	22	16	17	71
Benzo(g,h,i)perylene	μg/kg, dry wt	310	-	110	130	150	120	190	210	340	710
$\sum$ detected PAHs	μg/kg, dry wt	3390	3390	1202	1077	1156	955	1569	1422	2038	6050

Notes:

Bold Font and Bold Outline = Value > Bay Background

**Bold Font and Grey Shading = Value > HWRP Acceptance Criteria and Bay Background** 

Pacific EcoRisk

¹ San Francisco Regional Water Quality Control Board (1998) Staff Report: Ambient Concentrations of Toxic Chemicals in San Francisco Bay Sediments. May 1998.

²HWRP Biological Opinion (USFWS 2005)

J - value detected below the reporting limit and is an estimate

### **Appendix E**

Sediment Porewater Water Quality Analyses and Overlying Water Ammonia Analyses Performed in Support of Bioassay Testing

Table E-1. Sediment porewater initial water quality characteristics for Ampelisca abdita toxicity tests.

Sample ID	рН	Salinity (ppt)	Total Ammonia (mg/L N)	Total Sulfide (mg/L)
Lab Control	7.22	29.0	22.0	0.099
SF-10	7.44	28.4	4.61	0.167
SF-11	7.53	29.0	3.30	0.265
SRC-2010-1	7.46	27.7	4.58	0.108
SRC-2010-2	7.36	28.3	3.49	0.039
SRC-2010-3	7.32	27.1	8.08	0.096
SRC-2010-4	7.30	27.3	3.65	0.067
SRC-2010-5	7.60	27.4	9.97	0.052
SRC-2010-6	7.38	27.5	9.98	0.073
SRC-2010-7	7.48	27.3	11.2	0.141
SRC-2010-8	7.49	27.1	2.08	0.365

Table E-2. Sediment porewater final water quality characteristics for Ampelisca abdita toxicity tests.

Sample ID	рН	Salinity (ppt)	Total Ammonia (mg/L N)	Total Sulfide (mg/L)
Lab Control	7.15	32.3	7.94	0.018
SF-10	7.57	35.7	<1.0	0.005
SF-11	7.59	37.4	<1.0	0.039
SRC-2010-1	7.20	33.9	<1.0	0.016
SRC-2010-2	7.16	30.6	<1.0	0.004
SRC-2010-3	7.22	30.4	1.52	0.010
SRC-2010-4	7.24	30.9	2.80	0.006
SRC-2010-5	7.17	31.7	1.75	0.016
SRC-2010-6	7.17	32.1	<1.0	0.019
SRC-2010-7	7.22	31.0	1.68	0.026
SRC-2010-8	6.80	33.1	3.47	0.100

Pacific EcoRisk E - 1

Table E-3. Sediment overlying water total ammonia levels for Ampelisca abdita tests.

Sample ID	Total Ammonia (mg/L N)				
Sample 115	Test Initiation	Test Termination			
Lab Control	3.07	2.88			
SF-10	<1.0	<1.0			
SF-11	<1.0	<1.0			
SRC-2010-1	1.20	<1.0			
SRC-2010-2	<1.0	<1.0			
SRC-2010-3	<1.0	<1.0			
SRC-2010-4	<1.0	<1.0			
SRC-2010-5	1.74	<1.0			
SRC-2010-6	<1.0	<1.0			
SRC-2010-7	1.60	<1.0			
SRC-2010-8	<1.0	<1.0			

Table E-4. Sediment porewater initial water quality characteristics for Neanthes arenacoedentata tests.

Sample ID	рН	Salinity (ppt)	Total Ammonia (mg/L N)	Total Sulfide (mg/L)
Lab Control	7.21	30.4	10.0	0.225
SF-10	7.03	27.9	2.30	0.033
SF-11	7.48	28.5	<1.0	0.318
SRC-2010-1	7.28	29.2	11.6	0.036
SRC-2010-2	7.22	28.6	12.2	0.015
SRC-2010-3	7.23	28.7	8.99	0.020
SRC-2010-4	7.20	29.3	11.0	0.028
SRC-2010-5	7.23	29.5	7.97	0.040
SRC-2010-6	7.23	29.6	10.6	0.111
SRC-2010-7	7.39	29.9	5.78	0.018
SRC-2010-8	7.21	28.1	12.1	0.634

Pacific EcoRisk E - 2

Table E-5. Sediment porewater final water quality characteristics for  $Neanthes\ arenacoedentata\ tests.$ 

Sample ID	рН	Salinity (ppt)	Total Ammonia (mg/L N)	Total Sulfide (mg/L)
Lab Control	7.14	31.9	6.69	0.108
SF-10	6.99	30.1	1.47	0.034
SF-11	7.67	32.2	<1.0	0.203
SRC-2010-1	7.39	32.4	2.09	0.039
SRC-2010-2	7.11	31.9	1.88	0.038
SRC-2010-3	7.21	29.1	2.87	0.036
SRC-2010-4	7.17	31.3	2.64	0.046
SRC-2010-5	7.09	31.8	3.16	0.037
SRC-2010-6	7.19	31.4	7.88	0.036
SRC-2010-7	7.03	31.9	2.05	0.049
SRC-2010-8	6.89	29.4	4.16	0.135

Table E-6. Sediment overlying water total ammonia levels for Neanthes arenacoedentata tests.

Sample ID	Total Ammonia (mg/L N)				
Sample 1D	Test Initiation	Test Termination			
Lab Control	3.46	1.38			
SF-10	1.03	<1.0			
SF-11	<1.0	<1.0			
SRC-2010-1	3.49	1.52			
SRC-2010-2	4.08	<1.0			
SRC-2010-3	1.11	<1.0			
SRC-2010-4	2.53	<1.0			
SRC-2010-5	2.49	<1.0			
SRC-2010-6	2.01	1.67			
SRC-2010-7	2.03	<1.0			
SRC-2010-8	1.66	1.78			

Pacific EcoRisk E - 3

### Appendix F

Test Data and Summary of Statistics for the Evaluation of the Toxicity of the San Rafael Channel Sediments to the Amphipod, *Ampelisca abdita* 

Report Date: Test Code:

11 Aug-10 16:34 (p 1 of 2) 20-7887-4336/39613-22

10 Day Marine	10 Day Marine/Estuarine Sediment Test						
Batch ID:	13-9545-1556	Test Type:	Survival	Analyst:	Jeremy Laurin		
Start Date:	01 Aug-10 10:00	Protocol:	ASTM E1218-97a (1997)	Diluent:	Not Applicable		
Ending Date:	11 Aug-10 09:15	Species:	Ampelisca abdita	Brine:	Not Applicable		
Duration:	9d 23h	Source:	Aquatic Research Organisms, NH	Age:	NA		

Sample Code	Sample ID	Sample Date	Receive Date	Sample Age	Client Name	Project
Lab Control	12-9044-1032	01 Aug-10 10:00	01 Aug-10 10:00	N/A (19.7 °C)	ACOE	16087
SF-10	08-4984-0145	15 Jun-10 10:05	15 Jun-10 15:00	47d (0 °C)		
SF-11	14-4973-6714	15 Jun-10 09:30	15 Jun-10 15:00	47d 0h (0 °C)		
SRC-2010-01	17-0782-1094	08 Jun-10 09:20	08 Jun-10 19:00	54d 1h (2.4 °C	;	
SRC-2010-02	21-4363-5601	09 Jun-10 08:00	09 Jun-10 19:00	53d 2h (1.6 °C	;	
SRC-2010-03	15-3808-8719	09 Jun-10 11:05	09 Jun-10 19:00	52d 23h (1.6°		
SRC-2010-04	03-3478-6159	11 Jun-10 08:40	11 Jun-10 17:00	51d 1h (0.2 °C	;	
SRC-2010-05	02-1820-9844	08 Jun-10 14:45	08 Jun-10 19:00	53d 19h (2.4°		
SRC-2010-06	15-6585-2712	09 Jun-10 15:30	09 Jun-10 19:00	52d 18h (3.7°		
SRC-2010-07	08-0994-4638	10 Jun-10 09:00	10 Jun-10 17:00	52d 1h (0.6 °C	;	
SRC-2010-08	08-9351-2460	10 Jun-10 11:55	10 Jun-10 17:00	51d 22h (1.4°		

Sample Code	Material Type	Sample Source	Station Location	Latitude	Longitude
Lab Control	Control Sediment	San Rafael Channel	Lab Control		
SF-10	Sediment	San Rafael Channel	San Pablo		
SF-11	Sediment	San Rafael Channel	Alcatraz		
SRC-2010-01	Sediment	San Rafael Channel	SRC-2010-01		
SRC-2010-02	Sediment	San Rafael Channel	SRC-2010-02		
SRC-2010-03	Sediment	San Rafael Channel	SRC-2010-03		
SRC-2010-04	Sediment	San Rafael Channel	SRC-2010-04		
SRC-2010-05	Sediment	San Rafael Channel	SRC-2010-05		
SRC-2010-06	Sediment	San Rafael Channel	SRC-2010-06		
SRC-2010-07	Sediment	San Rafael Channel	SRC-2010-07		
SRC-2010-08	Sediment	San Rafael Channel	SRC-2010-08		

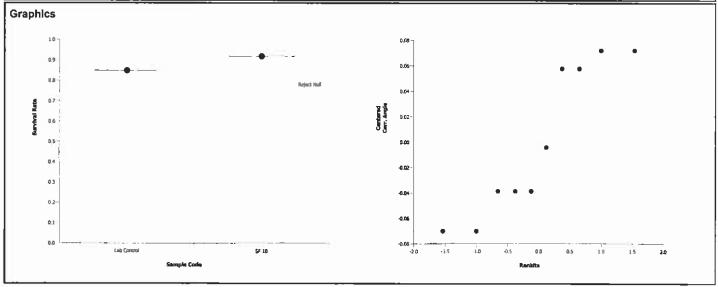
**Batch Note:** Comparisons Made With The Reference Site SF-10

Survival Rate Summary			_							
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control	5	0.85	0.831	0.869	0.8	0.9	0.00913	0.05	5.88%	0.0%
SF-10	5	0.92	0.91	0.93	0.9	0.95	0.005	0.0274	2.98%	-8.24%
SF-11	5	0.91	0.886	0.934	0.85	1	0.0119	0.0652	7.16%	-7.06%
SRC-2010-01	5	0.93	0.909	0.951	0.85	1	0.0104	0.057	6.13%	-9.41%
SRC-2010-02	5	0.9	0.863	0.937	8.0	1	0.0183	0.1	11.1%	-5.88%
SRC-2010-03	5	0.94	0.924	0.956	0.9	1	0.00764	0.0418	4.45%	-10.6%
SRC-2010-04	5	0.9	0.874	0.926	0.8	1	0.0129	0.0707	7.86%	-5.88%
SRC-2010-05	5	0.94	0.907	0.973	0.8	1	0.0163	0.0894	9.52%	-10.6%
SRC-2010-06	5	88.0	0.87	0.89	0.85	0.9	0.005	0.0274	3.11%	-3.53%
SRC-2010-07	5	0.96	0.94	0.98	0.9	1	0.01	0.0548	5.71%	-12.9%
SRC-2010-08	5	0.84	0.795	0.885	0.7	1	0.0218	0.119	14.2%	1.18%

Report Date: Test Code:

11 Aug-10 16:34 (p 2 of 2) 20-7887-4336/39613-22

						rest code.	20-1001-4330139013-22
10 Day Marine/Estuarine	Sediment Test	t	_				Pacific EcoRisk
Survival Rate Detail							· · · · · · · · · · · · · · · · · · ·
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep <b>5</b>		
Lab Control	0.8	0.9	0.8	0.85	0.9		
SF-10	0.95	0.9	0.95	0.9	0.9		
SF-11	0.95	1	0.85	0.9	0.85		
SRC-2010-01	0.9	0.95	0.95	0.85	1		
SRC-2010-02	0.8	8.0	1	1	0.9		
SRC-2010-03	1	0.95	0.95	0.9	0.9		
SRC-2010-04	1	0.9	0.9	0.9	0.8		
SRC-2010-05	1	8.0	0.9	1	1		
SRC-2010-06	0.9	0.85	0.85	0.9	0.9		
SRC-2010-07	1	1	0.9	1	0.9		
SRC-2010-08	0.75	0.9	0.7	0.85	1		


Report Date:

1 Aug-10 16:34 (p 10 of 10)

**Test Code:** 20-7887-4336/39613-22

10 Day Marine/Es	tuarine Sediment	Test							Paci	fic EcoRis
	0-9602-0220 1 Aug-10 16:32	Endpoint: Analysis:					IS Version: cial Results		.7.0	
Data Transform	Zeta	Alt H	lyp Monte Ca	arlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corrected	d) 0	C > T	Not Run					N/A	6.22%	
Equal Variance t	Two-Sample Test									
Sample Code v	s Sample Code	Test	Stat Critical	MSD	P-Value	Decision(	(5%)			
Lab Control	SF-10	-2,79	1.86	0.0735	0.9883	Non-Signi	ificant Effect	t		·
ANOVA Table	· <u>-</u>	-								
Source	Sum Squares	Меап	Square	DF	F Stat	P-Value Decision(5%)				
Between	0.03049439	0.030	49439	1	7.8	0.0234	0.0234 Significant Effect			
Error	0.03126868	0.003	908585	8						
Total	0.06176307	0.034	40297	9						
ANOVA Assumpt	ions			_						
Attribute	Test		Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Variance Ratio	F	1.81	23.2	0.5784	Equal Var	iances			
Distribution	Shapiro-Wilk N	ormality	0.838	_	0.0423	Normal Distribution				
Survival Rate Sur	птагу									
Sample Code	Cou	int Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control	5	0.85	0.831	0.869	0.8	0.9	0.00928	0.05	5.88%	0.0%
SF-10	5	0.92	0.91	0.93	0.9	0.95	0.00509	0.0274	2.98%	-8.24%

Angular (Corrected) Transformed Summary											
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%	
Lab Control	5	1.18	1.15	1.2	1.11	1.25	0.0132	0.071	6.03%	0.0%	
SF-10	5	1.29	1.27	1.31	1.25	1.35	0.00979	0.0527	4.09%	-9.38%	



Client: ACOE-San Rafael

Test ID#: 39613-22

Date (Day 0): 8-1-10

Species: Ampelisca abdita

Project #: 160 \$7

Organism Supplier: Breaking

Organism Log #:

5366

Day of Test	Test Replicate	Sample ID:		Coı		Sign-Off	
	<u>.</u>	Temp (°C)	pН	D.O. (mg/L)	Salinity (ppt)	# Alive	
	Rep A	19.7	8.02	7.6	29./	20	Date: 08/01/10
	Rep B	19.7	8.02	7.6	28.5	20	Time: 10 : 00
Day 0	Rep C	19.7	7.95	7.5	28.5	70	WQ: Se
	Rep D	19.7	8.06	7.7	29./	20	Scientist Initiation:
	Rep E	19.7	8.00	7.6	29.8	20	Scientist Confirmation:
Day i	Rep A	19.7	9.07	7.7	29.5		Date: 3/ 160 Time: Q 1 10 WQ: CG
Day 2	Rep B	20.2	8.17	7.7	29.0		Date \$/3/10 Time: GAO WO: (14) Date: \$/4/10 Time: G.10
Day 3	Rep C	19.8	8.15	7.6	28.9		WO: 64
Day 4	Rep D	20.2	8.30	7.7	28.8		Date 95/10 Time: OGLO WQ: U
Day 5	Rep E	20.1	8.27	7.4	28.9		Date: \$ /5/10 Time: WQ: C
Day 6	Rep A	202	8.27	7.7	27.7		Date: 8/7/0 Time: 0930
Day 7	Rep B	20.2	8.35	7.6	28.9		Date: \$/3/10 Time: 10:00 WQ: \$6* Date: 1 97/0 Time: 10:00
Day 8	Rep C	20.2	8.27	7.5	28.2		WO: 4
Day 9	Rep D	20.2	8.33	7.5	29.3		Date: 9/10 Time: 7/05 WQ: 04
	Rep A	20.1	8.28	7.6	28.5	16	Date: 8/1110
	<b>Rep</b> B	20.1	4.25	7.4	29.2	18	1 09:15
Day 10	Rep C	20.1	8.27	7.4	285	16	wo: CB
	Rep D	20.	8.34	7.5	29.5	17	Scientist Counts:
	Rep E	20.1	8.29	7.9	30.0	18	

Day of Test	Matrix	pH	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
		7.42	2.0	29.0	0.099	22.0	Date: 08/01/10 Time: 10:00 WQ: %
Day 0	Overlying Water					3.07	Date: 0 8/01/10 Time: 10: 00 WQ: 20-
	Meter ID	Ph09	RDOY	ECOSSE	DRYGOO	<u> </u>	
	Porewater	7.15	4743	32.3	0.018	7.94	Date: 81 10 Time: 1520
Day 10	Overlying Water		1			2.88	Date: 8/1/10 Time: 1000
	Meter ID	0103	RD04	ECOS	Dentoo	D03900	

Client: ACOE (San Rafaell)

Test ID#: 39613

Date (Day 0): 8-1-10

Species: Ampelisca abdita

Project #: ___16087

Organism Supplier: Brezina

Day of Test	Test Replicate	Sample ID:	S	)	Sign-Off		
		Temp (°C)	pН	D.O. (mg/L)	Salinity (ppt)	# Alive	
	Rep A	19.7	7.93	7.7	29.8	20	Date: 08/01/10
	Rep B	19.7	7.94	7.6	27.5	20	Time: 10:00
Day 0	Rep C	19.7	7.92	7.7	29.2	20	wQ: Sg
	Rep D	19.7	7.94	7.7	29.3	20	Scientist Initiation:
	Rep E	19.7	7.94	7.6	29.3	70	Scientist Confirmation:
Day 1	Rep A	19.7	7.93	7.7	29.6		Date: \$110 Time: \$110 WQ: CB
Day 2	Rep B	20.2	7.94	7.6	28.0		Date \$72.10 Time: 04.20 WO: (B)
Day 3	Rep C	19.8	8.01	79	295		Date: Time: Q!
Day 4	Rep D	20.2	8.05	7.6	29.5		WQ: (6) Date: 26/10 Time: 09/10 WQ: 49
Day 5	Rep E	26.1	8.05	7.6	28.6		Date 8/6/10 Time: WQ: 04 0430
Day 6	Rep A	20.2	8.02	7.6	29.1		Date: 8/7/10 Time: 07 &
Day 7	Rep B	20.2	8.02	. 7.5	28.9		Date: 8/8/10 Time: 10,00 WQ: 90-
Day 8	Rep C	20.2	8.06	1.4	29.6		Date: 8/9/10 Time: 0944
Day 9	Rep D	20.2	8.05	7.7	29.8		Date: 8/10/10 Time: 09/10 WQ: 0W
	Rep A	20.	9.07	7.8	29.0	19	Date: 8/11/16
	Rep B	20.1	8.08	7.7	28.8	18	Time: 0915
Day 10	Rep C	20.1	8.02	7.6	29.6	19	wo: CG
	Rep D	ا، مد	8.07	7.6	30.0	18	Scientist Counts:
	Rep E	20.1	8.10	7.6	27.8	18	W-1WH111111

Day of Test	Matrix	pН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
	Porewater	7.44	4.7	28.4	0.167	4.61	Date: 8/1/10 Time: /2:00 WQ: 36-
Day 0	Overlying Water					e1	Date: 8/1/10 Time: 12:00 WQ: \$6-
	Meter ID	sho9	A POH	8005	DR.BERROO	DR.1800	
	Porewater	7.57	4.9	35.7	0.005	41.0	Date: 8/110 Time: 1520 WQ: UM
Day 10	Overlying Water					CI-0	Date: 111/10 Time: 1100
<u></u>	Meter ID	0403	R.DO4	ECOS	DR4000	D153800	

Report Date:

11 Aug-10 16:34 (p 9 of 10)

——————————————————————————————————————						Test Code:		20-7887-4336/39613-2		
10 Day Marine	/Estuarine Sediment	Test			. <del>-</del>				Paci	fic EcoRisk
Analysis ID: Analyzed:	03-7309-7015 11 Aug-10 16:32	•	rvival Rate arametric-Two	o Sample			CETIS Version: Official Results:		.7.0	
Data Transform	mZeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Correc	cted) 0	C > T	Not Run					N/A	7.34%	
Equal Variance	e t Two-Sample Test									
Sample Code	vs Sample Code	Test Stat	t Critical	MSD	P-Value	Decision	(5%)			
SF-10	SF-11	0.129	1.86	0.111	0.4503	Non-Sign	ificant Effect			
ANOVA Table	_									
Source	Sum Squares	Mean Sq	uare	DF	F Stat	P-Value	Decision(	5%)		
Between	0.0001476247	0.000147	6247	1	0.0166	0.9007	Non-Signif	icant Effect		
Error	0.07114504	0.008893		8						
Tolal	0.07129266	0.009040	754	9						
ANOVA Assum	nptions									
Attribute	Test		Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Variance Ratio	F	5.4	23.2	0.1312	Equal Variances				
Distribution	Shapiro-Wilk N	ormality	0.902		0.2289					
Survival Rate	Summary									
Sample Code	Cou	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
SF-10	5	0.92	0.91	0,93	0.9	0.95	0.00509	0.0274	2.98%	0.0%
SF-11	5	0.91	0.885	0.935	0.85	1	0.0121	0.0652	7.16%	1.09%
Angular (Corre	ected) Transformed	Summary						·		
Sample Code	Cou	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
SF-10	5	1.29	1.27	1.31	1,25	1.35	0.00979	0.0527	4.09%	0.0%
SF-11	5	1.28	1.23	1.33	1.17	1.46	0.0227	0.123	9.57%	0.6%
Graphics									-	
ub−;					0.20 ¬					
					0.20				•	
09-			Reject Hull		0.15-					
0.8			seditor som							
<b>3</b> 07-					0 10 -					
10 07°				]	0.05-				,	
				5	0.05			• •		
0.5-										
0.4					0.00					

0.3 0.2-

0.1

9-10

Sample Code

SF-11

-0.10 -

-2.0

ACOE (San Rafaell)

Test ID#: 39614

Date (Day 0): 8.1.10

Species: Ampelisca abdita Project #: 16087

Organism Supplier: Brezina

Day of Test	Test Replicate	Sample ID:			Sign-Off		
	•	Temp (°C)	pН	D.O. (mg/L)	Salinity (ppt)	# Alive	
	Rep A	19.7	7.99	7. 7	28.2	20	Date: 08/01/10
	Rep B	19.7	7.94	7.6	29.6	20	Time: 10 : 00
Day 0	Rep C	19.7	7.90	7.6	29.5	20	WQ: SG
	Rep D	19.7	7.93	7.7	29.6	20	Scientist Initiation:
	Rep E	19.7	7.94	7.7	29.6	w	Scientist Confirmation:
Day 1	Rep A	19.7	7.99	7.7	28.9		Date: 9/1/10 Time: 4!10 WQ: (4)
Day 2	Rep B	20.2	8.04	7.7	27.7		Date: 8/3/10 Time: 0410 WQ: 6/3
Day 3	Rep C	19.8	8.07	7.7	29.0		Date: 8/4/10 Time 4:10
Day 4	Rep D	20.2	9.03	7.7	19:7		Date: 9/5/10 Time: 6610 WQ:
Day 5	Rep E	20.1	8.03	7.7	29.1		Date: 8/6-100 Time: WQ: 69 0930
Day 6	Rep A	20.2	8.61	7.6	28.9		Date: 8/7/10 Time: 0930
Day 7	<b>Rep</b> B	20.2	8.03	7.6	27.7		Date: 4/4/10 Time: 10:60 WQ: 56
Day 8	Rep C	20.2	8.07	7.6	28.8		Date: 0/9/10 Time: 0435 WQ: 000
Day 9	Rep D	20.2	82602	7.47.7	29.129		Date: 8/10/10 Time: 09/00 WO:
	Rep A	20.1	8.14	7.6	27.6	19	Date: 8/11/10 Time:
	Rep B	20.1	8.13	7.7	26.8	20	0919
Day 10	Rep C	20.1	8.10	7.7	28.	17	wo: CA
	Rep D	20.1	8.06	7.7	28.9	81	Scientist Counts:
	Rep E	20,	8.09	7.6	29.4	l٦	

Day of Test	Matrix	pН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
	Porewater	7.53	5.5	29.0	0.265	3.20	Date:8/1/10 Time:/2:00 WQ: Sc-
Day 0	Overlying Water					41	Date: 8/1/10 Time: 12:00 WQ: 96-
Day 0	Meter ID	ph09	PD04	E005	DR 4000	PR-3800	
	Porewater	7.59	7.2	37.4	0.039	41.0	Date: 8111 16 Time: 1230 WQ: WM
Day 10	Overlying Water					61.0	Date: 8/11/10 Time: 1100 WQ: CA
	Meter ID	0403	2204	Ecc6	DRYDO	DR3800	

Report Date:

11 Aug-10 16:34 (p 8 of 10)

20-7887-4336/39613-22

						Test	Code:	2	20-7887-43	36/39613-2
10 Day Marine	/Estuarine Sediment	Test							Paci	fic EcoRisk
Analysis ID: Analyzed:	02-4543-0314 11 Aug-10 16:32		urvival Rate arametric-Two	o Sample			IS Version: cial Results		.7.0	
Data Transfor	m Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre	cted) 0	C > T	Not Run				_	N/A	6.52%	
Equal Varianc	e t Two-Sample Test					_				
Sample Code	vs Sample Code	Test Sta	t Critical	MSD	P-Value	Decision	(5%)			
SF-10	SRC-2010-01	-0.496	1.86	0.1	0.6835	Non-Signi	ificant Effect			<u>-</u>
ANOVA Table								-	<u> </u>	<u>-</u>
Source	Sum Squares	Mean So	luare	DF	F Stat	P-Value	Decision	(5%)		
Between	0.001789282	0.001789	9282	1	0.246	0.6330	Non-Signi	ficant Effect		
Error	0.05809853	0.007262	2316	8						
Total	0.05988781	0.009051	1599	9		_				
ANOVA Assur	nptions			-						
Attribute	Test		Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Variance Ratio		4.23	23.2	0.1916	Equal Vai	riances			
Distribution	Shapiro-Wilk N	ormality	0.961		0.7977	Normal D	istribution			
Survival Rate	Summary									•
Sample Code	Cou	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
SF-10	5	0.92	0.91	0.93	0.9	0.95	0.00509	0.0274	2.98%	0.0%
SRC-2010-01	5	0,93	0.908	0.952	0.65	1	0.0106	0.057	6.13%	-1.09%
Angular (Corre	ected) Transformed	Summary	-				•			
Sample Code	Cou	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
SF-10	5	1.29	1,27	1.31	1.25	1.35	0.00979	0.0527	4.09%	0.0%
SRC-2010-01	5	1,31	1.27	1.36	1.17	1.46	0.0201	0.108	8.25%	-2.08%
Graphics	-									
1.0-7					0.15				_	
09			·						•	
			Reject Hall		0.10					
08-										
<b>9</b> 07-				A	- 0.0s			• •	•	
24-12-12-12-12-12-12-12-12-12-12-12-12-12-					i		•	• •		
<b>3</b>					0 000					

0.4

0.2-D.1 0.0

SRC-2010-01

Sample Code

-0.05

-0 15 -2 0

Client: ACOE (San Rafaell)

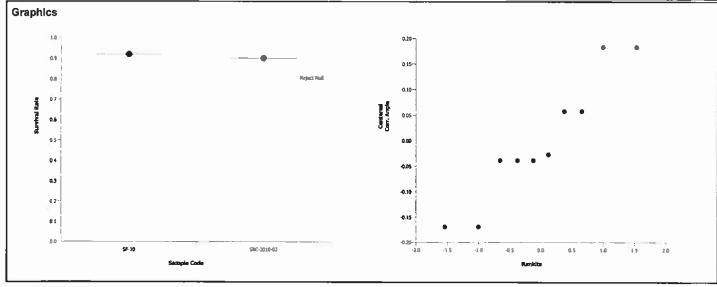
Test ID#: 39615

Date (Day 0): 8-/-/0

Species: Ampelisca abdita

Project #: 16087

Organism Supplier: Brezina


Day of Test	Test Replicate	Sample ID:		SRC-2	010-01		Sign-Off
	F	Temp (°C)	рН	D.O. (mg/L)	Salinity (ppt)	# Alive	<u>L</u>
	Rep A	19.7	7.87	7.6	29.2	20	Date: 08/01/10
	Rep B	19.7	7.88	7.5	29,6	20	Time: 10 : 00
Day 0	Rep C	19.7	7.91	7.7	29.4	20	₩Q: <b>ጟ</b> &
	Rep D	19.7	7.83	7.5	29.2	20	Scientist Initiation:
	Rep E	19.7	7.89	7.7	28.9	20	Scientist Confirmation:
Day 1	Rep A	19.7	7.93	7.7	29.8		Date: <b>9/1/10</b> Time: <b>9/1/0</b> WQ: <b>CH</b>
Day 2	Rep B	20.2	7.98	7.7	29.4		Date: 9/3/10 Time: WQ:
Day 3	Rep C	19.8	8.03	7.8	29.3		Date: Offine: Q: 100 WQ:
Day 4	Rep D	20.7	9.03	7.7	30.0		Date: 8 54 10 Time CALO
Day 5	Rep E	26,1	7.99	7.7	29.0		Date: 9/6/10 Time: WQ: 6/4 0030
Day 6	Rep A	70.2	7.99	7.6	29.6		Date: 8/7/10 Time: 0730
Day 7	Rep B	20.2	8.04	7.6	29.3		Date: 8/8/10 Time: 10:00 WQ: 56
Day 8	Rep C	20.2	8.11	1.7	29.9		Date: 8/9/10 Time: 0930 WQ: CA
Day 9	Rep D	20.2	8.07	7-7	30.0		Date: (6) 10/16 Time: OFFICE WOCK
	Rep A	20.1	8.13	7.6	293	18	Date: 8/11/10
	Rep B	20.1	8.12	7.6	28.3	19	Time: 6815
Day 10	Rep C	20.	8.18	7.6	29.2	19	wo: Ct
	Rep D	20.1	8.15	7.6	28.8	17	Scientist Counts:
	Rep E	20.1	8.10	7.6	29.3	20	

Day of Test	Matrix	рН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
_	Porewater	7.46	6.3	2.7.7	0.108	4.58	Date: 8/1/10 Time: 1 2 : 00 WQ:
Day 0	Overlying Water					1.20	Date: 8/1/10 Time: /2:00 WQ: 90-
	Meter ID	ph09	P. DO4	E c 05	DR.4000	DR3300	
	Porewater	7.20	4.4	33.9	0.016	41.0	Date: 8/11/10 Time: 1320
Day 10	Overlying Water					41.0	Date 9/11/10 Time: 1100 WQ: 16
	Meter ID	0403	RD04	Eco5	DK 4000	P03800	

Report Date: Test Code: 11 Aug-10 16:34 (p 7 of 10)

20-7887-4336/39613-22

				_				lest	Code:		U-7887 <del>-4</del> 3	36/39613-2
10 Day Marine/	Estu	arine Sediment	Гest					_			Pacif	ic EcoRisi
Analysis ID: Analyzed:		309-0263 Aug-10 16:32	Endpoint: Analysis:		vival Rate ametric-Two	Sample			IS Version: ial Results:	CETISv1. Yes	7.0	
Data Transform	п	Zeta	Alt H	lyp	Monte Car	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Correc	ted)	0	C > T		Not Run					N/A	10.7%	
Equal Variance	t Tv	vo-Sample Test					_					•
Sample Code	vs	Sample Code	Test	Stat	Critical	MSD	P-Value	Decision	(5%)			
SF-10		SRC-2010-02	0.138		1.86	0.153	0.4468	Non-Signi	ficant Effect			
ANOVA Table												
Source		Sum Squares	Mean	Squa	are	DF	F Stat	P-Value	Decision(	5%)		
Between		0.0003231079	0.000	3231	079	1	0.0191	0.8936	Non-Signit	ficant Effect		
Error		0.1356633	0.016	9579	1	8						
Total		0.1359864	0.017	2810	2	9						
ANOVA Assum	ptlo	ns										
Attribute		Test			Test Stat	Critical	P-Value	Decision	(1%)			
Variances		Variance Ratio 8			11.2	23.2	0.0381	Equal Var	iances			
Distribution		Shapiro-Wilk No	rmality		0.904		0.2452	Normal Di	istribution			
Survival Rate S	Sumr	nary										
Sample Code		Cour	nt Mean	ļ.	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
SF-10		5	0.92		0.91	0.93	0.9	0.95	0.00509	0.0274	2.98%	0.0%
SRC-2010-02		5	0.9		0.862	0.938	8.0	1	0.0186	0.1	11.1%	2.17%
Angular (Corre	cted	) Transformed S	ummary								· <del></del>	
Sample Code	_	Cour	nt Mean		95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
SF-10		5	1.29		1.27	1.31	1.25	1.35	0.00979	0.0527	4.09%	0.0%
SRC-2010-02		5	1.28		1,21	1.34	1.11	1.46	0.0328	0.176	13.8%	0.88%



ACOE (San Rafaell)

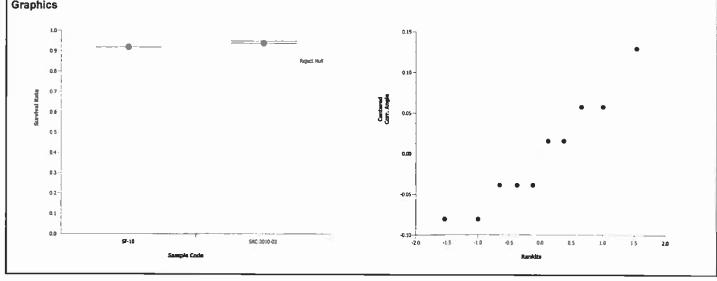
Test ID#: 39616

Date (Day 0): **7/10** 

Species: ____ Ampelisca abdita

Project #: 16087 Organism Supplier: Brezina
g#: 5366

Day of Test	Test Replicate	Sample ID:		SRC-2	010-02		Sign-Off
		Temp (°C)	pН	D.O. (mg/L)	Salinity (ppt)	# Alive	
	Rep A	19.7	7.89	7.7	28.5	20	Date: 08/01/10
	Rep B	19.7	7.76	7.4	29.8	20	Time: 10 : 00
Day 0	Rep C	19.7	7.90	7.6	29.7	20	WQ: H
	Rep D	19.7	7.9.3	7.6	29.0	20	Scientist Initiation:
	Rep E	19.7	7.93	7.6	29.0	20	Scientist Confirmation:
Day 1	Rep A	19.7	7.91	7.7	29.1		Date: 9/1/10 Time: 9:10
Day 2	Rep B	20.2	7.91	5.3	30.0		Date: 9/3/10 Time: 0010
Day 3	Rep C	19.8	8.03	7.6	29.9		Date: 8/4/10 Time: 4!10
Day 4	Rep D	20.2	4.03	7.7	29.7		WQ: UB  Date: 8/5/10 Time: 04.10  WQ: UB
Day 5	Rep E	20.1	7.98	7.8	19.0		Date: \$16(10 Time: WO: 0430
Day 6	Rep A	20.2	7.97	7.6	27.4		Date: 8/1/10 Time: 0930
Day 7	Rep B	20.2	7.97	7.6	27.8		Date: 8/2/10 Time: 10: 00 WQ: &
Day 8	Rep C	20.2	8.11	7.7	29.5		Date: <b>8/9/10</b> Time: <b>0939</b> WQ:
Day 9	Rep D	10.2	8.10	7-7	29.7		Date: 8/10/18 Time: 0900
	Rep A	20.1	8.€	7.5	29.2	16	Date: 8/11/10
	Rep B	20-1	8.03	7.6	28.8	16	Time:
Day 10	Rep C	20-1	8.14	7.6	28.6	20	wQ: CG
	Rep D	20.1	8.16	7.6	29.0	2.0	Scientist Counts:
	Rep E	20.1	8.09	7.6	17.5	18	


Day of Test	Matrix	рН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
	Porewater	7.36	6.4	28.3	0.039	3.49	Date: 8/1/10 Time: 12:00 WQ: 56-
Day 0	Overlying Water					0.872	Date: 8/1/10 Time: /2:00 WQ:
	Meter ID	phog	RD04	Ecos	P2.4000	DR3300	
	Porewater	7.16	4.0	30.6	P00.0	40	Date: 8/11/10 Time: 13 ZO WQ: WM
Day 10	Overlying Water					Cho	Date: Time: WQ: -1100
	Meter ID	043	RDOY	Eco5	DRYEOU	DR3800	

Report Date:

11 Aug-10 16:34 (p 6 of 10)

Test Code:	20-7887-	4336/39	613-2

							Test	Code:	2	0-7887-43	36/39613-2
10 Day Marine/I	Estuarine S	ediment T	est			-				Paci	fic EcoRis
	06-3594-97 11 Aug-10		•	urvival Rate arametric-Two	Sample			IS Version: cial Results:	CETISv1 Yes	.7.0	
Data Transform	1	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Correct	ted)	0	C > T	Not Run					N/A	5.35%	
Equal Variance	t Two-Sarr	ple Test									
Sample Code	vs Samp	le Code	Test Sta	t Critical	MSD	P-Value	Decision	(5%)			
SF-10	SRC-	2010-03	-0.923	1.86	0.0845	0.8086	Non-Signi	ificant Effect	-		
ANOVA Table							-				
Source	Sum S	quares	Mean So	quare	DF	F Stat	P-Value	Decision(8	5%)		
Between	0.0043	97951	0.00439	7951	1	0.853	0.3828	Non-Signifi	icant Effect		
Error	0.0412	6568	0.00515	821	8						
Total	0.0456	6363	0.00955	616	9						
ANOVA Assum	ptions		·					<del></del>			
Attribute	Test			Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Varia	nce Ratio F	=	2,71	23.2	0.3571	Equal Var	iances			
Distribution	Shapi	ro-Wilk Nor	mality	0.924		0.3895	Normal D	istribution		_	
Survival Rate S	ummary						•				
Sample Code		Coun	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
SF-10		5	0.92	0.91	0.93	0.9	0.95	0.00509	0.0274	2.98%	0.0%
SRC-2010-03		5	0.94	0.924	0.956	0.9	1	0.00777	0.0418	4.45%	-2.17%
Angular (Correc	ted) Trans	formed Si	ummary							*	<del></del>
Sample Code		Coun	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
SF-10		5	1,29	1.27	1.31	1.25	1.35	0.00979	0.0527	4.09%	0.0%
SRC-2010-03		5	1.33	1,3	1.36	1.25	1.46	0.0161	0.0868	6.53%	-3.26%
Graphics	<del>-</del>										
LD						0.15					
			===			0.17					
0.9						-				•	



ACOE (San Rafaell) Client:

Test ID#: 39617

Date (Day 0): 8.1.10

Species: Ampelisca abdita Project #: ___16087

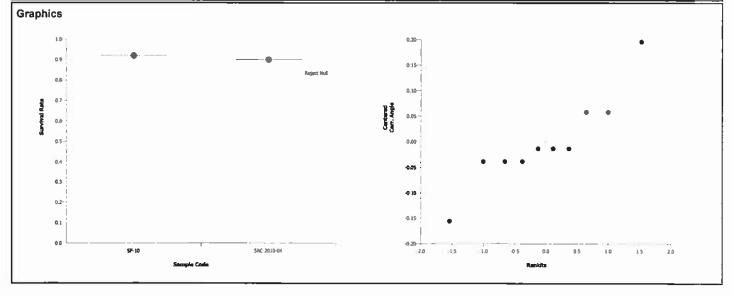
Organism Supplier: Brezina

Organism Log #:

9366

Day of Test	Test Replicate	Sample ID:		SRC-2	010-03		Sign-Off
	110001111111111111111111111111111111111	Temp (°C)	pН	D.O. (mg/L)	Salinity (ppt)	# Alive	
	Rep A	19.7	7.83	7.3	29.4	NR120	Date: 08/01/10
	<b>Rep B</b>	19.7	7.93	7.7	28.5	20	Time: /0 : 00
Day 0	Rep C	19.7	7.94	7.7	28.7	20	WQ: عح
	Rep D	19.7	7.86	7.7	28.7	20	Scientist Initiation:
	Rep E	19.7	7.89	7.5	28.9	re	Scientist Confirmation:
Day 1	Rep A	19.7	7.95	7.7	29.9		Date: 9/1/0 Time: 9:10 WO: CA
Day 2	Rep B	20.2	8.02	7.6	28.7		Date 13/10 Time: OCAD WQ: CA
Day 3	Rep C	19.8	8.08	7.6	29.2		Date: 94110 Time: 4:20 WQ: 44
Day 4	Rep D	20.2	8.00	7.7	28.6		Date: 8/8/13 Time: 0416
Day 5	Rep E	20.1	8.03	7.6	28.6		Date: 9/6/16 Time: WQ: 0430
Day 6	Rep A	20.2	8.01	7.5	28.7		Date: 8/7/10 Time: 0930
Day 7	Rep B	20.2	8.//	7.6	29.6		Date: 8/8/10 Time: 10:00 WQ: 4
Day 8	Rep C	10.2	8.17	7.7	28.8		Date: 8/9/10 ime: 0437
Day 9	Rep D	20.2	8.07	7.6	30-0		Date: 6/14/10 Time (1900) WQ: 04
	Rep A	20.1	9,19	7.6	28.3	Z0	Date: 8/11/10
	Rep B	20.1	8.21	7.6	28.7	19	Time: 0915
Day 10	Rep C	20.1	8.24	7.6	28.3	19	wo: CA
	Rep D	20.1	8.15	7.6	28.4	18	Scientist Counts:
	Rep E	20.	8.17	7.5	28.3	18	

Day of Test	Matrix	pН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
	Porewater	7.32	5.8	27./	0.096	8-08	Date: 8/1/10 Timey 2:00 WQ: SG-
Day 0	Overlying Water					0.504	Date: 8/1/10 Time: / 2:00 WQ: 50
	Meter ID	Ph.09	RD04	E005	DR4000	DP3800	
	Porewater	7.22	4.6	30.4	0.010	150 1.52	Date: 5/11/16 Time: 1320
Day 10	Overlying Water					410	Date: Time: 100
	Meter ID	0403	Poy	Fco5	Dredopp	D03800	


Report Date:

11 Aug-10 16:34 (p 5 of 10)

20-7887-4336/39613-22 **Test Code:** 

10 Day Marine/Es	tuarine Sediment 1	Test							Paçi	fic EcoRl
,	-5970-6849 I Aug-10 16:32		urvival Rate arametric-Two	Sample			IS Version: ial Results	CETISv1 : Yes	.7.0	_
Data Transform	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corrected	d) 0	C > T	Not Run		_			N/A	7.52%	
Equal Variance t	Two-Sample Test									
Sample Code v	s Sample Code	Test Sta	nt Critical	MSD	P-Value	Decision(	(5%)			
SF-10	SRC-2010-04	0.409	1.86	0,113	0.3466	Non-Signi	ficant Effect			
ANOVA Table		-		_						
Source	Sum Squares	Mean S	quare	DF	F Stat	P-Value	Decision	(5%)		
Between	0.001553973	0.00155	3973	1	0.167	0.6933	Non-Signi	ficant Effect		
Error	0.07430839	0.00928	8548	8			_			
Total	0.07586236	0.01084	252	9						
ANOVA Assumpt	lons							<u> </u>		
Attribute	Test		Test Stat	Critical	P-Value	Decision(	(1%)			
Variances	Variance Ratio I	F	5.69	23.2	0.1208	Equal Var	iances			
Distribution	Shapiro-Wilk No	ormality	0.889		0.1668	Normal Di	stribution			
Survival Rate Sur	mmary									
Sample Code	Cour	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
SF-10	5	0.92	0.91	0.93	0.9	0.95	0.00509	0.0274	2.98%	0.0%
SRC-2010-04	5	0,9	0.873	0.927	8.0	1	0.0131	0.0707	7.86%	2.17%

Angular (Corrected) Transformed Summary										
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
SF-10	5	1.29	1.27	1.31	1.25	1.35	0.00979	0.0527	4.09%	0.0%
SRC-2010-04	5	1.26	1.21	1.31	1.11	1.46	0.0233	0.126	9.95%	1.94%



Client: ACOE (San Rafaell)

Test ID#: ____39618

Date (Day 0): 8.1.10

Species: Ampelisca abdita

Project #: ___16087

Organism Supplier: Brezina

Day of Test	Test Replicate	Sample ID:		SRC-2							
	1	Temp (°C)	pH	D.O. (mg/L)	Salinity (ppt)	# Alive					
	Rep A	19.7	7.88	7.7	29.0	20	Date: 08/01/10				
	Rep B	19.7	7.84	7.8	28.5	20	Time: 10:00				
Day 0	Rep C	19.7	7.78	7.7	28.5	20	WQ: <b>S</b> &				
	Rep D	19.7	7.87	7.7	28.5	20	Scientist Initiation				
	Rep E	19.7	7.87	7.7	29. Z	20	Scientist Confirmation:				
Day 1	Rep A	19.7	7.89	7.7	29.2		Date: 8/2 /10 Time: 9:10 WQ: 14				
Day 2	Rep B	20.2	7.95	7.6	28.9		Date: 8/3/10 Time: OCLO				
Day 3	Rep C	19.8	7.92	7.7	28.1		Date: 9/1/10 Time: 4!10				
Day 4	Rep D	20.2	7.45	7.6	29.3	,	Date: 8/5/10 Time: ocalo				
Day 5	Rep E	20.1	7.99	7.6	29.7	1111122.1.75	Date & LIO Time: WQ: (L) CC30				
Day 6	Rep A	20.2	7.88	٦٦٦	29.6	THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S	Date: 8/7/10 Time: 0730 WQ: FOR				
Day 7	Rep B	20.2	7.96	7.6	29.6		Date: 8/8/10 Time: /0:00 WQ: \$2				
Day 8	Rep C	20.2	7.94	7.7	29.0		Date: 8/7/16Time: 0937				
Day 9	Rep D	20.2	8.01	7.6	29.2		Date: 9/19/10 Time (900)				
	Rep A	20.1	4.00	7.0	29.8	20	Date: 8/1/1/0				
	Rep B	20.1	8.06	7.5	29.4	18.	Time: 0915				
Day 10	Rep C	20.1	7.92	7.5	28.6	18	wo: CB				
	Rep D	20.1	8.03	7.5	29.4	18	Scientist Counts:				
	Rep E	20.1	7.99	7.5	29.6	16					

Day of Test	Matrix	рН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
	Porewater	7.30	6.2	27.3	0.067	3.65	Date: 8/1/10 Time: / 2:00 WQ: SC
Day 0	Overlying Water					41	Date: 8/1//0 Time: /2 !00 WQ: 56
	Meter ID	ph 09	8004	E005	DR4000	DR.3800	
	Porewater	7.24	4.2	30.9	0.006	2.80	Date: 8/11/10 Time: 1320
Day 10	Overlying Water					61.0	Date IN HO Time: WQ: (1) 1100
	Meter ID	0403	RDOY	Ecos	PRYOO	D03800	

Report Date: Test Code: 11 Aug-10 16:34 (p 4 of 10)

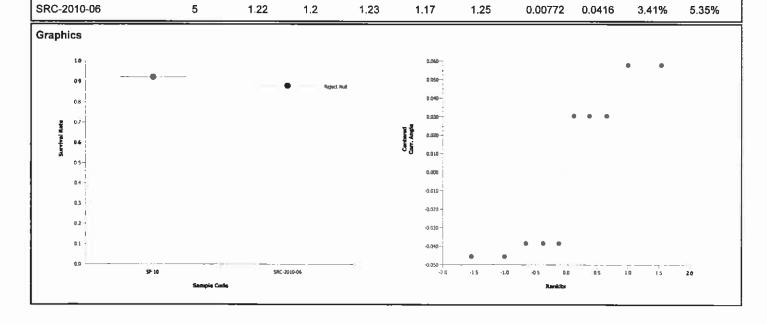
20-7887-4336/39613-22

		Test	Code:	2	.0-7887-43	36/39613-2
10 Day Marine/Estuarine Sediment Test			_		Paci	fic EcoRis
Analysis ID: 11-3010-6798 Endpoint: Survival Rate		CETI	S Version:	CETISv1	.7.0	
Analyzed: 11 Aug-10 16:32 Analysis: Parametric-Two Sample	e		al Results:	Yes		
Data Transform Zeta Alt Hyp Monte Carlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corrected) 0 C > T Not Run				N/A	9.76%	
Equal Variance t Two-Sample Test			_			
Sample Code vs Sample Code Test Stat Critical MSD	P-Value	Decision(	5%)			
SF-10 SRC-2010-05 -0.775 1.86 0.141	0.7697	Non-Significant Effect				_
ANOVA Table						
Source Sum Squares Mean Square DF	F Stat	P-Value	Decision(8	5%)		
Between 0.008688781 0.008688781 1	0.601	0.4606	Non-Signif	icant Effect		
Error 0.1157063 0.01446329 8						
Total 0.1243951 0.02315207 9						
ANOVA Assumptions						
Attribute Test Test Critica	al P-Value	Decision(				
/ariances Variance Ratio F 9.41 23.2	0.0518	Equal Vari				
Distribution Shapiro-Wilk Normality 0.878	0.1232	Normal Distribution				
Survival Rate Summary						
Sample Code Count Mean 95% LCL 95% U	ICL Min	Max	Std Err	Std Dev	CV%	Diff%
SF-10 5 0.92 0.91 0.93	0.9	0.95	0.00509	0.0274	2.98%	0.0%
SRC-2010-05 5 0.94 0.906 0.974	8.0	1	0.0166	0.0894	9.52%	-2.17%
Angular (Corrected) Transformed Summary						<del></del>
Sample Code Count Mean 95% LCL 95% U	CL Min	Max	Std Err	Std Dev	CV%	Diff%
SF-10 5 1.29 1.27 1.31	1.25	1.35	0.00979	0.0527	4.09%	0.0%
SRC-2010-05 5 1.35 1.28 1.41	1.11	1.46	0.03	0.162	12.0%	-4.58%
Graphics						
107	0.15					
ng-					•	
O.S Regions North	0.30 -					
	0 05		•	•		
9 02-	\$ 000					
0.5	18					
0.5-	-6.03		• • •			
0.4	-0 10	•				
03						
02-	-0.15					
0.3	-0.20					
	-0.25	•	- · , . · — — —		- ,	
S.P. 10 S.R.C. 20 10-05	-3.0	-15 -10	-0.5 0.0	0.5 1.0	1.5	2.0

Sample Code

Client: ACOE (San Rafaell) Test ID#: 39619 Date (Day 0): 3///
Species: Ampelisca abdita Project #: 16087 Organism Supplier: Brezina

Day of Test	Test Replicate	Sample ID:		SRC-2	010-05		Sign-Off
		Temp (°C)	pН	D.O. (mg/L)	Salinity (ppt)	# Alive	
	Rep A	19.7	7.86	7.4	29.5	20	Date: 08/01/10
	Rep B	19.7	7.88	7.6	29.2	20	Time: 10:00
Day 0	Rep C	19.7	7.90	7.6	29.2	20	WQ: <b>36</b> Scientist Initiation:
	Rep D	19.7	7.87	7.6	29.5	re_	PA
	Rep E	19.7	7.88	7.6	28.9	20	Scientist Confirmation:
Day 1	Rep A	19.7	1 <del>7.85</del> 7.90	7.7	21.104		Date: <b>3/1/10</b> Time: <b>4!10</b> WQ: <b>10</b>
Day 2	Rep B	20.2	7.97	7.8	29.8		Date: 8/3/10 Time: 04120 WQ: 04
Day 3	Rep C	19.8	8.00	7.7	29.4	· • • • • • • • • • • • • • • • • • • •	Date 8/4/10 ime: 4:20 WQ: (H
Day 4	Rep D	20.2	7.94	7.6	28.		Date: 8/5/10 Time: 04.00 WQ: Ch
Day 5	Rep E	20.1	7.97	7.6	28.8		Date: 8/6/16 Time: WQ: 66 0430
Day 6	Rep A	20.2	8.01	7.5	29.0		Date: 8/1/10 Time: WQ: 8018 0730
Day 7	Rep B	20.2	7.97	7.7	30.0		Date: 8/3/10 Time: /0.'03 WQ: \$6-
Day 8	Rep C	20.2	8.08	7.6	28.9		Date: 8/4/10 Time: 0930 WO:
Day 9	Rep D	20.2	8.02	7.7	29.5		Date: 0/4/10 Time: 0400
	Rep A	90.1	8.11	7.5	293	20	Date: 8/11/10
	Rep B	20.1	8.07	7.6	28.2	16	Time: 045
Day 10	Rep C	20.1	8.11	7.6	27.8	18	wo:
	Rep D	20.1	8.05	7.6	28.0	20	Scientist Counts:
	Rep E	20.1	8.02	75	29.0	20	


Day of Test	Matrix	рН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
	Porewater	7.60	6.4	27.4	0.052	9.97	Date: 8/1/10 Time: /2:00 WQ: SC
Day 0	Overlying Water					1044	Date: 8/1/10 Time: 12/00 WQ: 54-
	Meter ID	phog	RDOU	Ecos	DR4000	BR 3800	
	Porewater	7.17	3.9	31.7	0.016	1.78	Date: 8/W to Time: 1320 WQ: WM
Day 10	Overlying Water					41.0	Date: <b>3/11 /60</b> Time: WQ: <b>(1)</b> 11 <b>00</b>
	Meter ID	0403	RDOY	ECO5	DK1000	DQ3800	116 117 12 13 13 13

Report Date:

11 Aug-10 16:34 (p 3 of 10)

Test Code: 20-7887-4336/39613-22

10 Day Marine	/Estu	arine Sediment T	rest rest							Paci	fic EcoRIsi
Analysis ID: Analyzed:		977-4310 Aug-10 16:32	•	urvival Rate arametric-Two	Sample			IS Version: ial Results	CETISv1 : Yes	7.0	
Data Transform	n	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Correc	cted)	0	C > T	Not Run					N/A	3.33%	
Equal Variance	e t Tv	vo-Sample Test									
Sample Code vs Sample Code Test Stat Critical MSD P-Value Decision(5%)											
SF-10		SRC-2010-06	2.29	1.86	0.0558	0.0255	Significan	t Effect			
ANOVA Table								-	<u>'</u>		
Source		Sum Squares	Mean So	quare	DF	F Stat	P-Value Decision(5%)				
Between		0.01185921	0.011859	921	1	5.26	0.0510	.0510 Non-Significant Effect			
Error		0.01803578	0.002254	1473	8			-			
Total		0.02989499	0.014113	368	9						
ANOVA Assum	nptio	ns							<u></u>		
Attribute		Test		Test Stat	Critical	P-Value	Decision(	(1%)			
Variances		Variance Ratio F	:	1.61	23.2	0.6576	Equal Var	iances			
Distribution		Shapiro-Wilk No	rmality	0.788		0.0105	Normal Di	istribution			
Survival Rate S	Sumi	nary									
Sample Code		Соцг	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
SF-10		5	0.92	0.91	0.93	0.9	0.95	0.00509	0.0274	2.98%	0.0%
SRC-2010-06		5	0.88	0.87	0.89	0.85	0.9	0.00509	0.0274	3.11%	4.35%
Angular (Corre	cted	) Transformed S	ummary								
Sample Code		Cour	ıt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
SF-10		5	1.29	1.27	1.31	1.25	1.35	0.00979	0.0527	4.09%	0.0%



ACOE (San Rafaell) Client:

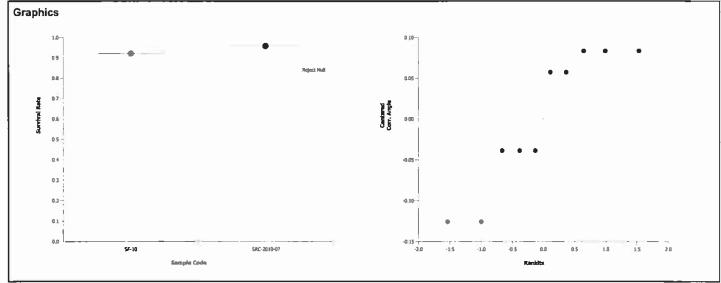
39620 Test ID#:

Date (Day 0): 3 1 1/0

Ampelisca abdita Species:

Project #: 16087 Organism Supplier: Brezina
g #: 5366

Day of Test	Test Replicate	Sample ID:		SRC-2	010-06		Sign-Off
		Temp (°C)	pН	D.O. (mg/L)	Salinity (ppt)	# Alive	
	Rep A	19.7	7.80	7.4	29.2	20	Date: 08/01/10
	Rep B	19.7	7.68	7. 3	29.4	20	Time: /0:00
Day 0	Rep C	19.7	7.83	7.6	29.8	20	WQ: Se
	Rep D	19.7	7.82	7.5	29.8	70	Scientist Initiation:
	Rep E	19.7	7.80	7.4	27.8	20	Scientist Confirmation:
Day I	Rep A	19.7	7.95	7.7	29.7		Date: 9/1/10 Time: 4:10
Day 2	Rep B	20.2	7.86	7.7	29.8		Date: 2/3/10 Time: 0410 WQ: 44
Day 3	Rep C	19,8	7.87	7.6	30.0		Date: 94/10Time: 4120
Day 4	Rep D	20.2	7.93	7.6	293		Date 9/5/10 Time:
Day 5	Rep E	26.1	7.74	6.1	29.0		Date: 2/6/10 Time: WQ: 0 8 6430
Day 6	Rep A	20.2	7.94	7.5	29.5		Date: 8/1/10 Time; 30
Day 7	Rep B	20.2	7.88	7.6	29.9		Date: 8/8/10 Time: 10 ±00 WQ: 36-
Day 8	Rep C	20.2	B.01	7.4	29.8		Date: 0/9/10 Time: 0/9 9/6 WQ:
Day 9	Rep D	20,2	8.02	7.6	2914		Date: 8/10/10 Time: 09/0
	Rep A	20.1	8.07	7.6	29.4	18	Date: 8/11/10
	Rep B	20.1	9.00	7.5	29.3	17	6915
Day 10	Rep C	20.1	8.04	7.4	29.4	17	W. ()[-
	Rep D	20.1	శ. రా	7.5	29.6	18	Scientist Counts:
	Rep E	20.1	7.94	7.4	88. a	18	A. A. C. C. C. C. C. C. C. C. C. C. C. C. C.


Day of Test	Matrix	рН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
Day 0	Porewater Overlying Water	7.38	4.9	27.5	0.073	9.98	Date: 8///0 Time: 12:00 WQ: Sc- Date: 8///0 Time: 12:00 WQ: Sc-
	Meter ID	ph09	RD04_	Ec05	DRYDO	DR 3840	
	Porewater	7.17	4.2	32.1	0.019		Date: 8/11/10 Time: 1320
Day 10	Overlying Water					61.0	Date: SIM to Time: WQ: CI MOO
	Meter ID	0H03	12004	Feo5	DR4000	DR3800	

Report Date:

11 Aug-10 16:33 (p 2 of 10)

20-7887-4336/39613-22 **Test Code:** 

10 Day Marine	/Estu	arine Sediment 1	est								Pacil	ric EcoRis
Analysis ID: Analyzed:		857-6741 Nug-10 16:32	Endp Analy		vival Rate ametric-Two	Sample	_		S Version: ial Results:	CETISv1. Yes	.7.0	
Data Transforr	T)	Zeta		Alt Hyp	Monte Car	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Correc	cted)	0		C > T	Not Run				_	N/A	6.89%	
Equal Variance	e t Tv	vo-Sample Test										
Sample Code	vs	Sample Code		Test Stat	Critical	MSD	P-Value	Decision(	5%)			
SF-10		SRC-2010-07		-1.55	1.86	0.105	0.9196	Non-Signi	ficant Effect			
ANOVA Table				<u> </u>								
Source		Sum Squares		Mean Squ	are	DF	F Stat	P-Value	Decision(	5%)		
Between		0.01906758		0.0190675	8	1	2.39	0.1609	Non-Signit	ficant Effect		•
Error		0.06388931		0.0079861	64	8						
Total		0.0829569		0.0270537	5	9						
ANOVA Assum	nptio	ns			-							
Attribute		Test			Test Stat	Critical	P-Value	Decision(	1%)			
Variances		Variance Ratio I	=		4.75	23.2	0.1605	Equal Var	iances			
Distribution		Shapiro-Wilk No	malit	у	0.837		0.0403	Normal Di	stribution			
Survival Rate	Sumr	nary										
Sample Code		Cour	nt	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	DIff%
SF-10		5		0.92	0.91	0.93	0.9	0.95	0.00509	0.0274	2.98%	0.0%
SRC-2010-07		5		0.96	0.939	0.981	0.9	1	0.0102	0.0548	5.71%	-4.35%
Angular (Corre	ected	) Transformed S	umm	ary								
Sample Code		Cour	nt	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
SF-10		5		1.29	1.27	1.31	1.25	1.35	0.00979	0.0527	4.09%	0.0%
SRC-2010-07		5		1.37	1.33	1.42	1.25	1.46	0.0213	0.115	8.35%	-6.78%
Graphics								-				
							0.45					
1.0				•			0 10					
0.9		•								_	_	



ACOE (San Rafaell) Client:

Test ID#: 39621

Date (Day 0): 3.1.10

Species: Ampelisca abdita Project #: ___16087

Organism Supplier: Brezina

Day of Test	Test Replicate	Sample ID:		SRC-2	010-07		Sign-Off
		Temp (°C)	pН	D.O. (mg/L)	Salinity (ppt)	# Alive	
	Rep A	19.7	7. 95	7.8	29.2	16	Date: 08 /01/10
	Rep B	19.7	7.97	7.7	29.4	20_	Time: 10 :00
Day 0	Rep C	19.7	7.93	7.7	29.0	20	WQ: Scientist Initiation:
	Rep D	19.7	7.96	7.7	29.3	20	FA
	Rep E	19.7	8.02	7.6	29.2	20	Scientist Confirmation:
Day 1	Rep A	19.7	7.87	7.7	29.5		Date: 8/1/10 Time: 9:10
Day 2	Rep B	20.7	8.03	7.7	30.0	5: 13 13 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	Date:8/3/10 Time: OCAO
Day 3	Rep C	19.8	7.97	7.8	29.8	Parista value de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante	Date: 3/1/10 Time: 9!10 WQ: (6
Day 4	Rep D	20.2	8.04	7.6	28.9	Paris divisionis di incessi	Date: 8/3/10 Time: 0410
Day 5	Rep E	20.1	9.05	7.6	98.1		Date: \$/6/10 Time: WQ: (18 0530
Day 6	Rep A	20.2	7.97	7.4	29.7		Date: 8/1/10 Time: WQ: 80WR 098
Day 7	Rep B	20.2	8.02	7. 7	29.6		Date: 8/8/10 Time: 10:00 WQ: \$2
Day 8	Rep C	20.2	8.06	7.6	3/029.8		Date: 8/9/10 Time: 1/935 WQ: 1/20
Day 9	Rep D	20.2	8.09	7.6	29.3		Date: 0/10/10 Time: 090 V
	Rep A	20-1	4.0€	7.9	30.0	20	Date: 8/11/10
	Rep B	20.1	8.14	7.5	29.7	20	Time: OGIS WQ: 11
Day 10	Rep C	20-1	8.12	7.6	29.9	18	Scientist Counts:
	Rep D	20.1	8.22	7.6	29.6	20	Scientist Counts:
	Rep E	20-1	8.19	75	29.1	18	

Day of Test	Matrix	pН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
	Porewater	7.48	4.9	27.3	0.141	11.2	Date: 8/1/10 Time: /2:00 WQ: &C
Day 0	Overlying Water					1.60	Date: 8/1/10 Time: /2:00 WQ: 5C-
	Meter ID	AL09	RDOY	Ecos	DR4000	DR 3800	
_	Porewater	7.22	3.8	31.0	0.026	1.68	Date: 8/11/10 Time: 1320 WQ: W
Day 10	Overlying Water					41.0	Date: 8/11/10 Time: WQ: (14 1100
	Meter ID	aH03	RDOY	1005	DRYDOD	7023800	

Report Date: Test Code: 11 Aug-10 16:33 (p 1 of 10) 20-7887-4336/39613-22

				20 1001 1000/00010 22
10 Day Marine	e/Estuarine Sedime	ent Test		Pacific EcoRisk
Analysis ID:	13-6238-6682	Endpoint: Survival Rate	CETIS Version:	CETISv1 7.0

Analyzed:	11 Aug-10 16:32	Analysis:	Parametric-Two Sample	Official Results:	Yes	
-----------	-----------------	-----------	-----------------------	-------------------	-----	--

Data Transform	Zeta	Alt Hyp	Monte Carlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corrected)	0	C > T	Not Run				N/A	11.2%	

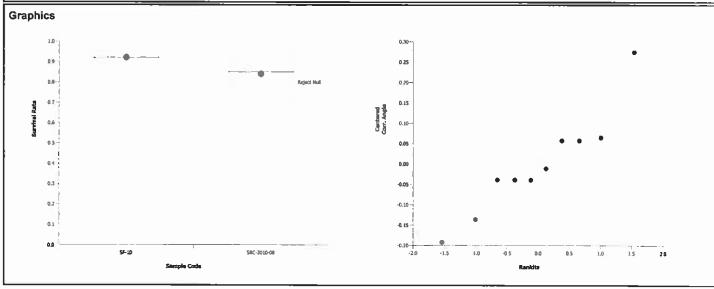
#### Equal Variance t Two-Sample Test

Sample Code v	/s Sa	ample Code	Test Stat	Critical	MSD	P-Value	Decision(5%)
SF-10	SI	RC-2010-08	1.21	1.86	0.159	0.1304	Non-Significant Effect

#### **ANOVA Table**

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(5%)
Between	0.0268788	0.0268788	1	1.46	0.2608	Non-Significant Effect
Error	0.1468595	0.01835743	8			
Total	0.1737382	0.04523623	9			

#### ANOVA Assumptions


	Attribute	Test	Test Stat	Critical	P-Value	Decision(1%)
ı	Variances	Variance Ratio F	12.2	23.2	0.0326	Equal Variances
١	Distribution	Shapiro-Wilk Normality	0.923		0.3852	Normal Distribution

#### **Survival Rate Summary**

Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	DIff%
SF-10	5	0.92	0.91	0.93	0.9	0.95	0.00509	0.0274	2.98%	0.0%
SRC-2010-08	5	0.84	0.795	0.885	0.7	1	0.0222	0.119	14.2%	8.7%

#### Angular (Corrected) Transformed Summary

1 ' '		•								
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
SF-10	5	1.29	1.27	1.31	1.25	1.35	0.00979	0.0527	4.09%	0.0%
SRC-2010-08	5	1.18	1.11	1.25	0.991	1.46	0.0342	0.184	15.6%	8.05%



ACOE (San Rafaell) Client:

Test ID#: ___39622

Date (Day 0): 8.1.10

Ampelisca abdita Species:

Project #: ___16087

Organism Supplier: Brezina

Organism Log #:

5366

Day of Test	Test Replicate	Sample ID:		SRC-2	010-08		Sign-Off
1680	Replicate	Temp (°C)	pH	D.O. (mg/L)	Salinity (ppt)	# Alive	
	Rep A	19.7	7.79	7.3	28.7	ro	Date: 08/01/10
	Rep B	19.7	7.67	7./	28.6	20	Time: /0 : 00
Day 0	Rep C	19.7	7.82	7.5	28.7	20	WQ: Se
	Rep D	19.7	7.61	6.6	28.6	20	Scientist Initiation:
	Rep E	19.7	7.69	7.0	29.6	20	Scientist Confirmation:
Day i	Rep A	19.7	7.86	7.7	28.9		Date: \$/1/10 Time: \$1.10 WQ: (14
Day 2	Rep B	20.2	7.77	7.4	29,0		Date: 9/3/10 Time: 04.0 WO: Ch
Day 3	Rep C	19.8	8.16	7.0	28.7		Date: 8/4/10 Time: 4! 10
Day 4	Rep D	20.2	8.23	7.5	29.1		Date 25/10 Time: WQ: C4 CA10
Day 5	Rep E	20.1	4.38	6.6	29.9		Date: 9/6/10 Time: WQ: 0530
Day 6	Rep A	20.2	8.41	7.4	27.9		Date: 8/7/10 Time: D930
Day 7	Rep B	20.2	7.92	6.2	26.0		Date: 8/8/10 Time: 10:00 WQ: 96-
Day 8	Rep C	20.2	8.40.	6.7	28.2		Date: <b>9/9//</b> 0Time( <b>900</b> ) WQ: <b>CN</b>
Day 9	Rep D	10.2	8.46	7.3	29.5		Date: 9/10/10 Time: 900 WO: 0
	Rep A	20.1	8.38	7.5	28.9	15	Date: 8/11/10
	Rep B	20.1	8.00	6.2	28.1	18	000
Day 10	Rep C	20.1	8.13	5.9	28.7	14	wo: Us
	Rep D	20-1	8.42	6.4	29.6	17	Scientist Counts:
	Rep E	90.1	8.38	6.6	29.5	20	

Day of Test	Matrix	pН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
	Porewater	7.49	3.8	27./	0:365	2.08	Date: 8/1/10 Time: / 2:00 WQ: Se-
Day 0	Overlying Water					0.081	Date: 8/1//0 Time:/2:00 WQ: SG-
ļ. 	Meter ID	ph 09	R. DO4	Ec05	DR4000	DR3800	
	Porewater	6.80	3.5	38.	001.0	3.47	Date: <b>9/11/10</b> Time: 1370 WQ: W
Day 10	Overlying Water					6.13	Date 71/10 Time: WQ: 01 1100
	Meter ID	01103	2004	FCCO	DK-1000	DA3800	

# Appendix G

Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Amphipod, *Ampelisca abdita* 

### **CETIS Summary Report**

Report Date: Test Code: 08 Aug-10 09:38 (p 1 of 1) 11-8400-5954/39626

		_							Test Cour	•-		11-0400	-0904/0902
Acute Amphip	od Survival Tes	t			_							Paci	fic EcoRis
Batch ID: Start Date:	16-7734-4128 01 Aug-10 16:5	0	Test Ty Protoco	•	Survival ASTM E1367-9	9 (Amphipo	d)		Analyst: Diluent:		Irick Anders		
Ending Date:	05 Aug-10 14:50	0	Species	s: A	Ampelisca abdit	ta			Brine:	Not	Applicable		
Duration:	94h		Source	): B	Brezina and As	sociates			Age:	NA			
Sample ID:	11-3329-6818		Code:	K	(CI			<del></del>	Client:	Ref	erence Toxi	cant	
Sample Date:	01 Aug-10 16:50	0	Materia	al: P	otassium chlor	ride			Project:	171	65		
Receive Date:	01 Aug-10 16;56	0	Source	: F	Reference Toxic	cant							
Sample Age:	N/A (19.9 °C)			: Ir	In House								
Comparison S	ummary												
Analysis ID	Endpoint		N	OEL	LOEL	TOEL	PMSD	TU	Me	thod			
02-6514-7291	Survival Rate		0.	.5	1	0.707	24.8%		Dui	nett's	Multiple Co	mparison T	est
Point Estimate	Summary												
Analysis ID	Endpoint		Le	evel	g/L	95% LCL	95% UCL	TU	Me	thod			
11-5225-6550	· · · · · · · · · · · · · · · · · · ·		E	C50	1.1	0.934	1,29		Spe	arma	n-Kärber		
Survival Rate	Summary		_	•								· · · · · · · · · · · · · · · · · · ·	
Conc-g/L	Control Type	Coun	t M	lean	95% LCL	95% UCL	Min	Max	Std	Err	Std Dev	CV%	Diff%
0	Lab Water Contr	2	0,	.95	0.924	0.976	0.9	1	0.0	129	0.0707	7.44%	0.0%
0.25		2	0.	.95	0.924	0.976	0.9	1	0.0	129	0.0707	7.44%	0.0%
0.5		2	0.	.9	0.847	0.953	8.0	1	0,0	258	0.141	15.7%	5. <b>26%</b>
1		2	0.	65	0.624	0.676	0.6	0.7	0.0	129	0.0707	10.9%	31.6%
2		2	0		0	0	0	0	0		0	•	100.0%
4		2	0		0	0	0	0	0		0		100.0%
Survival Rate	Detail												
-	Control Type	Rep 1	l Re	ep 2									
0	Lab Waler Contr	0.9	1										
0.25		0.9	1										
0.5		0.8	1										
1		0.7	0.0	6									
2		0	0										
4		0	0										

Report Date: Test Code: 08 Aug-10 09:38 (p 1 of 2) 11-8400-5954/39626

	•	•						Test	Code:		11-8400-	5954/39626
Acute Amphi	pod Surviv	/al Test		<del>-</del>			_				Pacif	ic EcoRisk
Analysis ID:	02-6514	-7291	End	point: Sun	vival Rate			CETI	S Version:	CETISv1	.7.0	
Analyzed:	08 Aug-	10 9:37		•		trol vs Treat	ments	Offic	ial Results:	Yes		
Data Transfo	rm	-	Zeta	Alt Hyp	Monte Car	rlo	NOEL	LOEL	TOEL	ΤU	PMSD	
Angular (Corr	ected)		0	C > T	Not Run		0.5	1	0.707		24.8%	
Dunnett's Mu	ıltiple Com	parison	Test	,			· · · · · ·					
Control	vs Co	nc-g/L		Test Stat	Critical	MSD	P-Value	Decision(	5%)			
Lab Water Co	ontrol 0.2	25		0	2.83	0.323	0.8333	Non-Signi	ficant Effect			
	0.5	5		0.62	2.83	0.323	0.6007	Non-Signi	ficant Effect			
	1*			3,43	2.83	0.323	0.0242	Significant	l Effect			
	2*			10.2	2.83	0.323	< 0.0001	Significant	l Effect			
	4*			10.2	2.83	0.323	<0.0001	Significan	l Effect			
ANOVA Tabl	e				· · · · · · · · · · · · · · · · · · ·							
Source	Sui	n Squai	es	Mean Squ	are	DF	F Stat	P-Value	Decision(	5%)		
Between	3.1	B4033		0.6368067		5	48.6	<0.0001	Significan	t Effect		
Error	0.0	7855225	i	0.0130920	4	6						
Total	3.2	62586		0.6498987		11		_				
ANOVA Assu	umptions								<u> </u>			
Attribute	Тө	st			Test Stat	Critical	P-Value	Decision(	1%)			
Variances	Мо	od Lever	ne Equality	of Variance	65500	8.75	<0.0001	Unequal V	/ariances			
Distribution			ilk Normal		0.97		0.9090	Normal Distribution				
Survival Rate	Summary	,							<u>- · · · · · · · · · · · · · · · · · · ·</u>			
Conc-g/L	Control 1	Гуре	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Wate	r Contr	2	0.95	0.923	0.977	0.9	1	0.0131	0.0707	7.44%	0.0%
0.25			2	0.95	0.923	0.977	0.9	1	0.0131	0.0707	7.44%	0.0%
0.5			2	0.9	0.846	0.954	0.8	1	0.0263	0.141	15.7%	5.26%
1			2	0.65	0.623	0.677	0.6	0.7	0.0131	0.0707	10.9%	31.6%
2			2	0	0	0	0	0	0	0	70.070	100.0%
4			2	0	0	0	0	0	0	0		100.0%
Angular (Cor	rected) Tr	ansform	ed Sumn	narv								
Conc-g/L	Control 1		Count	Mean	95% I C1	95% UCL	Min	Max	Std Err	Std Dev	CV%	DIff%
0	Lab Wate			1.33	1.29	1.37	1,25	1,41	0.0214	0.115	8.66%	0.0%
0.25			2	1.33	1.29	1.37	1.25	1.41	0.0214	0.115	8.66%	0.0%
0.5			2	1.26	1.18	1.34	1.11	1.41	0.04	0.216	17.1%	5.33%
			2	0.939	0.91	0.967	0.886	0.991	0.04	0.0743	7.92%	
1												29.5%
2			2	0.159	0.159	0.159	0.159	0.159	0	0	0.0%	88.1%
4			2	0.159	0.159	0.159	0.159	0.159	0	0	0.0%	88.1%

Report Date: Test Code: 08 Aug-10 09:38 (p 2 of 2) 11-8400-5954/39626

**Acute Amphipod Survival Test** Pacific EcoRlsk 02-6514-7291 Analysis ID: Endpoint: Survival Rate **CETIS Version: CETISv1.7.0** 08 Aug-10 9:37 Analyzed: Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 0 20 0 15 0.2 07 -0.05 -0 10 0.2 2.0

Report Date: Test Code: 08 Aug-10 09:38 (p 1 of 1)

ode: 11-8400-5954/39626

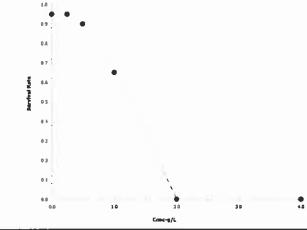
Acute Amphipod Survival Test Pacific EcoRisk

Analysis ID: 11-5225-6550 Endpoint: Survival Rate CETIS Version: CETISv1.7.0

Analyzed: 08 Aug-10 9:37 Analysis: Untrimmed Spearman-Kärber Official Results: Yes

Spearman-Kärber Estimates

 Threshold Option
 Threshold
 Trim
 Mu
 Sigma
 EC50
 95% LCL
 95% UCL


 Control Threshold
 0.05
 0.00%
 0.0396
 0.0347
 1.1
 0.934
 1.29

Survival Ra	ate Summary			Calculated Variate(A/B)							
Conc-g/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	A	В
0	Lab Water Contr	2	0.95	0.9	1	0.0129	0.0707	7.44%	0.0%	19	20
0.25		2	0.95	0.9	1	0.0129	0.0707	7.44%	0.0%	19	20
0.5		2	0.9	0.8	1	0.0258	0.141	15.7%	5.26%	18	20
1		2	0.65	0.6	0.7	0.0129	0.0707	10.9%	31.6%	13	20
2		2	0	0	0	0	0		100.0%	0	20
4		2	0	0	0	0	0		100.0%	0	20

Survival Rate Detail

Conc-g/L	Control Type	Rep 1	Rep 2
0	Lab Water Control	0.9	1
0.25		0.9	1
0.5		0.8	1
1		0.7	0.6
2		0	0
4		0	0

# Graphics



### 96 Hour Marine Reference Toxicant Test Data

Client:	Re	ference Toxicant		Organism Log #:_	5366	
Test Material:	Po	otassium Chloride		Organism Supplier:	Brezing	
Test ID#:	39626	Project #	17165	Species:	Ampelisca abdita	
Test Date:	AILLIP	Randomi	zation: 2 4	Control/Diluent:	28 ppt Seawater	

Treatment	T (4/2)	р	Н	D.O. (	mg/L)	Salinit	y (ppt)	# Live O	ganisms	SIGN-OFF
(g KCI/L)	Temp (℃)	new	old	new	old	new	old	A	В	
Control	19.9	7.93		92		99.6		10	10	Date 3/1/10
0.25	19.9	1.91		19.1		28.0		10	10	Test Solution Prep.
0_5	19.9	7.92		9.		29.2		10	10	New WO
1	19.9	7.90		0.5		P. P.C		10	10	Initiation Time:
2	19.9	7.92	No.	9.1		31.1		10	10	Initiation Signost:
4	19.9	7.91		9.0	I FAIR	33 D		10	10	Ref Tox Stock Batch #
Meter ID:	PURA	PHIL		14/124		ECOH				
Control	20.9		7.79		6.9		28.2	10	0	Date: 2/10
0.25	20.9		7 79		7.0		28.7	10	10	Count Time:
0.5	20.9		7.83		6.9		29.D	9	10	Count Time:   315   Count Signoff:   Sid-
1	20.9		7.83	No.	6.9		29.4	10	10	Old WQ:
2	20.9		7.83		6.9		30.4		0	
4	20.9		7.82		69	7000	32.5	0	0	
Meter ID:	4814		p4112		RD03		6:05			
Control	20,2		772		7.2		282	10	10	Date: 8/3/10
0.25	20,2		7.79		7-1		28.8	e,	10	Count Signoff:
0.5	20,2		781	700	7 /		29.1	109 60	10	Count Signoff:
ı	20,2		781		7-1		29.4	lo	10	Old WQ:
2	-		_	CHU	-	2	_	-		
4		mail a			-		/			
Meter ID:	484		8409		1003	11/2	E005		OF THE LO	
Control	19.6		1.86	0	12		27.4	9	10	Date: p 4/10
0.25	lauso		7.91	TO WE	72		286	9	lo	Count Twite:
0.5	19.6		7.92	(C) at R	7.3	1000	28.2	0	16	Count Signoff RPA
1	196		7.92	CAR I	73	#250	29.2	19	9	Old WQ: ON
2	_		-		-	THE PARTY	-	_	-	
4	_		=		_		-		_	
Meter ID:	484	lus-suit	PHIY		RDOS		ECOS-			
Control	100		7.89		7,3		28.3	9	10	Date: 8/5/10
0.25	127		7.89		7.3		28.7	9	10	lTermination Time:
0.5	19.7		7.41		1.4	W TRE	29.0	8	ĺD	1450 Termination Signoff:
1	19.7		790		7.4		29.3	1	6	Old WQ: JM
2	115,	4,409	Ť	1000	=		-	+	~	1.6
4	_				-		_	_	_	
Meter ID:	4810	0 1800	PH03		2064		Ecq3			22 22 11 000000000000000000000000000000

## **Appendix H**

Test Data and Summary of Statistics for the Evaluation of the Toxicity of the San Rafael Channel Sediments to the Polychaete, *Neanthes arenaceodentata* 

Report Date: Test Code: 21 Jul-10 15:54 (p 1 of 2)

Test Code: 04-4894-3223/39425-34

10 Day Marine	e/Estuarine Sedime	nt Test			_	Pacific EcoRisk
Batch ID:	02-4301-0464	Test Type:	Survival	Analyst:	Jason Walker	=
Start Date:	11 Jul-10 11:00	Protocol:	ASTM E1218-97a (1997)	Diluent:	Not Applicable	
<b>Ending Date:</b>	21 Jul-10 09:00	Species:	Neanthes arenaceodentata	Brine:	Not Applicable	
Duration:	9d 22h	Source:	Don Reisch	Age:	N/A	

Sample Code	Sample ID	Sample Date	Receive Date	Sample Age	Client Name	Project	
Lab Control	11-8603-3517	11 Jul-10 11:00	11 Jul-10 11:00	N/A (20.9 °C)	ACOE	16087	
SF-10	08-4984-0145	15 Jun-10 10:05	15 Jun-10 15:00	26d 1h (0 °C)			
SF-11	14-4973-6714	15 Jun-10 09:30	15 Jun-10 15:00	26d 2h (0 °C)			
SRC-2010-01	17-0782-1094	08 Jun-10 09:20	08 Jun-10 19:00	33d 2h (2.4 °C			
SRC-2010-02	21-4363-5601	09 Jun-10 08:00	09 Jun-10 19:00	32d 3h (1.6 °C			
SRC-2010-03	15-3808-8719	09 Jun-10 11:05	09 Jun-10 19:00	32d (1.6 °C)			
SRC-2010-04	03-3478-6159	11 Jun-10 08:40	11 Jun-10 17:00	30d 2h (0,2 °C			
SRC-2010-05	02-1820-9844	08 Jun-10 14:45	08 Jun-10 19:00	32d 20h (2.4°			
SRC-2010-06	15-6585-2712	09 Jun-10 15:30	09 Jun-10 19:00	31d 20h (3.7°			
SRC-2010-07	08-0994-4638	10 Jun-10 09:00	10 Jun-10 17:00	31d 2h (0.6 °C			
SRC-2010-08	08-9351-2460	10 Jun-10 11:55	10 Jun-10 17:00	30d 23h (1,4°			
Sample Code	Material Type	Sample \$	Source	Station Lo	cation	Latitude	Longitude
Lab Control	Control Sedime	ent San Rafa	el Channel	Lab Contro	l		
SF-10	Sediment	San Rafa	el Channel	San Pablo			
SF-11	Sediment	San Rafa	el Channel	Alcatraz			
SRC-2010-01	Sediment	San Rafa	el Channel	SRC-2010-	-01		
000 0040 00							

	1112121121 - 7772		Otation Location	Californ	Longitude
Lab Control	Control Sediment	San Rafael Channel	Lab Control		
SF-10	Sediment	San Rafael Channel	San Pablo		
SF-11	Sediment	San Rafael Channel	Alcatraz		
SRC-2010-01	Sediment	San Rafael Channel	SRC-2010-01		
SRC-2010-02	Sediment	San Rafael Channel	SRC-2010-02		
SRC-2010-03	Sediment	San Rafael Channel	SRC-2010-03		
SRC-2010-04	Sediment	San Rafael Channel	SRC-2010-04		
SRC-2010-05	Sediment	San Rafael Channel	SRC-2010-05		
SRC-2010-06	Sediment	San Rafael Channel	SRC-2010-06		
SRC-2010-07	Sediment	San Rafael Channel	SRC-2010-07		
SRC-2010-08	Sediment	San Rafael Channel	SRC-2010-08		

Survival Rate Summary										
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control	5	0.94	0.907	0.973	0.8	1	0.0163	0.0894	9.52%	0.0%
SF-10	5	0.94	0.92	0.96	0.9	1	0.01	0.0548	5.83%	0.0%
SF-11	5	0.9	0.9	0.9	0.9	0.9	0	0	0.0%	4.26%
SRC-2010-01	5	0.96	0.94	0.98	0.9	1	0.01	0.0548	5.71%	-2.13%
SRC-2010-02	5	0.94	0.92	0.96	0.9	1	0.01	0.0548	5.83%	0.0%
SRC-2010-03	5	0.86	0.827	0.893	8.0	1	0.0163	0.0894	10.4%	8.51%
SRC-2010-04	5	0.9	0.874	0.926	8.0	1	0.0129	0.0707	7.86%	4.26%
SRC-2010-05	5	0.9	0.874	0.926	8.0	1	0.0129	0.0707	7.86%	4.26%
SRC-2010-06	5	0.96	0.927	0.993	8.0	1	0.0163	0.0894	9.32%	-2.13%
SRC-2010-07	5	0.94	0.92	0.96	0.9	1	0.01	0.0548	5.83%	0.0%
SRC-2010-08	5	0.92	0.889	0.951	8.0	1	0.0153	0.0837	9.09%	2.13%

Report Date: Test Code: 21 Jul-10 15:54 (p 2 of 2) 04-4894-3223/39425-34

10 Day Marine/Estuarine	Sediment Test	<u> </u>				Pacific EcoRlsk
Survival Rate Detail						
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep <b>5</b>	
Lab Control	0.8	1	1	0.9	1	
SF-10	0.9	1	0.9	0.9	1	
SF-11	0,9	0.9	0.9	0.9	0.9	
SRC-2010-01	1	0.9	1	0.9	1	
SRC-2010-02	0.9	1	0.9	0.9	1	
SRC-2010-03	0.9	0.8	0.8	8.0	1	
SRC-2010-04	0.9	0.9	0.9	8.0	1	
SRC-2010-05	1	8,0	0.9	0.9	0.9	
SRC-2010-06	1	1	1	8.0	1	
SRC-2010-07	0.9	0.9	1	0.9	1	
SRC-2010-08	1	0.9	1	8.0	0.9	

Report Date: Test Code: 21 Jul-10 15:56 (p 10 of 10)

04-4894-3223/39425-34

							1851	Code:	U	4-4094-32	23/39425-
10 Day Marine	e/Estuarine Sedin	nent Test								Paci	fic EcoRis
Analysis ID:	03-2222-9193	End	dpoint: Su	rvival Rate	_		CET	IS Version:	CETISv1	7.0	
Analyzed:	21 Jul-10 15:54		*	rametric-Two	Sample		Offic	ial Results:	Yes		
Data Transfor	m	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre	ected)	0	C > T	Not Run					N/A	8.9%	
Equal Varianc	e t Two-Sample '	Test		<u> </u>	· -						
Sample Code	vs Sample C	ode	Test Stat	Critical	MSD	P-Value	Decision	(5%)			
ab Control	SF-10		0.0575	1.86	0.136	0.4778	Non-Signi	ificant Effect			
ANOVA Table										_	_
Source	Sum Squar	res	Mean Squ	uare	DF	F Stat	P-Value	Decision(	5%)		
Between	4.440833E-	-05	4.4408331	E-05	1	0.0033	0.9556	Non-Signit	icant Effect		
Error	0.1076002		0.0134500	03	8			•			
Total	0.1076446		0.0134944	14	9						
ANOVA Assur	mptions						<del></del>				
Attribute	Test			Test Stat	Critical	P-Value	Decision	(1%)			
√ariances	Variance F	Ratio F		2,38	23.2	0.4225	Equal Var	iances			
Distribulion	Shapiro-W	ilk Norma	ity	0.794		0.0121	Normal Di	istribution			
Survival Rate	Summary										
Sample Code		Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control		5	0.94	0.906	0.974	8.0	1	0.0166	0.0894	9.52%	0.0%
SF-10		5	0.94	0.919	0.961	0.9	1	0.0102	0.0548	5.83%	0.0%
Angular (Corr	ected) Transform	ed Sumr	nary								-
Sample Code		Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
_ab Control		5	1.32	1.27	1.37	1.11	1.41	0.0256	0.138	10.4%	0.0%
SF-10		5	1.31	1.28	1.35	1.25	1.41	0.0166	0.0893	6.79%	0.32%
Graphics											
1.0						D.19-				•	
0.9	-										
0.8 -				Rejung Hyll		0.05					
2 0.7-						00.0					
06 06 06 06 06 06 06 06 06 06 06 06 06 0					Centared	Asplica in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s					
•					8	-0 Q5 ·	_				
0.5							•				
0.4						-0 10					
0.3						0.17					
j						-0 LS					
0.2 4						-0.20→					
01							•				
0.0		+				0.25					
	Lab Combrol		SF-10			-20	15 -10	-05 00	0.5 1.0	15	2.0

Client: ACOE (San Rafael Channel) Test ID #: 39425-39434 Date (Day 0): 7 (1/12)

Species: Neanthes arenaceodentata Project #: 16087 Organism Supplier: Don Reish

Organism Log #: 5299

Day of Test	Test Replicate	Sample ID:		Co	ntrol		Sign-Off
		Temp (°C)	рН	D.O. (mg/L	Salinity (ppt)	# Alive	
	Rep A	20.9	7.98	7. 3	30-8	10	Date: 07/11/10
	Rep B	20.9	7.82	7.2	30 .8	10	Time: // :00
Day 0	Rep C	20.9	8.10	7.6	3/.2	10	WQ: &
	Rep D	20.9	7.73	6.8	30.7	10	Scientist Initiation
	Rep E	20.9	7.69	6.5	3/.3	10	Scientist Confirmation:
Day 1	Rep A	20.5	7.90	7.5	31.1		Date: 7/12/10 [Time]   40
Day 2	Rep B	20.4	811	7.8	31.5		Date: HISHO Time: WO: ONS 0935
Day 3	Rep C	20.5	8.29	8.9	30.3		Date:7/14//o Time: WO DT /1:18
Day 4	Rep D	20.5	7.93	7.4	31,0		Date: 7/5//0 Time:
Day 5	Rep E	21.0	8.08	6.3	31.0		Date: 7/16/10 Time: 4 163
Day 6	Rep A	21.0	8.74	7.2	31.9		Date: 71/1/10 Time: 1450
Day 7	Rep B	21.0	818	7.2	29.9	W S	Daie 748-10 Time: [130
Day 8	Rep C	21.0	8.25	7.6	31.2		Date: 4-14-10 Time: 1330
Day 9	Rep D	20.3	8.11	6.8	30.9		Date:7/20/10 Time: 14:30
	Rep A	20.8	8.25	7,3	32.1	8	Date: 7.21.10
	Rep B	20.8	8.20	7.2	30.1	10	Time: 900
Day 10	Rep C	20.8	8.28	7,3	31.8	10	wo: ng
	Rep D	20.8	8,22	7.3	30.3	9	Scientist;
	Rep E	20.3	8.14	7.0	32.6	10	

Day of Test	Matrix	рН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
	Porewater	7.21	3.4	30.4	0.225	10.0	Date:07/10/10 Time:/2100 WO:56
Day 0	Overlying Water						Date: 07/11/10 Time: 11:00 WQ: -55
	Meter ID	Ah/2	2003	Ec03	DB4000	DR3800	
	Porewater	7.14	4.1	31,9	0.108	1-109	Date: 7-21.18 Time: 1400 WQ: 198
Day 10	Overlying Water					1,70	Date: 7, 2116 Time: 930 WQ: 113
	Meter ID	PH12	12024	EL114	D23840 VI	DE7810	

Client: ACOE (San Rafael Channel) Test ID #: 39425 Date (Day 0): Test ID #: Organism Supplier: Don Reish Organism Log #: 52 9 9

Day of Test	Test Replicate	Sample ID:		SF	7- <u>10</u>		Sign-Off
		Temp (°C)	pH D.O. (mg/L) Salinity (pg		)Salinity (ppt)	# Alive	
	Rep A	20,9	7.98	7.5	30.8	10	Date: 07/11/10
	Rep B	20.9	7.98	7.4	30.9	10	Time: //:00
Day 0	Rep C	20.9	8.03	7.4	30.9	10	WQ:SG
	Rep D	20.9	8.05	7.5	3/.0	10	Scientist Initiation:
	Rep E	20.9	7.88	6.8	30.8	/0	Scientist Confirmation: 54
Day 1	Rep A	20.5	7.86	1.5	31.4		Date:7/12/13 Time 140
Day 2	Rep B	20.4	7.74	7.5	30.9		Date: 713h Time: WO: 008 0935
Day 3	Rep C	10.9	8.28	8.1	31.2		Date: 7/11/10 Time: 11:18
Day 4	Rep D	26.5	7.97	8.5	31.5		Date: 7/15//6 Time: 08:45
Day 5	Rep E	210	8.63	7.2	31.7		Date: 1/4 //o Time: 1630
Day 6	Rep A	21,0	8.33	6.7	31.1		Date: 7/1/10 Time 1450
Day 7	Rep B	21.0	7.90	6.8	79.3		Date: 718-10 Time: 1(30)
Day 8	Rep C	21.0	7.90	7.4	28.4		Date: 7:19:10 Time: 1370
Day 9	Rep D	20.3	7.91	7.3	31.0		Date:7/20/10 Time:14:30 WQ: 56
	Rep A	20.3	8,98	7.3	30.8	9	Date: 4.21.10
	<b>Rep B</b>	26.3	8.05	7.3	29.6	10	Time: 900
Day 10	Rep C	20.8	8.08	7.4	30.4	9	WQ: NB
	Rep D	20.8	8.10	7.4	3/ 7	9	Scientist
	Rep E	20.8	8.11	7.4	32,0	10	

Day of Test	Matrix	рН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
	Porewater	7.03	4.6	27.9	0.033	2.30	Date: 07/10/10 Time: /2:00 WQ: 5G-
Day 0	Overlying Water					1.03	Date: 07/11/10 Time: //:00 WQ: 36
	Meter ID	Ph/2	RD03	Eco3	DR4000	DR 3800	
	Porewater	6.99	5,5	30,1	0.034	1115	Date: 7-21.10 Time: 1430 WQ: YB
Day 10	Overlying Water					41.00	Date: 72110 Time: 480 WQ: 18
	Meter ID	PHZ	12D04	5004	DEYOR	DEISO	

Report Date:

21 Jul-10 15:55 (p 9 of 10)

						Test	Code:	(	04-4894-32	223/39425-3
10 Day Marine	/Estuarine Sediment	Test							Paci	ific EcoRis
Analysis ID: Analyzed:	11-9515-9881 21 Jui-10 15:54	•	urvival Rate arametric-Two	o Sample			IS Version: cial Results		.7.0	
Data Transform	n Zeta	Alt Hyp	Monte Ca	ırlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Correc	oted) 0	C > T	Not Run					N/A	7.3%	
Equal Variance	t Two-Sample Test			-						
Sample Code	vs Sample Code	Test Sta	t Critical	MSD	P-Value	Decision	(5%)			
Lab Control	SF-11	1.13	1.86	0.114	0.1460	Non-Sign	ificant Effect			
ANOVA Table						<del></del>				
Source	Sum Squares	Mean So	quare	DF	F Stat	P-Value	Decision(	5%)		
Between	0.01204187	0.01204	187	1	1.27	0.2921		ficant Effect	<del></del>	
Error	0.07572903	0.009466		8						
Total	0.08777089	0.02150	B —————	9 ————						<del></del>
ANOVA Assum										
Attribute	Test		Test Stat		P-Value	Decision		_		
Variances		uality of Variand		13.7	0.1625	Equal Var				
Distribution	Shapiro-Wilk No	ormality	0.816		0.0226	Normal Di	istribution			
Survival Rate S	Summary									
Sample Code	Cou		95% LCL		Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control	5	0.94	0.906	0.974	8.0	1	0.0166	0.0894	9.52%	0.0%
SF-11	5	0.9	0.9	0.9	0.9	0.9	0	0	0.0%	4.26%
Angular (Corre	cted) Transformed S	Summary								- 9
Sample Code	Cou	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control	5	1.32	1.27	1.37	1.11	1.41	0.0256	0.138	10.4%	0.0%
SF-11	5	1.25	1.25	1.25	1.25	1.25	0	0	0.0%	5.26%
Graphics										
10					0 10-					
0.9	•		,					•	•	
0.8-			Reject Hull		0.65					
Ť										
9 0.7-				1	Ē 0.00		• • • •	•		
16				3	0.05					
0 5 -						•				
					-0.10					
0.4										
0.4					.0.15					
					-0.15					
0.3					4.15					
0.3					į	•				

Client: ACOE (San Rafael Channel) Test ID #: 39426 Date (Day 0): 7 // /o

Species: Neanthes arenaceodentata Project #: 16087 Organism Supplier: Don Reish
Organism Log #: 524 9

Day of Test	Test Replicate	Sample ID:		SF	7-11		Sign-Off
	·	Temp (°C)	pН	D.O. (mg/L	Salinity (ppt)	# Alive	
	Rep A	20.9	8.08	7.5	30.8	10	Date; 07/11/10
	Rep B	20.9	8.08	7.6	30.3	(0)	Time: //: 00
Day 0	Rep C	20.9	8-08	7.6	30.5	10	WQ: S
	Rep D	20.9	8.07	7. 6	30.5	10	Scientist Initiation:
	Rep E	20.9	8.05	7.5	30.1	10	Scientist Confirmation:
Day 1	Rep A	20.5	7.95	7.6	31.4		Date: 3/12/10 Time: 1140
Day 2	Rep B	20.4	7.87	7.6	30.1		Date: 7/13/19 Time: WO: 205 0936
Day 3	Rep C	26.5	8.34	8.9	31.2		Date: 7/14/10 Time: WO: DT //: 78
Day 4	Rep D	20.5	7.93	8.5	31.5		Date: 7/15//0 Time:
Day 5	Rep E	21.0	7.99	7.2	31. /		Date: 7/16/16 Time: 1435 16.
Day 6	Rep A	21.0	834	6.8	31.0		Date 7/17/10 Time, 750
Day 7	<b>Rep B</b>	21.0	8.00	7.10	31.4		Date: 7,18-13 Time: 1130
Day 8	Rep C	21.5	8.00	7.5	31.4		Date: 7 (9:10) Time: 1330
Day 9	Rep D	20.3	7.87	7.0	31.1		Date: 7/20/20 Time: /4:30
	Rep A	20.8	8.08	7.4	29.9	٩	Date: 7.21.10
	Rep B	20.8	8,08	7.4	30,0	9	Time: 915
Day 10	Rep C	20.8	8,08	7,4	30.0	9	wo: NB
	Rep D	20.3	8.60	7.5	30.8	9	Scientist:
	Rep E	20.8	8.84	7.5	30.9	9	

Day of Test	Matrix	pН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
	Porewater	7.48	6.0	28.5	0.3/8	</td <td>Date: 07/10/10 Time: 121 to WQ:</td>	Date: 07/10/10 Time: 121 to WQ:
Day 0	Overlying Water						Date 07/11/10 Time: // 108 WQ: 56
	Meter ID	ph/2	RDO3	Ec03	DR4000	PR3800	
	Porewater	7,67	6.5	32,2	0.203	C1.00	Date: 7, 21.10 Time: 1460 WQ: 116
Day 10	Overlying Water		Indau			I C. I. OVI	Date: 7. Zl. 1. 0 Time: 930 WQ: NB
	Meter ID	P442	12084	EC14	DR4010	DP3900	

Report Date: Test Code: 21 Jul-10 15:55 (p 8 of 10)

04-4894-3223/39425-34

						1031	oode.	,	J <del>1</del> 09 <del>-</del> -32	20100420-
10 Day Marine	/Estuarine Sediment To	est	<del>-</del>					_	Paci	ific EcoRis
Analysis ID: Analyzed:		•	urvival Rate arametric-Two	o Sample			IS Version: cial Results:	CETISv1	.7.0	
Data Transfor	m Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre	cted) 0	C > T	Not Run					N/A	8.9%	
Equal Varianc	e t Two-Sample Test	-	<del></del>							
Sample Code	vs Sample Code	Test Sta	t Critical	MSD	P-Value	Decision	(5%)			
Lab Control	SRC-2010-01	-0.387	1.86	0.136	0.6455	Non-Sign	ificant Effect			
ANOVA Table						<u>-</u> -				<del></del>
Source	Sum Squares	Mean So	uare	DF	F Stat	P-Value	Decision(	5%)		
Between	0.002013477	0.002013	3477	1	0.15	0.7089	Non-Signi	ficant Effect	t -	•
Ептог	0.1076002	0.013450	003	8						
Total	0.1096137	0.015463	351	9						
ANOVA Assun	nptions									
Attribute	Test		Test Stat	Critical	P-Value	Decision	(1%)_			
Variances	Variance Ratio F		2.38	23.2	0.4225	Equal Var	iances			
Distribution	Shapiro-Wilk Non	mality	0.811		0.0197	Normal Di	istribution			
Survival Rate	Summary									
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control	5	0.94	0.906	0.974	0.0	1	0.0166	0.0894	9.52%	0.0%
SRC-2010-01	5	0.96	0.939	0.981	0.9	1	0.0102	0.0548	5.71%	-2.13%
Angular (Corre	ected) Transformed Su	ттагу				-			·	
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
ab Control	5	1.32	1.27	1.37	1.11	1.41	0.0256	0.138	10.4%	0.0%
SRC-2010-01	5	1.35	1.31	1.38	1.25	1.41	0.0166	0.0893	6.63%	-2.15%
Graphics								·		<del></del>
1.0					0.10				•	
0.9							• •	•		
2.0			Regions Healt		9.05					
2 0.7→					0.00					
3					*					
3 05				j	4.05					
05-							•			
0.4					-0.10 -	•	•			
03										
1					-Q 15					
0.2-					-0.20					
1.0						•				

0.0



Lath Control

Shouple Code

5AC-2010-01

Client: ACOE (San Rafael Channel) Test ID #: 39427 Date (Day 0):7*(^^/>
Species: Neanthes arenaceodentata Project #: 16087 Organism Supplier: Don Reish Organism Log #:

Day of Test	Test Replicate	Sample ID:		SRC-2	2010-01		Sign-Off
	•	Temp (°C)	pН	D.O. (mg/L	Salinity (ppt)	# Alive	
	Rep A	20.9	7.88	7.2	30.9	01	Date: 07/11/10
	Rep B	20.9	7.82	7.1	30 . 8	(0)	Time: //:00
Day 0	Rep C	20.9	7.83	7.0	30.8	10	WQ: SG.
	Rep D	20.9	7.89	7.2	31.0	10	Scientist Initiation:
	Rep E	20.9	7. 91	7.4	3/.5	10	Scientist Confirmation:
Day 1	Rep A	20.5	7.87	7.6	31.9		Date: 7/12/16 Time 1140
Day 2	Rep B	20.4	7.80	7.6	30.5		Date: 7/13/10 Time: WO: 000 0945
Day 3	Rep C	20.5	8.29	8.5	30.3		Date: 7/14/10 Time: WO: DS 1/: 19
Day 4	Rep D	20.5	-8-1.93	8.5	31.8		Date: 7)(5 Time: WO: 05 9:06
Day 5	Rep E	21.0	8.01	7.4	30.0		Date: 7/16/20 Time: 1640
Day 6	Rep A	21.0	8.27	1.9	31.8		Date: 7/17/10 Tinte:
Day 7	Rep B	21.0	7.85	7.6	31.4		Date: 418/10 Time: 1130
Day 8	Rep C	UID	790	7.7	31.3		Date: 7/19/10 Time 1330
Day 9	Rep D	20.3	7.83	7.4	31.1		Date: 7/20/10 Time: 14:30
	Rep A	20.8	7.95	7.3	31.3	10	Date: 7.2(.10
	<b>Кер</b> В	20.3	7.96	7.3	30,9	9	Time: 1015
Day 10	Rep C	20.8	7.95	7.3	30,1	10	wo ns
	Rep D	20.8	7.94	7.3	30.6	9	Scientist
	Rep E	20.8	7.95	7.3	32.5	10	

Day of Test	Matrix	рН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
	Porewater	7.28	4.1	29.2	0.036	11.6	Date:07/10/10 Time: /2:00 WQ:56-
Day 0	Overlying Water					3.49	Date: 07/11/10Time: 11:00 WQ: 56
	Meter 1D	ph/2	RD 03	Ec03	02 84000	DA 3800	
	Porewater	7.39	6.2	32.4	0.039	2-09	Date: 7.21.10 Time: 1400 WQ: NB
Day 10	Overlying Water					1.57	Date: 7.21.10 Time: 645 WQ: NG
:-	Meter ID	7412	PODY	ELOY	DB11990	DE38 du	

Report Date:

21 Jul-10 15:55 (p 7 of 10)

Test Code:

04-4894-3223/39425-34

						1030	Code,		777007-02	23/33423
10 Day Marine	/Estuarine Sedimen	t Test			<u> </u>				Paci	fic EcoRi
Analysis ID: Analyzed:	16-1253-7505 21 Jul-10 15:54	Endpoint: Analysis:	Survival Rate Parametric-Two	o Sample			IS Version: cial Results:	CETISv1 Yes	.7.0	
Data Transform	m Ze	ta Alt H	Hyp Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Correc	cted) 0	C>1	Not Run		-			N/A	8.9%	
Equal Variance	e t Two-Sample Tes	t								
Sample Code	vs Sample Code	Test	Stat Critical	MSD	P-Value	Decision	(5%)			
Lab Control	SRC-2010-02	0.057	75 1.86	0.136	0.4778		ificant Effect			
ANOVA Table										
Source	Sum Squares	Mear	n Square	DF	F Stat	P-Value	Decision(	5%)		
Between	4.440833E-05	4.440	0833E-05	1	0.0033	0.9556	Non-Signif	icant Effect		
Error	0.1076002	0.013	345003	8			_			
Total	0.1076446	0.013	349444	9						
ANOVA Assum	nptions		<u> </u>							
Attribute	Test		Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Variance Rati	o F	2.38	23.2	0.4225	Equal Var	iances			
Distribution	Shapiro-Wilk	Normality	0.794		0.0121	Normal Di	istribution			
Survival Rate S	Summary		<del></del>	<u> </u>						
Sample Code	Co	unt Mear	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control	5	0.94	0.906	0.974	0.8	1	0.0166	0.0894	9.52%	0.0%
SRC-2010-02	5	0.94	0.919	0.961	0.9	1	0.0102	0.0548	5.83%	0.0%
Angular (Corre	cted) Transformed	Summary			<del></del>			<u> </u>	<u>·</u>	
Sample Code	Co	unt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control	5	1.32	1.27	1.37	1.11	1.41	0.0256	0.138	10.4%	0.0%
SRC-2010-02	5	1.31	1.28	1.35	1.25	1.41	0.0166	0.0893	6.79%	0.32%
Graphics					<del></del> -					
10-					0.10					
			•				•	• • •	•	
09			Resect Hull		0.05					
<b>c</b> 8 - <del>`</del>			Nepth Hill							
<b>5</b> 07-					0.00					
1				1	Corr. Angle					
Q6				5	0.05		_			
05-						•	• • •			
0.4					-0 10					
i										

0.2

1.0

0.0

Lab Control

Sample Code

SAC-2010-02

0.15

-0.20

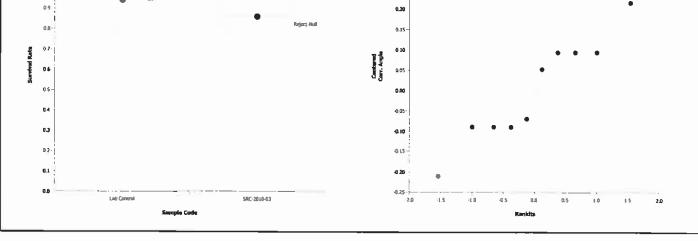
-0 25

Client: ACOE (San Rafael Channel) Test ID #: 39428 Date (Day 0): A-11-6

Species: Neanthes arenaceodentata Project #: 16087 Organism Supplier: Don Reish

Organism Log #:  $\leq 299$ 

Day of Test	Test Replicate	Sample ID:		SRC-2	2010-02		Sign-Off
	<b>.</b>	Temp (°C)	pH D.O. (mg/L) Salinity (ppt)			# Alive	
	Rep A	20.9	7.9/	7.4	31.1	10	Date: 07/11/10
	Rep B	20.9	7.78	7.2	30.5	10	Time: //:00
Day 0	Rep C	20.9	7.87	7.3	30.5	10	WQ: SE
	Rep D	20.9	7.87	7.5	3/.5	10	Scientist Initiation
	Rep E	20.9	7. 87	7.6	29.4	10	Scientist Confirmation: ≤₩-
Day 1	Rep A	20.5	7-88	7.6	31.7		Date: 7/12/10 Time:
Day 2	Rep B	20.4	7.71	7.6	30.2		Date: 7/13110 Time: 0942_
Day 3	Rep C	20.5	8.28	8.8	30.4		Date: 714/10 Time: WO: 07 //-19
Day 4	Rep D	20.5	7.89	8.6	31.1		Date: 1/5/10 Time: 09:06
Day 5	Rep E	2/10	7.96	7.3	30.5		Date: 7/14/0 Time: /640 WO: DT
Day 6	Rep A	21.0	8.24	7.3	30.4		Date: ) In lo Time:
Day 7	Rep B	2.6	7.77	7.1	31.5		Date 11810 Time: 1130
Day 8	Rep C	21.15	7.95	7.6	31.9		Date 31910 Time 1330
Day 9	Rep D	20.3	7.85	7.5	31.2		Date: 7/20/10 Time: 14:30
	Rep A	26.8	80,8	7.1	31.4	9	Date:7.21.10
	Rep B	20.8	7.97	6.8	30.5	10	Time: 1015
Day 10	Rep C	20.8	7.97	7.2	30.9	9	WQ: NB
	Rep D	20.8	7,99	7.5	31.0	9	Scientist:
	Rep E	20,8	7.99	7.5	33,1	10	


Day of Test	Matrix	рН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
Porewater		7.22	3.7	28.6	0.015	12.2	Date:07/10/10 Time: /2:00 WQ: 56
Day 0	Overlying Water						Date: 07/11/16 Time: //:00 WQ: 55
	Meter ID	DA12	RD03	Ec03	DR4000	DR 3800	
	Porewater	7.11	6.0	31.9	0.038	1.88	Date: 7:21:10 Time: 1400 WQ: MB
Day 10	Overlying Water					41.00	Date: 7,21,10 Time: 1045 WQ: NB
	Meter ID	PHIZ	12004	ECO4	DRYSOD	D123800	

Report Date: **Test Code:** 

21 Jul-10 15:55 (p 6 of 10)

04-4894-3223/39425-34

						lest	Code:	C	14-4894-32	23/39425-
10 Day Marine/Es	tuarine Sediment	Test							Paci	fic EcoRis
	'-1463-5003   Jul-10 15:54	•	rvival Rate rametric-Two	o Sample			IS Version: cial Results:	CETISv1 Yes	.7.0	
Data Transform	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corrected	d) 0	C > T	Not Run		_			N/A	10.7%	
Equal Variance t	Two-Sample Test									
Sample Code v	s Sample Code	Test Stat	Critical	MSD	P-Value	Decision	(5%)			
Lab Control	SRC-2010-03	1.41	1.86	0.16	0.0976	Non-Sign	ificant Effect			
ANOVA Table									<del></del>	
Source	Sum Squares	Mean Sq	uare	DF	F Stat	P-Value	Decision(	5%)		
Between	0.03717765	0.037177	65	1	2	0.1953	Non-Signif	icant Effect		
Error	0.1488882	0.018611	03	8						
Total	0.1860659	0.055788	68	9						
ANOVA Assumpti	ions									
Attribute	Test		Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Variance Ratio	=	1.04	23.2	0.9741	Equal Vai	riances			
Distribution	Shapiro-Wilk No	ormality	0.927	_	0.4235	Normal D	istribution			
Survival Rate Sur	nmary					- <del></del>				
Sample Code	Cou	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control	5	0.94	0.906	0.974	0.8	1	0.0166	0.0894	9.52%	0.0%
SRC-2010-03		0.86	0.826	0.894	8.0	1	0.0166	0.0894	10.4%	8.51%
Angular (Correcte	ed) Transformed S	ummary								
Sample Code	Cour	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control	5	1.32	1.27	1.37	1.11	1.41	0.0256	0,138	10.4%	0.0%
SRC-2010-03	5	1.2	1.15	1.25	1.11	1.41	0.0251	0.135	11,3%	9.25%
Graphics		<u> </u>								
_										
1.0					0.25					
0.9	-				9.20				•	



Client: ACOE (San Rafael Channel) Test ID #: 39429 Date (Day 0): 7.11.10

Species: Neanthes arenaceodentata Project #: 16087 Organism Supplier: Don Reish Organism Log #: 5299

Day of Test	Test Replicate	Sample ID:		SRC-	2010-03		Sign-	Off
		Temp (°C)	рН	D.O. (mg/I	_) Salinity (ppt)	# Alive		
	Rep A	20.9	7.64	5.9	29.0	10	Date: 07////	10
	Rep B	20.9	7.89	7. 3	28.8	10	Time: //:00	
Day 0	Rep C	20.9	7.76	6.9	28.8	10	WQ: S	
	Rep D	20.9	7-90	7.4	28.9	10	Scientist Initiation	97-
	Rep E	20.9	7.70	6.3	29.2	10	Scientist Confirma	2/1
Day I	Rep A	20.5	7.68	6.7	29.5		Date:11:410 T	me: II40
Day 2	<b>Rep B</b>	20.4	7.79	7.7	28.8		Date: High T	0941
Day 3	Rep C	20.5	8.17	8.8	28.8			11:20
Day 4	Rep D	20.5	7.84	8.4	29,5		Date: 7/13//6	09:04
Day 5	Rep E	21.0	7.87	7.0	31.2		Date: 7//6/10	inter 1440
Day 6	Rep A	21.0	8.25	7.2	31.2		Date: 7/17/10	1450
Day 7	Rep B	21.0	7.96	7.5	50.5		Date: 7-18-10 T	ime:  130
Day 8	Rep C	2.5	8.72	7.6	31.0		Date: 21410 T	ime: 1330
Day 9	Rep D	20.3	7.88	7.5	31.5		Date 7/20/10	me: 14:30
	Rep A	20.8	8.05	7.0	32.5	9	Date: 7.21.1	δ
	Rep B	20.8	8.00	7.2	30.4	8	Time: 1015	
Day 10	Rep C	20.8	8.86	7.4	31.1	8	WQ: NB	
	Rep D	20.8	8.07	7.4	30,6	8	Scientist:	^
	Rep E	20.90	8,03	7.5	31.0	10		

Day of Test	Matrix	рН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
	Porewater	7.23	4.9	28.7	0.020	8.99	Date:07/10/10 Time: /2:00 WQ: 56-
Day 0	Overlying Water					1.11	Date: 07/11/10 Time: /1:00 WQ: 56
	Meter ID	ph03	2002	Ec04	DA4000	DR 3800	
	Porewater	7.21	6.0	29.1	0.036	7.84	Date: 4.21-10 Time: (40) WQ: NB
Day 10	Overlying Water					41.00	Date: 72110 Time 1044 WQ: 11B
	Meter ID	PHZ	PUJU	ECOU	DEMAYS	DIZ3Bro	

Report Date: Test Code:

21 Jul-10 15:55 (p 5 of 10)

04-4894-3223/39425-34

0 Day Marine	/Estuarine Sediment	Test							Paci	fic EcoRi
nalysis ID: nalyzed:	10-2515-6858 21 Jul-10 15:54	Endpoint: Analysis:	Survival Rate Parametric-Tw	o Sample			IS Version:		.7.0	
ata Transfor		a Alt l	lyp Monte Ca	arlo	NOEL	LOEL	TOEL	TU	PMSD	_
ngular (Corre	cted) 0	C > 1	Not Run					N/A	9.58%	
qual Variano	e t Two-Sample Test									
ample Code	vs Sample Code	Test	Stat Critical	MSD	P-Value	Decision(	(5%)			
ab Control	SRC-2010-04	0,834	1.86	0.145	0.2144	Non-Signi	ficant Effec	t		
NOVA Table										
ource	Sum Squares	Mear	n Square	DF	F Stat	P-Value	Decision	(5%)		
etween	0.01062373	0.010	062373	1	0.695	0.4287	Non-Sign	ificant Effect		
rror	0.1223343		529179	8						
otal	0.1329581 	0.02	591552 ——————	9						
NOVA Assu	nptions									
ttribute	Test		Test Stat		P-Value	Decision	` '			
ariances	Variance Ratio		1.62	23.2	0.6496	Equal Var				
istribution	Shapiro-Wilk N	Normality ————	0.934		0.4923	Normal Di	istribution			
urvival Rate	Summary									
ample Code		unt Meai			Min	Max	Std Err	Std Dev	CV%	Diff%
ab Control	5	0.94	0.906	0.974	0.8	1	0.0166	0.0894	9.52%	0.0%
RC-2010-04	5	0.9	0.873	0.927	8.0	1	0.0131	0.0707	7.86%	4.26%
ngular (Corr	ected) Transformed	Summary								
ample Code	Cor	unt Mear	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
ab Control	5	1.32	1.27	1.37	1.11	1.41	0.0256	0.138	10.4%	0.0%
RC-2010-04	5	1.25	1.21	1.29	1.11	1.41	0.02	0.108	8.61%	4.94%
oraphics	•		■ - — Report Yould		010 - 015 - 010 - 015 - 015 - 010 - 015 - 015 - 010 - 015 - 010 - 015 - 015 - 010 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 - 015 -	•	• •	• • •	•	
-51										
00	Lub Control	· · · · · · · · · · · · · · · · · · ·	SRC-2010-04		-0.25	45 40	-0.5 0.0	0.5 1.	1 15	2.0

Client: ACOE (San Rafael Channel) Test ID #: 39430 Date (Day 0): 771.10

Species: Neanthes arenaceodentata Project #: 16087 Organism Supplier: Don Reish Organism Log #: 529 9

Day of Test	Test Replicate	Sample ID:		SRC-2		Sign	-Off		
		Temp (°C)	рН	D.O. (mg/L)	Salinity (ppt)	# Alive			
	Rep A	20.7	7.96	7.5	30.5	10	Date: 07/11/	10	i
	Rep B	20.9	7.98	7.6	30.3	10	Time: //:00		
Day 0	Rep C	20.9	7.96	7.6	30.5	10	WQ: Se		
	Rep D	20.9	7.96	7.6	30.6	10	Scientist Initiation	on: 194-	
	Rep E	20.9	7.92	7.6	31.4	10	Scientist Confin	nation:	
Day I	Rep A	20.5	7.89	7.5	31.0		WO: UM	Time: [[LI ]]	
Day 2	Rep B	20.4	7.80	7.6	30.1		Date: 7/13/10 WO: 003	Time 38	
Day 3	Rep C	20.5	8.25	8.7	10.7		Date: 7/4/10	11:22	
Day 4	Rep D	20.5	7.94	84	31.1			15 08.58	
Day 5	Rep E	21.0	7.87	6.6	31,1		Date: 7//4//	ime: 4450	1630
Day 6	Rep A	21.0	8.28	7.0	30.8		WO: 1/1 Date: 7/17//0 WQ: 07	Time: 1450	
Day 7	Rep B	21.0	7.93	7.6	31.7	***************************************	Date: 3-18-10 WQ: NB	Time 1130	
Day 8	Rep C	21.6	7.99	1.7	31.5		Date: 419-11)	Time: 1330	
Day 9	Rep D	20.3	7.86	7.5	29.8		Date: 7/20/10 WO: 56	Time: 1430	
	Rep A	20,8	7,93	7.3	30.9	9	Date: 7.21.	19	
	Rep B	20,8	8.02	7.3	31,2	9	Time: 945		
Day 10	Rep C	20.8	8.05	7,4	30.55	9	wo: NB		
	Rep D	20.8	8.04	7.4	29.8	4	Scientist	~ / EER	
	Rep E	20.8	7,97	7.4	31.4	IV			

Day of Test	Matrix	рН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Oif
	Porewater	7.20	3.8	29.3	0.028	11.0	Date 07/10/10 Time: / 2:00 WQ: 59-
Day 0	Overlying Water					2.53	Date: 07/11/10 Time: 11:00 WQ: 50
	Meter ID	ph03	2002	Ec04	284000	DR3 800	
	Porewater	7.17	59	31.3	0.046	2.64	Date: 7,21,10 Time: 1400 WQ: MS
Day 10	Overlying Water					4.0	Date: 7, 21,10 Time: [315] WQ: NA
	Meter ID	742	P004	EC04	DRUDDI	DE1818	

Report Date:

21 Jul-10 15:55 (p 4 of 10) 04-4894-3223/39425-34

						Test Code:			04-4894-3223/39425-34	
10 Day Marine	Estuarine Sediment 1	l'est							Pacif	fic EcoRisk
Analysis ID: Analyzed:	17-9984-4512 21 Jul-10 15:54	•	rvival Rate rametric-Two	Sample			IS Version: cial Results:	CETISv1. Yes	7,0	
Data Transform	n Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	ΤU	PMSD	
Angular (Correc	cted) 0	C > T	Not Run					N/A	9.58%	
Equal Variance	t Two-Sample Test									
Sample Code	vs Sample Code	Test Stat	Critical	MSD	P-Value	Decision	(5%)			
Lab Control	SRC-2010-05	0.834	1.86	0.145	0.2144	Non-Signi	ificant Effect			
ANOVA Table										
Source	Sum Squares	Mean Sq	uare	DF	F Stat	P-Value	Decision(	5%)		
Between	0.01062373	0.010623	73	1	0.695	0.4287	Non-Signif	icant Effect		
Error	0.1223343	0,015291	79	В						
Total	0.1329581	0.025915	52	9						
ANOVA Assum	ıptions									
Attribute	Test		Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Variance Ratio F		1.62	23.2	0.6496	Equal Var	riances			
Distribution	Shapiro-Wilk No	rmality	0.934		0.4923	Normal D	istribution			
Survival Rate S	Summary									
Sample Code	Cour	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control	5	0.94	0.906	0.974	0.8	1	0.0166	0.0894	9.52%	0.0%
SRC-2010-05	5	0.9	0.873	0.927	0.8	1	0.0131	0.0707	7.86%	4.26%
Angular (Corre	cted) Transformed S	ummary								-
Sample Code	Cour	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control	5	1.32	1.27	1.37	1.11	1.41	0.0256	0.138	10.4%	0.0%
SRC-2010-05	5	1.25	1.21	1.29	1.11	1.41	0.02	0.108	8.61%	4.94%
Graphics									-	
1.0~					0.20 ¬					
1	•				157				_	
0.9			Rejust Hull		9 15 -				•	
0.8-			rayan 1999		0.10					
07-				_						
2 0.6				Cartanad	- 0.05 - 0.05					
<b>§</b>				3	3 a.o.					
0.5 · ·										

15 20

-0.05

-0.15

-1.0

93

01

Lab Control

SRC-2010-05

Client: ACOE (San Rafael Channel) Test ID #: 39431 Date (Day 0): 7-1/1/0

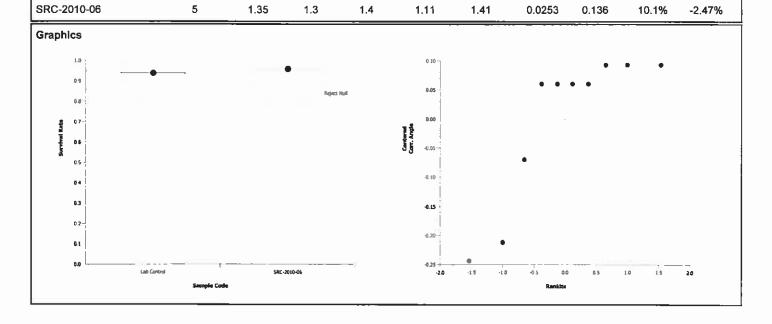
Species: Neanthes arenaceodentata Project #: 16087 Organism Supplier: Don Reish

Organism Log #: 3299

Day of Test	Test Replicate	Sample ID:		SRC-2	2010-05		Sign-Off
_	F	Temp (°C)	рН	D.O. (mg/L	Salinity (ppt)	# Alive	
	Rep A	20.9	7.76	6.9	3/. 3	10	Date: 07/11/10
	Rep B	20.9	7.85	7.2	30.8	10	Time: //:00
Day 0	Rep C	20.9	7.87	7.5	3/./	10	WQ Sg.
	Rep D	20.9	7.94	7.5	3/.2	10	Scientia Distration:
	Rep E	20.9	7.90	7.0	30.8	10	Scientist Confirmation:
Day i	Rep A	20.5	7.72	6.9	31.7		WO: UM Time:
Day 2	Rep B	20.4	7.59	7.3	30.5		WO: 38 OGS
Day 3	Rep C	20.5	836	8.9	31.9		WO: 02 //21
Day 4	Rep D	20.5	8.03	8.1	29.1		Date: 7115/10 1 ime:
Day 5	Rep E	21.0	7.91	7.1	27.6		Date: 7//6/10 Time: 1436
Day 6	Rep A	21,0	8.31	7.3	27.4		WO: 07 1450
Day 7	Rep B	21.0	7.92	7.4	29.8		Date: 7-18-10 Time 1130
Day 8	Rep C	21.15	୫.ଧ	7.5	31.1		Date 74 911 7 Time: (53)
Day 9	Rep D	20.3	.7.89	7.5	30.9		Date:7/20/10 Time: 14:30
	Rep A	20.8	8.01	7,3	30.2	10	Date: -010 7:21:10
	Rep B	20.8	8.05	7.3	29.9	8	945
Day 10	Rep C	20.8	8.07	7.3	30,7	역	WQ: MB
	Rep D	20,8	8.85	7.3	30 10	9	Scientist
	Rep E	28.8	8.84	7.3	32.4	9	

Day of Test	Matrix	pН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
	Porewater	7.23	4.3	29.5	0.040	7,97	Date:07/10/10 Time:/2:00 WQ: 56-
Day 0	Overlying Water					2.49	Date: 07/11/10 Time: //:00 WQ: 50
	Meter ID	PAQS	RP02	EC04	DR 9000	DR 3800	
	Porewater	7,09	6.0		0.037	3,16	Date: 4,21.10 Time: 1400 WQ: NB
Day 10	Overlying Water					71.00	Date: 4.21.13 Time: 10115 WQ: 16
	Meter ID	*H12	RUZY	F604	DRYOND	DR3800	

Report Date:


21 Jul-10 15:55 (p 3 of 10)

04-4894-3223/39425-34 **Test Code:** 

10 Day Marine	e/Estuarine Sediment	t Test						Pacific EcoRisi
Analysis ID: Analyzed:	12-9945-8768 21 Jul-10 15:54	Endpoint: Survival Rate Analysis: Nonparametr		le		IS Version: cial Results		.7.0
Data Transfor	m Zet	a Alt Hyp Monte C	Carlo	NOEL	LOEL	TOEL	TU	PMSD
Angular (Corre	ected) 0	C > T Not Run	1				N/A	10.8%
Wilcoxon Ran	ık Sum Two-Sample	Test						
Sample Code	vs Sample Code	Test Stat Critical	Ties	P-Value	Decision	(5%)		
Lab Control	SRC-2010-06	29.5	2	0.5794	Non-Sign	ificant Effect	t	
ANOVA Table								
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(	(5%)	
Between	0.002655933	0.002655933	1	0.142	0.7165	Non-Signi	ficant Effect	
Error	0.1500843	0.01876054	8					
Total	0.1527403	0.02141647	9					
ANOVA Assur	mptions							
Attribute	Test	Test Sta	at Critical	P-Value	Decision	(1%)		

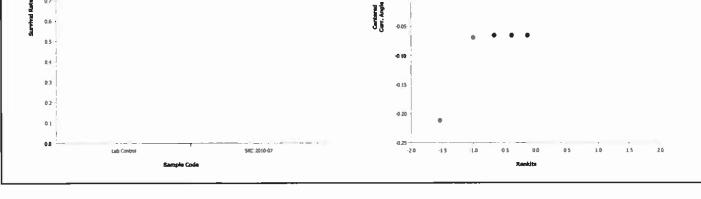
Variances Distribution	Variance Ratio F Shapiro-Wilk Norma	lity	1.02 0.72	23.2	0.9863 0.0016		ariances mal Distributi	on		
Survival Rate Sur	mmary									
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control	5	0.94	0.906	0.974	0.8	1	0.0166	0.0894	9.52%	0.0%
0000 0040 00	_	0.00	0.000	0.007			0.0100	0.0004		

SRC-2010-06	5	0,96	0.926	0.994	8.0	11	0.0166	0.0894	9.32%	-2.13%
Angular (Corrected) T	ransformed Sum	mary								
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control	5	1.32	1 27	1.37	1 11	1.41	0.0256	0.138	10.4%	0.0%



Client: ACOE (San Rafael Channel) Test ID #: 39432 Date (Day 0): 7-11/0

Species: Neanthes arenaceodentata Project #: 16087 Organism Supplier: Don Reish
Organism Log #: 5799


Day of Test	Test Replicate	Sample ID:			Sign-Off			
1000	rtopitoato	Temp (°C)	рН	D.O. (mg/l	_)Salinity (ppt)	# Alive		
	Rep A	20.9	7.85	7.5	30.6	10	Date: 07/11	110
i	Rep B	20.9	7.89	7.6	30-9	(0)	Time: //:00	
Day 0	Rep C	20.9	7.90	7.6	30.5	(a	WQ: SG	
	Rep D	20.9	7.91	7.6	36.7	10	Scientist Initiation	477
	Rep E	20.9	7.92	7.6	3/.7	10	Scientist Confirm	nation:
Day 1	Rep A	20.5	7-78	7.5	31.0		Date:7/12/10 WO: UM	Time 1 (40
Day 2	Rep B	20.4	7.77	7.7	31.0		Date: 711511 0	Time: 0739
Day 3	Rep C	20.5	8.16	89	30.4		Date: 7/14/10	11:21
Day 4	Rep D	20.5	8.15	8.3	31.2		Date: 7/15/10	19:10
Day 5	Rep E	21.0	7.92	7.2	30.8		Date: 1/16/10	
Day 6	Rep A	21.0	8.16	7.4	32.0		Date-71171/0 WQ: PT	Time: 1750
Day 7	Rep B	21.0	7.80	7.6	29.4	d Bourn	Date: Alg 10	Time: 1150
Day 8	Rep C	21.5	7.89	7.6	30.9		Date: 7 HILD WQ: 115	Time: 1335
Day 9	Rep D	20.3	7.70	7.6	31.2		Date: 7/20/10	Time: 14:30
2007	Rep A	20.8	7.80	7.4	31.9	10	Date: 7.21	10
	Rep B	20,8	7.82	7.3	30.7	10	Time: 946	-
Day 10	Rep C	20.8	7,84	7,4	30.0	10	WQ: NB	
,		20.8	7.84	7.4	3016	8	Scientist	~
	Rep D Rep E	20.8	7.87	7.4	32.7	10	Summi	

Day of Test	Matrix	рН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
	Porewater	7.23	4.5	29,6	0.111	10.6	Date:07/10/10 Time: 12:00 WQ: ====================================
Day 0	Overlying Water					2.01	Date: 07/11/10 Time: // : 00 WQ: 25-
	Meter ID	P 603	RDOZ	EC04	DRYOD	DR3800	
	Porewater	719	6.1	1	0.034	7,88	Date: 7 21.10 Time: 1400 WQ: MB
Day 10	Overlying Water	lik mil				1.47	Date: 7.21.10 Time: 1015 WQ: MB
	Meter ID	PHIZ	P004	£604	DIZYOOD	D123810	

Report Date:

21 Jul-10 15:55 (p 2 of 10) 04-4894-3223/39425-34

	•	•					Test	Code:	0	4-4894-32	23/39425-3
10 Day Marine	/Estu	arine Sedlment 1	Test			-		_		Paci	fic EcoRis
Analysis ID:	05-8	005-6640	Endpoint:	Survival Ra	ite	_	CET	IS Version:	CETISv1.	.7.0	
Analyzed:	21 J	ul-10 15:54	Analysis:	Parametric	-Two Sample		Offic	ial Results	: Yes		
Data Transfor	m	Zeta	Alt H	,,	Carlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre	cted)	0	C > T	Not R	un				N/A	8.9%	
Equal Varianc	e t Tv	vo-Sample Test	-								
Sample Code	vs	Sample Code	Test :	Stat Critic	al MSD	P-Value	Decision	<u>`                                    </u>			
Lab Control		SRC-2010-07	0,057	5 1.86	0.136	0.4778	Non-Sign	ificant Effect			
ANOVA Table			-								
Source		Sum Squares	Mean	Square	DF _	F Stat	P-Value	Decision	(5%)		
Between		4.440833E-05		833E-05	1	0.0033	0.9556	Non-Signi	ificant Effect		
Епог		0.1076002	0.013	45003	_ 8						
Total		0.1076446	0.013	49444	9						
ANOVA Assur	nptio	ns		<del>_</del>							
Attribute		Test		Test	Stat Critical	P-Value	Decision	(1%)			
Variances		Variance Ratio I	F	2.38	23.2	0.4225	Equal Va	riances			
Distribution		Shapiro-Wilk No	mality	0.794		0.0121	Normal D	istribution			
Survival Rate	Sumr	пагу	-			-					
Sample Code		Cour	nt Mean	95% 1	LCL 95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control		5	0.94	0.906	0.974	0.8	1	0.0166	0.0894	9.52%	0.0%
SRC-2010-07		5	0.94	0.919	0.961	0.9	1	0.0102	0.0548	5.83%	0.0%
Angular (Corr	ected	) Transformed S	Summary								,
Sample Code		Cour	nt Mean	95%	LCL 95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control		5	1.32	1.27	1.37	1,11	1.41	0.0256	0,138	10.4%	0.0%
SRC-2010-07		5	1.31	1,28	1.35	1.25	1.41	0.0166	0.0893	6.79%	0.32%
Graphics											
1.0						0.10-					
0.9		• -	-	-•							
09				Re	ÇINÇS HILIĞ	0.05					
Q.II i											
0.2						0.00					
2						Assis					



Analyst:



Client: ACOE (San Rafael Channel) Test ID #: 39433 Date (Day 0): 7(1/10)

Species: Neanthes arenaceodentata Project #: 16087 Organism Supplier: Don Reish

Organism Log #: \( \frac{1}{2} \cdot \cdot \)

Day of Test	Test Replicate	Sample ID:		SRC-2	2010-07		Sign-Off	
		Temp (°C)	pН	D.O. (mg/L	Salinity (ppt)	# Alive		
	Rep A	20.9	7.92	7.5	31.4	0	Date: 07/11/10	
	Rep B	20.9	7.93	7.5	30.7	10	Time: // :00	
Day 0	Rep C	20.9	7.92	7.5	30.5	(0	WQ: SG	
	Rep D	20.9	7.91	7.5	3/.2	10	Scientist Initiation:	
	Rep E	20.9	7.93	7.6	30.6	10	Scientist Confirmation:	
Day 1	Rep A	20.5	7.39	7.5	31.2	fa", -	Date: 41/1/10 Time: 11/4	)
Day 2	Rep B	20.4	7.74	7.4	30.4		Date:7/13/10 Time: WO: -08 0937	
Day 3	Rep C	20.5	8.25	8.7	31.0		Date: 7/19/15 Time:	
Day 4	Rep D	20.5	7.88	8.2	31.5		WO: PT D8:SI	П
Day 5	Rep E	21.0	7.99	7.1	31.6		Date: 7/16/10 Time: 143	
Day 6	Rep A	21.0	8.36	6.4	31.7		Date 7/17/10 Time: 175	0
Day 7	Rep B	21.0	7.95	7.2	28.7		Date 718-10 Time 1130	
Day 8	Rep C	21.16	8.14	7.2	31.4		Date 19:00 Time: 1836	- 11
Day 9	Rep D	20 .3	8.14	7.1	31.0		Date: 7/20/10 Time: 14:	70
	Rep A	20.3	8.11	7.3	30.8	9	Date: 7.21.10	
	Rep B	20.8	8.09	7.2	79.2	9	Time: 915	
Day 10	Rep C	20.8	8,14	7.1	30.4	10	WQ: NB	
-	Rep D	20.8	8.21	7.1	30,5	9	Scientist:	
	Rep E	20.8	8.21	7.2	31.9	10		

Day of Test	Matrix	рН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-Off
	Porewater	7.39	3.7	29.9	0.018	5.78	Date: 07/10/10 Time: /2:00 WQ: 56-
Day 0	Overlying Water						Date: 07/11/16 Time: 41:00 WQ: 54
	Meter ID	pho3	2002	E004	DR4000	DR 3800	
	Porewater	7,03	516	31,9	0.049	2.05	Date: 7.21-17 Time: 923 no WQ: 48 ns ns
Day 10	Overlying Water					21.00	Date: 7240 Time: 930 WQ: NB
	Meter ID	PH12	POUL	EC04	DEMOGO	DRSBOO	

Angular (Corrected) Transformed Summary

Count

5

5

Mean

1.32

1.29

1.27

1.24

Sample Code

SRC-2010-08

Lab Control

Report Date:

21 Jul-10 15:55 (p 1 of 10)

Test Code: 04-4894-3223/39425-34

Std Dev

0.138

0.129

Std Err

0.0256

0.0239

CV%

10.4%

10.0%

Diff%

0.0%

2.47%

10 Day Marine	/Estu	arine Sediment	Test		-						Paci	fic EcoRlsk
Analysis ID: Analyzed:		875-5089 Jul-10 15:54	Endpoint: Analysis:		vival Rate amelric-Two	Sample	_		S Version: ial Results:	CETISv1. Yes	7.0	
Data Transform	m	Zeta	Alt i	lyp	Monte Car	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre	cted)	0	C > T	•	Not Run					N/A	10.5%	
Equal Varianc	e t Tv	vo-Sample Test						-				
Sample Code	VS	Sample Code	Test	Stat	Critical	MSD	P-Value	Decision(	5%)			
Lab Control		SRC-2010-08	0.387	,	1.86	0.157	0.3546	Non-Signi	ficant Effect			
ANOVA Table		<del></del>				<u>:</u>						
Source		Sum Squares	Mear	ı Sqı	iare	DF	F Stat	P-Value	Decision(	5%)		
Between		0.002655933	0.002	26559	33	1	0.149	0.7092	Non-Signil	ficant Effect		
Error		0.1422081	0.017	7760	)1	8			•			
Total		0.144864	0.020	<b>431</b> 9	<del>)4</del>	9						
ANOVA Assur	nptio	ns								<del>-</del>		
Attribute		Test			Test Stat	Critical	P-Value	Declsion(	1%)			
Variances		Variance Ratio	F		1.14	23.2	0.9026	Equal Var	iances	-		
Distribution		Shapiro-Wilk No	omality		0.862		0.0800	Normal Di	stribution			
Survival Rate	Sumi	тагу	_									
Sample Code		Cou	nt Mear	1	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control		5	0.94		0.906	0.974	0.8	1	0.0166	0.0894	9.52%	0.0%
SRC-2010-08		5	0.92		0.888	0.952	8.0	1	0.0155	0.0837	9.09%	2.13%

Graphics					
пэ .		Reject Paul	0.15	• • •	•
100 0.2 1 100 100 100 100 100 100 100 100 100			0.05-		
0.5 ·			4.05 4.10	• •	
0.3   1 0.2			4.15		
0.0	Eash Comprod	5RC-2010-08	20 15 11	y -05 00 05 1	0 15 20
	Sample Cod	•		Ranklts	

95% LCL 95% UCL Min

1.37

1.33

1.11

1,11

Max

1.41

1.41

Client: ACOE (San Rafael Channel) Test ID #: 39434 Date (Day 0): 7 ((1) 2)

Species: Neanthes arenaceodentata Project #: 16087 Organism Supplier: Don Reish
Organism Log #: 5789

Day of Test	Test Replicate	Sample ID:		SRC-2	2010-08		Sign-Off
1000	reprisate	Temp (°C)	pН	D.O. (mg/I	Salinity (ppt)		
	Rep A	20.9	7.86	7.4	29.0	10	Date: 07/11/10
	Rep B	20.9	7.85	7.4	28.7	10	Time: //:00
Day 0						10	WQ: Sc
Day 0	Rep C	20.9	7.90	7.5	28.7	10	Scientist Initiation:
	Rep D	20.9	7.53	5.6	28.5	10	Scientist Confirmation:
	Rep E	20.9	7.55	5.9	29.2		Date: #172/10 Time: 114.00
Day 1	Rep A	20.5	7.88	7.6	29.5	-	wo: um   11-10
Day 2	Rep B	20.4	7.68	7.8	289		wo as 0940
Day 3	Rep C	20.5	8.42	8.9	29.3		Date: 701/10 Time:
Day 4	Rep D	20.5	8.38	7.5	30.7		Date: 705/10 Time: WO:07:02
Day 5	Rep E	21.0	8.31	7.0	30.5		Date: 2/16/10/1me: V430
Day 6	Rep A	21.0	8.70	6.9	31.0		Date: 7/17/10 Time: WQ: IDT 1450
Day 7	Rep B	21.0	8.41	7.4	30.2		Date: 2101/1 Time: 130
Day 8	Rep C	21.5	8.00	7.4	30.2		Date: 7-19-1) Time: 133 b
Day 9	Rep D	20.3	8.28	4.7	30.7		Date: 7/20/10 Time: 14:30
	Rep A	20,8	8.38	7.1	32.8	10	Date: 7:21:10
	Rep B	20.8	8.41	7.1	30.9	9	Time: 945
Day 10	Rep C	20.8	8.35	7.1	30,9	10	MG: NB
	Rep D	2018	8.36	7.0	30.2	8	Scientist: ,
	Rep E	20,8	8.36	7.1	34,4	9	

Day of Test	Matrix	рН	D.O. (mg/L)	Salinity (ppt)	Total Sulfide (mg/L)	Total Ammonia (mg/L)	Sign-On
	Porewater	7.21	2.3	28./	0.634	12.1	Date: 07/10/10 ime: /2 : 00 WQ: SG-
Day 0	Overlying Water					1.66	Date: 07/11/10 Time: //:00 WQ: 55-
	Meter ID	24.03	RD02	Eco4	DR 4000	DR 3800	
	Porewater	6.89	4.2	29.4	0.135	4.16	Date:7-21-10 Time: (400 WQ: 198
Day 10	Overlying Water					1.78	Date: 7.21.10 Time: (8)15 WQ: 108
	Meter ID	PLAZ	PD04	E604	D24000	DR3800	

# Appendix I

Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Polychaete, *Neanthes* arenaceodentata

### **CETIS Summary Report**

Report Date: Test Code: 21 Jul-10 14:02 (p 1 of 1) 19-7375-4677/39445

								Test Code:		19-7375	5-4677/394 <i>4</i>
Acute Polycha	aete Survival Tes	st								Paci	fic EcoRis
Batch ID: Start Date: Ending Date: Duration:	13-4734-0148 11 Jul-10 14:30 15 Jul-10 15:15 4d 1h		Test Type: Protocol: Species: Source:	Survival ASTM E1611-0 Neanthes aren Don Reisch		•		Analyst: Diluent: Brine: Age:	Jason Walker Diluted Seawate Not Applicable N/A	er	
•	16-3370-3763 11 Jul-10 14:30 11 Jul-10 14:30 N/A (20.5 °C)		Code: Material: Source: Station:	KCI Potassium chlo Reference Tox In House				Client: Project:	Reference Toxi 17108	cant	
Comparison S	ummary	-	· · · · · · · ·			<del></del>	<u>·</u>	<u>, -, -</u>		·	<u>.                                      </u>
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Meth	nod		
02-1157-0090	Survival Rate		1	2	1.41	15.6%		Duni	nett's Multiple Co	mparison T	est
Point Estimate	Summary							<u></u> -			
Analysis ID	Endpoint		Level	g/L	95% LCL	95% UCL	TU	Meth	nod		
17-1790-7765	Survival Rate		EC50		1.88	2.81		Spea	arman-Kärber		
Survival Rate	Summary					<del></del>					<u> </u>
Conc-g/L	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std I	Err Std Dev	CV%	Diff%
0	Lab Water Contr	2	1	1	1	1	1	0	0	0.0%	0.0%
0.25		2	1	1	1	1	1	0	0	0.0%	0.0%
0.5		2	1	1	1	1	1	0	0	0.0%	0.0%
1		2	1	1	1	1	1	0	0	0.0%	0.0%
2		2	0.7	0.647	0.753	0.6	0.8	0.02	58 0.141	20.2%	30.0%
4		2	. 0	0	0	0	0	0	. 0		100.0%
Survival Rate	Detail										<del></del>
Conc-g/L	Control Type	Rep 1	Rep 2								
0	Lab Water Contr	1	1	· · ·				-			
0.25		1	1								
0.5		1	1								
1		1	1								
2		8.0	0.6								
4		0	0								

### 96 Hour Marine Reference Toxicant Test Data

Client	Ref	erence Toxicant		Organism Log #:	5299
Test Material:	Pot	assium Chloride		Organism Supplier:	Don Reish
Test ID#:	39445	Project #	17108	Species:	Neanthes arenaceodentata
Test Date:	7-11-10	Randomi	zation: 7.6.1	Control/Diluent:	30 ppt Seawater

Treatment	m 400	р	н	D.O.	(mg/L)	Salini	ty (ppt)	# Live C	)rganisms	SIGN-OFF
(g KCl/L)	Temp (℃)	new	old	new	old	new	old	A	В	
Control	205	7.95		7.7		28-8		5	5	Par - 11.10
0.25	205	7.99		7.7		29.3		5	5	Test Solution Prep:
0.5	205	7.97		78		29-5	To Strong	5	5	New WQ:
1	205	7.94		7.9		29.7			Ś	Initiation Times
2		787		8.0		30.4		5	5	Initiation Signoll:  Ref Tok Stock Batch #
4	205	774		83		31.5		5	5	Ref Tox Stock Batch # 6
Meter ID:		Ph 12		2002		Eco3				
Control	20.5		7.45		7.6		29-2	5	5	Date: 7/12/10
0.25	205		7.74	3 113	7.6		29.8	5	5	Count Times (Co
0.5	20.5		775		7-6		29-8	S	5	Count Signoff:
1	20.5		2.75		7.5		30-1	5	5	Count Times (as Count Signoff: Old WQ: Un
2	20.5		7.75		75		30.9	3	5	
4	20.5		274		7.5	U HAVE HI	32.2	0	()	
Meter ID:	414	1	P414	D PAIL	4002	100	Eeos			
Control	20.5		7.92		7-6	(0.01.0	29 4	<u>ड</u>	5	Date: 7/13/10
0.25	20.5		792	-	76		29.7	5	5	Count Time:
0.5	20.5	for special contract	7.95	报算是	7.6	151500	29 9	5	5	Count Signs/II:
1	205		791		7.6		30.3	5	5	Old WQ: UL
2	20.5		791		7.6	(a) ====3	30.9	5	5	
4	~		_		_		_	_	^	
Meter ID:	4/A		Phos		2002	9 4	Ecos			
Control	20.7		8.13		7.5		29.8	5	5	Date: 7/14/1-
0.25	200	balle o	8.31		7.4		30.2	5	5	Count Time:
0.5	20,7		8.35		7.4		30.0	5	5	Count Signoff:
1	20.7	THE REAL PROPERTY.	8.36	8518	7.8	7137819	30.3	5	5	Old WQ: :908
2	100		8.35		7.3		31.3	5	5	
4		History	- V		_		-	~		
Meter ID:	HIA	NEW YEAR	Ph03		RD02		5005			
Control	20.8		7.89		7.1	MUNC	29.3	5	5	Date: 7/15/10
0.25	20.3		7.88		7.1		30.3	5	5	Termination Time:
0.5	20.8		7.89	2 1	7.2	( Total	30.1	3	5	Termination Genoff:
1	20.7		7.87		7.2		30.3	5	5	Old WQ: NVS
2	20.8		7.85		7.3		31.3	4	3	Типридомет
4	-		- 1.7		1.2	4	71.7	-	-	
Meter ID:	AIA		2H 12		RPOZ		Ec05	ushfil/suthis		THE RESERVE OF THE PERSON NAMED IN COLUMN 1

## Appendix J

Test Data and Summary of Statistics for the Evaluation of the Toxicity of the San Rafael Channel Sediment SET Sediment Elutriates to Bivalve (Mytilus galloprovincialis) Embryos

21 Jul-10 15:42 (p 1 of 2) 01-4962-2794/39435

								Test Code	•		U1-4902	-2/94/3943
Bivalve Larval	Survival and De	evelopn	nent Test								Paci	fic EcoRis
Batch ID:	18-8220-2847		Test Type:	Development-S				Analyst:	Jasor	n Walker		
Start Date:	07 Jul-10 15:10	1	Protocol:	ASTM E724-98	l (Bivalve)			Diluent:	Dilute	ed Seawat	er	
Ending Date:	09 Jul-10 15:50	;	Species:	Mytilus gallopro	ovincialis			Brine:	Cryst	al Sea		
Duration:	49h	;	Source:	Dave Gutoff		_		Age:	N/A			
Sample ID:	08-4984-0145		Code:	SF-10				Client:	ACO	<u>—</u> Е		
Sample Date:	15 Jun-10 10:05	5 1	Material:	Elutriate				Project:	1608	7		
Receive Date:	15 Jun-10 15:00	) :	Source:	San Rafael Cha	annel							
Sample Age:	22d 5h (0 °C)		Station:	San Pablo								
Comparison S	ummary										<del></del>	
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Meti	nod			
09-7603-7859	Development Ra	ate	50	100	70.7	35.3%	2	Wilc	oxon/B	onferroni /	Adj Test	
05-9658-7524	Survival Rate		10	50	22.4	42.0%	10	Wilc	oxon/B	onferroni A	Adj Test	
Point Estimate	Summary		-			-						
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	TU	Meti	hod			
05-2543-4723	Development Ra	ate	EC5	0.609	N/A	82.1	164	Line	ar Inter	polation (I	CPIN)	
			EC10	51	N/A	56	1.96					
			EC15	53.7	N/A	58.4	1.86					
			EC20	56.4	N/A	60.9	1.77					
			EC25	59.1	N/A	63.3	1.69					
			EC40 EC50	67.3 72.8	54.8 62.4	70.7	1.49					
19-3132-1948	Survival Rate		EC50	50.3	46.6	75.6 54.2	1.37		med Si	_ pearman-k	Cärber	
Development i	Rate Summary									pcannan-i		<u></u>
·	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std 1	Fer	Std Dev	CV%	Diff%
•	Lab Water Contr		0.975	0.969	0.981	0.952	0.98			0.0161	1.65%	0.0%
0	Site Water	5	0.992	0.989	0.996	0.98	1	0.00		0.00846	0.85%	-1.83%
1		4	0.741	0.558	0.924	0.00625	0.99			0.49	66.1%	23.9%
10		4	0.98	0.975	0.985	0.959	0.98			0.0137	1.4%	-0.54%
50		4	0.952	0.946	0.958	0.931	0.96			0.016	1.68%	2,35%
100		4	0	0	0	0	0	0		0	1.00%	100.0%
Survival Rate	Summary				-							
	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std I	Err	Std Dev	CV%	Diff%
0	Lab Water Contr	5	0.907	0.886	0.928	0.863	1	0.01	03	0.0564	6.23%	0.0%
0	Site Water	5	0.881	0.864	0.898	0.813	0.918	0.00	823	0.0451	5.11%	2.79%
1		4	0.681	0.512	0.851	0.00549	0.989	9 0.08	3	0.455	66.7%	24.8%
10		4	0.775	0.737	0.813	0.648	0.868	0.01	86	0.102	13.2%	14.5%
50		4	0.603	0.568	0.638	0.522	0.698	0.01	72	0.0943	15.6%	33.5%
100		4	0	0	0	0	0	0		0		100.0%

Analyst: W QA: Buc

21 Jul-10 15:42 (p 2 of 2) 01-4962-2794/39435

Bivalve La	rval Survival and De	velopme		Pacific EcoRisk			
Developme	ent Rate Detail						
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Lab Water Contr	0.988	0.952	0.964	0.982	0.987	
0	Site Water	1	0.988	0.994	0.98	1	
1		0.978	0.00625	0.988	0.994		
10		0.959	0.987	0.985	0.988		
50		0.931	0.968	0.96	0.948		
100		0	0	0	0		
Survival Ra	ate Detail					_	-
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep <b>5</b>	
0	Lab Water Contr	0.885	0.868	1	0.918	0.863	
0	Sile Water	0.907	0.918	0.912	0.813	0.857	
1		0.989	0.00549	0.89	0.841		
10		0.648	0.846	0.736	0.868		
50		0.522	0.67	0.522	0.698		
100		0	0	0	0		

21 Jul-10 15:30 (p 2 of 2)

01-4962-2794/39435

							Test	Code:		01-4962	-2794/394
Bivalve Larv	al Survival and D	evelopmer	nt Test							Paci	fic EcoRis
Analysis ID:	09-7603-7859		dpoint: De	velopment R	late		CET	IS Version:	CETISv1	7.0	
Analyzed:	21 Jul-10 15:30		•	nparametric		mnarienn		cial Results:		.1.0	
- Indiyeou.	2. 00. 10 10.00	7 73116	11/313. 110	прагатисти	-Manapie Go	прапзоп	- Onic	Hai Results:			
Data Transfo	orm	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Con	rected)	0	C > T	Not Run		50	100	70.7	2	35.3%	
Wilcoxon/Bo	onferroni Adj Test	:							_		
Control	vs Conc-%		Test Stat	Critical	Ties	P-Value	Decision	(5%)			
Lab Water Co	ontrol 1		22		0	1.0000	Non-Sign	ificant Effect			
	10		21		0	1.0000	Non-Sign	ificant Effect			
	50		13		0	0.2222	Non-Sign	ificant Effect			
	100*		10		0	0.0317	Significan	t Effect			
ANOVA Tabl	e										
Source	Sum Squa	ares	Mean Squ	ıare	DF	F Stat	P-Value	Decision(	5%)		
Between	5.654326		1.413581		4	15.6	<0.0001	Significant	Effect		
Error	1.447489		0.0904686	05	16			•			
Total	7.101815		1.50405		20						
ANOVA Assı	umptions				-	<del></del> -			-		
Attribute	Test			Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Bartlett Ed	quality of V	ariance	52.5	13.3	<0.0001	Unequal \	/ariances	_		
Distribution		Vilk Normal		0.601		<0.0001		al Distributio	n		
Developmen	t Rate Summary	<del></del>	····								<u> </u>
Сопс-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water Contr		0.975	0.968	0.981	0.952	0.988	0.00299	0.0161	1.65%	0.0%
1		4	0.741	0.555	0.928	0.00625	0.994	0.00293	0.49	66.1%	
10		4	0.141	0.975	0.985	0.959					23.9%
50		4	0.952				0.988	0.00254	0.0137	1.4%	-0.54%
100				0.946	0.958	0.931	0.968	0.00297	0.016	1.68%	2.35%
		4	0	0	0	0	0		0		100.0%
Angular (Coi	rected) Transform	med Sumn	nary								
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
כ	Lab Water Cont	5	1.42	1.4	1.44	1.35	1.46	0.00927	0.0499	3.52%	0.0%
1		4	1.11	0.851	1.38	0.0791	1.49	0.128	0.69	62.0%	21.4%
10		4	1.43	1.42	1.45	1.37	1.46	0.00814	0.0439	3.06%	-1.16%
50		4	1.35	1.34	1.37	1.31	1.39	0.00688	0.0371	2.74%	4.61%
100		4	0.0444	0.0428	0.046	0.0406	0.0486	0.000783	0.00422	9.5%	96.9%
Graphics	<del>-</del>										
10-	•					0 5 -					•
09										•	
0.8 -1	_										
07-	-					- 04		• • • • • • •			
07- 06					P. Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Con	Angl					
					3	5					
0.5						-0.5					

0.3

-1.5---

-15

**Bivalve Larval Survival and Development Test** 

05-2543-4723

Report Date:

21 Jul-10 15:30 (p 1 of 1)

01-4962-2794/39435

Test Code: 01-4

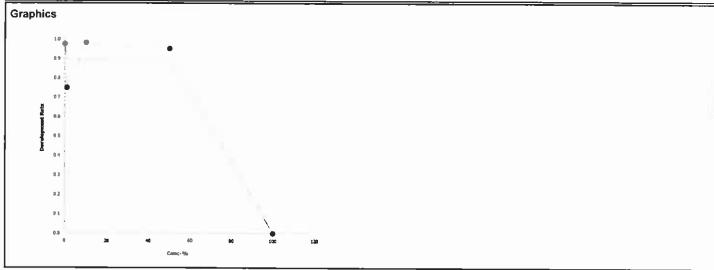
Pacific EcoRisk

Endpoint: Development Rate CETIS Version: CETISv1.7.0

Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Analyzed: 21 Jul-10 15:30 Analysis: Linear Interpolation (ICPIN) Official Results:

**Linear Interpolation Options** 


Analysis ID:

X Transform	Y Transform	Seed	Resamples	Exp <b>95% CL</b>	Method
Linear	Linear	57951	200	Yes	Two-Point Interpolation

Point E	stimates					
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UC
EC5	0.609	N/A	82.1	164	1.22	N/A
EC10	51	N/A	56	1.96	1.79	N/A
EC15	53.7	N/A	58.4	1.86	1.71	N/A
EC20	56.4	N/A	60.9	1,77	1.64	N/A
EC25	59.1	N/A	63.3	1.69	1.58	N/A
EC40	67.3	54.8	70.7	1.49	1.42	1.82
EC50	72.8	62.4	75.6	1.37	1.32	1.6

Development Rate Summary			Calculated Variate(A/B)								
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	A	В
0	Lab Water Contr	5	0.975	0.952	0.988	0.00294	0.0161	1.65%	0.0%	829	851
1		4	0.741	0.00625	0.994	0.0895	0.49	66.1%	23.9%	496	662
10		4	0.98	0.959	0.988	0.0025	0.0137	1.4%	-0.54%	564	575
50		4	0.952	0.931	0.968	0.00292	0.016	1.68%	2.35%	439	461
100		4	0	0	0	0	0		100.0%	0	518

Developm	ent Rate Detail							
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Water Control	0.988	0.952	0.964	0.982	0.987	_	 
1		0.978	0.00625	0.988	0.994			
10		0.959	0.987	0.985	0.988			
50		0.931	0.968	0.96	0.948			
100	_	0	0	0	0			



Report Date:

21 Jul-10 15:30 (p 1 of 2)

Test Code:

01-4962-2794/39435

							Test	t Code:		01-4962	2-2794/394
Bivalve Larval	Survival and De	velopm	ent Test			-	-			Pacl	fic EcoRis
Analysis ID: Analyzed:	05-9658-7524 21 Jul-10 15:30		indpoint: nalysis:	Survival Rate Nonparametr	ic-Multiple Co	mparison		IS Version		.7.0	_
Data Transfor	m	Zeta	Alt H	vp Monte (	 Carlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre	cted)	0	C > T		1	10	50	22.4	10	42 0%	
Wilcoxon/Bon	ferroni Adj Test		<del></del>		<u>-</u>	<del></del>					
Control	vs Conc-%		Test \$	Stat Critical	Ties	P-Value	Docision	/E0/\			
Lab Waler Con		-	17	Stat Cittical	0	1.0000	Decision Non Sign	ificant Effec			
Lab Water Con	10		11.5		1	0.0635	-	ificant Effec			
	50*		10		0	0.0317	Significar		•		
	100*		10		0	0.0317	Significar				
ANOVA Table					·						
Source	Sum Squa	res	Mean	Square	DF	F Stat	P-Value	Decision	(5%)		
Belween	3.873203		0.968		4	11.8	0.0001	Significar	<del> </del>		
Error	1.307741		0.081	73379	16			•			
Total	5.180943		1.050	035	20						
ANOVA Assun	nptions							-		_	
Attribute	Test			Test St	at Critical	P-Value	Decision	(1%)			
Variances	Mod Leve	ne Equal	lity of Varia	ance 1.33	4.89	0.3045	Equal Va				
Distribution	Shapiro-W	-	_	0.771		0.0002		nal Distributi	on		
Survival Rate	Summary	-					•••		<u> </u>		
Conc-%	Control Type	Count	Mean	95% LC	L 95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water Contr	5	0,907	0.885	0.928	0.863	1	0.0105	0.0564	6.23%	0.0%
1		4	0.681	0.508	0.854	0.00549	0.989	0.0844	0.455	66.7%	24.8%
10		4	0.775	0.736	0.814	0.648	0.868	0.019	0.102	13.2%	14.5%
50		4	0.603	0.567	0.639	0.522	0.698	0.0175	0.0943	15.6%	33.5%
100		4	0	0	0	0	0	0	0		100.0%
Angular (Corre	ected) Transform	ned Sun	nmary							<del>_</del>	
Conc-%	Control Type	Count	Mean	95% LC	L 95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water Cont	5	1.29	1.23	1.34	1.19	1.53	0.0265	0.143	11.1%	0.0%
1		4	0.983	0.747	1.22	0.0742	1.47	0.115	0.62	63.0%	23.5%
10		4	1.08	1.04	1.13	0.936	1.2	0.0227	0.122	11.3%	15.7%
50		4	0.891	0.854	0.928	0.807	0.989	0.018	0.0969	10.9%	30.7%
100		4	0.037	1 0.0371	0.0371	0.0371	0.0371	0	0	0.0%	97.1%
Graphics	-									-	
1.0 ¬						0.6 -					
	<u>◆-</u> :					•••					•
7	<del>-</del> .					04:-					
0.8		•				02			_	• •	
3 07-					7				•		
Part De			•	_		Corr. Angle			• •		
0.5~					•	-02	•				
04											
						404 .					
0.3											
						-0.6					
0.2						-0.6					

Report Date:

21 Jul-10 15:31 (p 1 of 1)

01-4962-2794/39435

**Bivalve Larval Survival and Development Test** 

Test Code:

Pacific EcoRisk

Analysis ID:

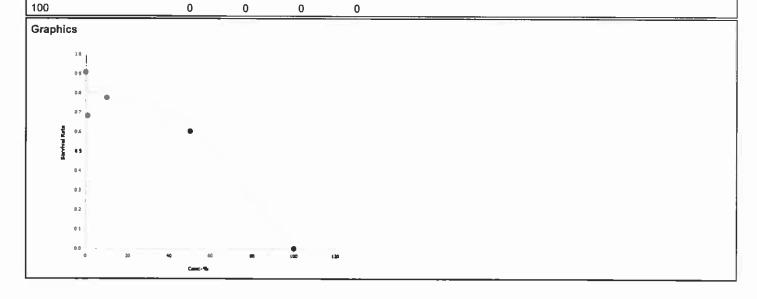
19-3132-1948

Endpoint: Survival Rate

CETIS Version: CETISv1.7.0

Yes

____


Analyzed: 21 Jul-10 15.30 Analysis: Trimmed Spearman-Kärber Official Results:

Trimmed Spearman-Kärber Estimates

**Threshold Option** Threshold Trim Mu Sigma EC50 95% LCL 95% UCL Control Threshold 0.0934 19.70% 1.7 0.0164 50.3 46.6 54.2

Survival R	tate Summary	Calculated Variate(A/B)									
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	A	В
0	Lab Water Contr	5	0.907	0.863	1	0.0103	0.0564	6.23%	0.0%	825	910
1		4	0.681	0.00549	0.989	0.083	0.455	66.7%	24.8%	496	728
10		4	0.775	0.648	0.868	0.0186	0.102	13.2%	14.5%	564	728
50		4	0.603	0.522	0.698	0.0172	0.0943	15.6%	33.5%	439	728
100		4	0	0	0	0	0		100.0%	0	728

Survival Rate Detail Conc-% **Control Type** Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 0 Lab Water Control 0.885 0.868 0.918 0.863 1 0.989 0.00549 0.89 0.841 10 0.648 0.846 0.736 0.868 50 0.522 0.67 0.522 0.698

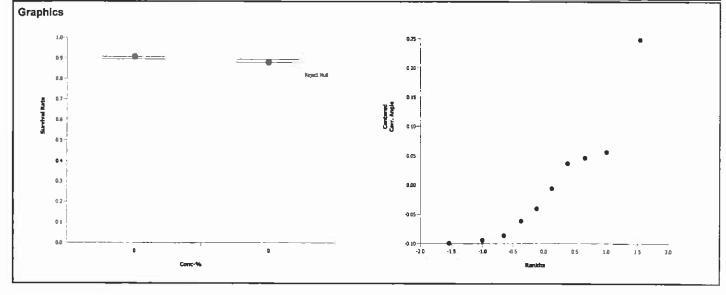


20 Jul-10 16:01 (p 2 of 4) 18-6831-4622/39436

Blvalve Larval Survival and Development Test Pacific EcoRisk

1	Analysis ID:	17-3724-4183	Endpoint:	Survival Rate	CETIS Version:	CETISv1.7.0
1	Analyzed:	20 Jul-10 15:59	Analysis:	Parametric-Two Sample	Official Results:	Yes

Data Transform	Zeta	Alt Hyp	Monte Carlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corrected)	0	C > T	Not Run	0	>0		_	7.77%	


Equal Variance t Tv	wo-Sample Test					
Control vs	Control	Test Stat	Critical	MSD	P-Value	Decision(5%)
Lab Water Control	Site Water	0.88	1.86	0.131	0.2022	Non-Significant Effect

ANOVA Table				_		
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(5%)
Between	0.009684817	0.009684817	1	0.775	0.4043	Non-Significant Effect
Error	0.09996058	0.01249507	8			-
Total	0.1096454	0.02217989	9			

ANOVA Assum	ptions				
Attribute	Test	Test Stat	Critical	P-Value	Decision(1%)
Variances	Variance Ratio F	4.49	23.2	0.1746	Equal Variances
Distribution	Shapiro-Wilk Normality	0.847		0.0532	Normal Distribution

1	Survival Rate	Survival Rate Summary											
١	Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%	
ı	0	Site Water	5	0.881	0.864	0.898	0.813	0.918	0.00837	0.0451	5.11%	0.0%	
	0	Lab Water Contr	5	0.907	0.885	0.928	0.863	1	0.0105	0.0564	6.23%	-2.87%	

Angular (Con	Angular (Corrected) Transformed Summary											
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%	
0	Site Water	5	1.22	1.2	1.25	1.12	1.28	0.0125	0.0674	5.51%	0.0%	
0	Lab Water Cont	5	1.29	1.23	1.34	1.19	1.53	0.0265	0.143	11.1%	-5.09%	



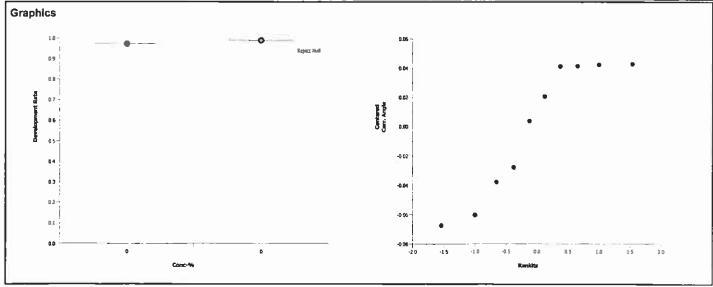
Bivalve Larval Survival and Development Test

Report Date: Test Code: 20 Jul-10 16:01 (p 4 of 4) 18-6831-4622/39436

iest code.	10-0031-4022/39430
	Pacific EcoRisk

ı	_					
1	Analysis ID:	06-7674-0949	Endpoint:	Development Rate	CETIS Version:	CETISv1.7.0
I	Analyzed:	20 Jul-10 15:57	Analysis:	Parametric-Two Sample	Official Results:	Yes

Data Transform	Zeta	Alt Hyp	Monte Carlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corrected)	0	C > T	Not Run	0	>0			1.83%	


Equal Variance t T	wo-Sample Test					
Control vs	Control	Test Stat	Critical	MSD	P-Value	Decision(5%)
Lab Water Control	Site Water	-2.43	1.86	0.0556	0.9793	Non-Significant Effect

ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(5%)
Between	0.01315582	0.01315582	1	5.89	0.0413	Significant Effect
Error	0.01785393	0.002231742	8			
Total	0.03100976	0.01538756	9			

ANOVA Assumption	ns				
Attribute	Test	Test Stat	Critical	P-Value	Decision(1%)
Variances	Variance Ralio F	1.26	23.2	0.8272	Equal Variances
Distribution	Shapiro-Wilk Normality	0.849		0.0569	Normal Distribution

Development	Development Rate Summary											
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%	
0	Site Water	5	0.992	0,989	0.996	0.98	1	0.00157	0.00846	0.85%	0.0%	
0	Lab Water Contr	5	0.975	0.968	0.981	0.952	0.988	0.00299	0.0161	1.65%	1.8%	

Angular (Cor	Angular (Corrected) Transformed Summary											
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%	
0	Site Water	5	1.49	1.47	1.51	1.43	1.53	0.00825	0.0444	2.98%	0.0%	
0	Lab Water Cont	5	1.42	1.4	1.44	1.35	1.46	0.00927	0.0499	3.52%	4.87%	



### Mytilus sp. Development Toxicity Test Count Data

Client:	ACOE - San Rafael Channel	Test Start Date:	7.7.10
Test Material:	SF-10	Test End Date:	7-9-10
Test ID #:	39435	Enumeration Date:	7/20/10
Project #:	16087	Investigator:	Jan /JM
Sample Salinity	adjusted with: Crystal Sea Salts	Innoculation Count:	182

Concentration	Replicate	Number of Normal Larvae	Number of Abnormal Larvae	Total Number Larvae	Percent Normal Development	Percent Survival
	Α	14)	2	143	99	88
	В	158	8	146	95	87
Control	С	186	7	193	96	100
	D	167	3	170	98	92
	Е	157	2	159	99	86
	A *					
	В	180	4	184	98	99
1.0%	С	1	159	160	1	1
	D	162	2	164	99	89
	Е	153	1	154	99	84
	A #	-	_	_	_	
	В	118	5	123	96	65
10%	С	154	2	156	99	82
	D	184	2	136	99	74
	E	168	2	160	99	87
	A ¥	_		_		
	В	Um 15 95	7	102	93	52
50%	С	122	4	126	97	67
	D	95	4	99	96	52
	<u>E</u>	127	7	134	95	70
	A *			_	_	
	В	O	106	106	0	0
100%	С	0	152	152	0	0
	D	<b>©</b>	111	111	0	6
	Е	0	149	149	0	0

^{*} Reglicate not preserved. Remove gram statistics.

## Mytilus sp. Development Toxicity Test Water Chemistry Data

 Client:
 ACOE - San Rafael Channel

 Test Material:
 SF-10

 Test ID#:
 39435
 Project #: 16087

 Test Date:
 7-7-10
 Randomization: __

Sample Salinity adjusted with : Crystal Sea Salts

Organism Log#: 5286 Age: N/A
Organism Supplier: Control/Diluent: 30ppt FSW

	Day 0												
Treatment	Temperature (°C)	рН	D.O. (mg/L)	Salinity (ppt)	Signoff								
Control	16.4	7.80	8.7	30.7	Test Solution Prep:								
1.0%	11.14	7.82	8.8	31.0	New WQ:								
10%	16.4	7.82	8.6	30.7	Innoculation Date:								
50%	16.4	7.81	6.0	29.6	Innoculation Time:								
100%	16.4	7.80	7.0	28.1	Innoculation Signoff:								
Meter ID	23	PH 14	RDOS	EC03									

Day 1											
Treatment	Temperature (°C)	рН	D.O. (mg/L)	Salinity (ppt)	Signoff						
Control	16.3				Day 8/10						
1.0%	16.3				Signoff Av						
10%	16-3										
50%	16.3										
100%	16.3										
Meter ID	23	2									

		Day 2			
Treatment	Temperature ("C)	рН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	14.2	7.91	9.0	30-3	Termination Signoff:
1.0%	16.2	7.96	9.1	30.6	Termination Date:
10%	14.2	7.99	9.3	30.8	Termination Time:
50%	16.2	8.02	9.4	29.7	Old WQ: NVS
100%	16.2	8-07	9-4	28.4	
Meter ID	23	pH 14	RD03	205	

20 Jul-10 16:06 (p 1 of 2)

18-6831-4622/39436

								.001.004	<u> </u>		10 000	1022100-101
Bivalve Larva	Survival and De	evelopm	ent Test								Paci	fic EcoRisk
Batch ID: Start Date: Ending Date: Duration:	18-8220-2847 07 Jul-10 15:10 09 Jul-10 15:50 49h	P S	est Type: Protocol: Species: Source:	Development-S ASTM E724-98 Mytilus gallopro Dave Gutoff	(Bivalve)			Analyst: Diluent: Brine: Age:	Dilu	on Walker ted Seawale stal Sea	er	
	14-4973-6714 15 Jun-10 09:30 15 Jun-10 15:00 22d 6h (0°C)	) N	ode: faterial: fource: station:	SF-11 Elutriate San Rafael Cha Alcatraz	annel			Client: Project:	AC0 160			
Comparison S	Summary		-									
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Me	thod			
06-7674-0949	Development R	ate	0	>0	_	1.83%		Eq	ual Var	iance t Two	-Sample To	est
02-0138-3745			100	>100	N/A	1.82%	1			Multiple Co		
17-3724-4183	Survival Rate		0	>0		7.77%				iance t Two		
19-1951-3855			10	50 	22.4	13.7%	10	Du -	nnett's	Mulliple Co	mparison T	est
Point Estimat	e Summary											
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	TU	Me	thod			
19-5245-0576	Development Ra	ale	EC5	>100	N/A	N/A	<1	Lin	ear Inte	erpolation (I	CPIN)	<u>-</u>
			EC10	>100	N/A	N/A	<1					
			EC15	>100	N/A	N/A	<1					
			EC20	>100	N/A	N/A	<1					
			EC25 EC40	>100 >100	N/A N/A	N/A	<1					
			EC40	>100	N/A	N/A N/A	<1 <1					
12-6431-1769	Survival Rate		EC1	3.35	0.0652	10.6	29.8	Lin	ear Re	gression (M	LE)	
			EC5	12.1	1.16	24.7	8.24		cai itc	gression (ivi	LL <i>)</i>	
			EC10	24.1	5.28	39.8	4.15					
			EC15	38.3	14.2	56.5	2.61					
			EC20	55.2	29.5	79.3	1.81					
			EC25	75.7	49.5	118	1.32					
			EC40	168	110	532	0.59	5				
· · · · · · · · · · · · · · · · · · ·			EC50	270	156	1500	0.37					
Development	Rate Summary							_				
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Sto	Err	Std Dev	CV%	Diff%
	Lab Water Contr	5	0.975	0,969	0.981	0.952	0.98	3 0.0	0294	0.0161	1.65%	0.0%
0	Site Water	5	0.992	0.989	0.996	0.98	1	0.0	0155	0.00846	0.85%	-1.83%
1		5	0.994	0.992	0.996	0.985	1		00992	0.00543	0.55%	-1.94%
10		5	0.982	0.978	0.985	0.97	0.994		0176	0.00965	0.98%	-0.74%
50		5	0.982	0.978	0.986	0.97	0.992		0196	0.0107	1.09%	-0.71%
100		5	0.986	0.984	0.987	0.979	0.992	2 0.0	00937	0.00513	0.52%	-1.12%
Survival Rate	_											
	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std	Err	Std Dev	CV%	Diff%
	Lab Waler Contr		0.907	0.886	0.928	0.863	1	0.0	103	0.0564	6.23%	0.0%
	Site Water	5	0.881	0.864	0.898	0.813	0.918		0823	0.0451	5.11%	2.79%
1		5	0.952	0.923	0.98	0.824	1	0.0		0.0768	8.07%	-4.97%
10		5	0.891	0.867	0.915	0.846	1	0.0		0.0646	7.25%	1.7%
50		5	0.749	0.729	0.77	0.703	0.835			0.0556	7.42%	17.3%
100		5	0.657	0.617	0.697	0,516	0.775	5 0.0	194	0.106	16.2%	27.5%

20 Jul-10 16:06 (p 2 of 2) 18-6831-4622/39436

Bivalve Lar	val Survival and De	velopme	nt Test				Pacific EcoRisk
Developme	ent Rate Detail						
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep <b>5</b>	
0	Lab Water Contr	0.988	0.952	0.964	0.982	0.987	
0	Site Waler	1	0.988	0.994	0.98	1	
1		0.993	0.985	1	0.994	0.995	
10		0.989	0.981	0.97	0.975	0.994	
50		0.981	0.97	0.992	0.992	0.972	
100		0.989	0.982	0.979	0.992	0.986	
Survival Ra	ite Detail						· · · · · · · · · · · · · · · · · · ·
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Lab Water Contr	0.885	0.868	1	0.918	0.863	
0	Site Water	0.907	0.918	0.912	0.813	0.857	
1		0.824	1	1	0.934	1	
10		1	0.846	0.901	0.852	0.857	
50		0.835	0.703	0.709	0.725	0.775	
100		0.516	0.599	0.775	0.648	0.747	

Report Date:

20 Jul-10 16:01 (p 3 of 4)

							Tes	t Code:		18-683	1-4622/3943
Bivalve Larva	Survival and D	evelop	ment Test							Pac	ific EcoRisk
Analysis ID: Analyzed:	02-0138-3745 20 Jul-10 15:58		-	Development F Parametric-Cor		atments		IS Version: cial Results		.7.0	
Data Transfo	m	Zeta	Alt Hy	p Monte Ca	ırlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre	ected)	0	C > T	Not Run	<u> </u>	100	>100	N/A	1	1.82%	
Dunnett's Mu	Itiple Compariso	n Test									
Control	vs Conc-%		Test S	tat Critical	MSD	P-Value	Decision	(5%)			
Lab Water Cor			-3.2	2.3	0.0553	1.0000		ificant Effect			
	10		-0.953	2.3	0.0553	0.9729	-	ificant Effect			
	50		-0.946	2.3	0.0553	0.9724	_	ificant Effect			
	100		-1.46	2.3	0.0553	0.9931	Non-Sign	ificant Effect			
ANOVA Table											
Source	Sum Squa	ares	Mean !	Square	DF	F Stat	P-Value	Decision(	5%)		
Between	0.0160865	51	0.0040	21626	4	2.79	0.0544		ficant Effect		
Error	0.0288316		0.0014		20			_			
Total	0.0449181 	6	0.0054	63209	24						
ANOVA Assu	mptions										<del></del>
Attribute	Test			Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Bartlett E	quality o	of Variance	2.56	13.3	0.6339	Equal Va				
Distribution	Shapiro-V	Vilk Nor	mality	0.945		0.1913	Normal D	istribution			
Development	Rate Summary										
Conc-%	Control Type	Count	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Waler Contr		0.975	0.968	0.981	0.952	0.988	0.00299	0.0161	1.65%	0.0%
1		5	0.994	0.991	0.996	0.985	1	0.00101	0.00543	0.55%	-1.94%
10		5	0.982	0.978	0.985	0.97	0.994	0.00179	0.00965	0.98%	-0.74%
50		5	0.982	0.977	0.986	0.97	0.992	0.00199	0.0107	1.09%	-0.71%
100		5	0.986	0.984	0.987	0.979	0.992	0.000954	0.00514	0.52%	-1.12%
Angular (Corr	ected) Transform	ned Su	ummary								
Conc-%	Control Type	Count	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water Cont	5	1.42	1,4	1.44	1,35	1.46	0.00927	0.0499	3.52%	0.0%
1		5	1.49	1.48	1.51	1.45	1.54	0.00581	0.0313	2.09%	-5.43%
10		5	1.44	1.43	1.45	1.4	1.49	0.00715	0.0385	2.67%	-1.61%
50		5	1.44	1.42	1.46	1.4	1.48	0.00783	0.0422	2.93%	-1.6%
100		5	1.45	1.44	1.46	1.43	1.48	0.00407	0.0219	1.51%	-2.47%
Graphics											
1.0-		-0				0.06					
09				Reject Null							•
0.8						0.04			••		
0.7						0.62			•••		
Ę					7						
06					Cartered	E 000			•		
₫ ₀₅ -						1		••*			
0.4						0.02		•			
0.3						.004		,			
0.2 ·						-0.04	• • •				
1						-0.06 ~					
0 1											
0.0	0 1	10	50	100		-0.00					-
	•	Conc-%		***		-20	15 -1.0	-05 0.0 Ramkita	05 10	15	10

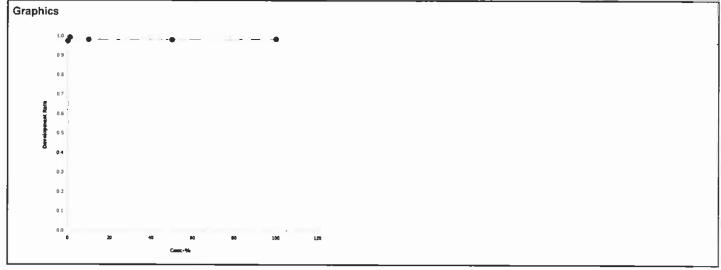
Report Date: Test Code:

20 Jul-10 16:02 (p 1 of 1)

18-6831-4622/39436

Bivalve Larval Survival and Development Test	Pacific EcoRisk

Analysis ID: 19-5245-0576 Endpoint: Development Rate CETIS Version: CETISv1.7.0 20 Jul-10 15:59


Analyzed: Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Linear Interpol	ation Options				
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	57951	200	Yes	Two-Point Interpolation

						<u> </u>
Point E	stimates	_			<u> </u>	
Level	<u>%</u>	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC5	>100	N/A	N/A	<1	N/A	N/A
EC10	>100	N/A	N/A	<1	N/A	N/A
EC15	>100	N/A	N/A	<1	N/A	N/A
EC20	>100	N/A	N/A	<1	N/A	N/A
EC25	>100	N/A	N/A	<1	N/A	N/A
EC40	>100	N/A	N/A	<1	N/A	N/A
EC50	>100	N/A	N/A	<1	N/A	N/A

Developm	ent Rate Summary		Calculated Variate(A/B)							_	
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	Α	В
0	Lab Water Contr	5	0.975	0.952	0.988	0.00294	0.0161	1.65%	0.0%	829	851
1		5	0.994	0.985	1	0.000992	0.00543	0.55%	-1.94%	927	933
10		5	0.982	0.97	0.994	0.00176	0.00965	0.98%	-0.74%	811	826
50		5	0.982	0.97	0.992	0.00196	0.0107	1.09%	-0.71%	682	695
100		5	0.986	0.979	0.992	0.000938	0.00514	0.52%	-1.12%	598	607

Development Rate Detail									
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5			
0	Lab Water Control	0.988	0.952	0.964	0.982	0.987	~		
1		0.993	0.985	1	0.994	0.995			
10		0.989	0.981	0.97	0.975	0.994			
50		0.981	0.97	0.992	0.992	0.972			
100		0.989	0.982	0.979	0.992	0.986			



20 Jul-10 16:01 (p 1 of 4)

18-6831-4622/39436

		_									
Bivalve Larv	al Survival and De	evelopme	ent Test							Paci	fic EcoRi
Analysis ID:	19-1951-3855	E.	ndpoint: Su	vival Rate			CET	IS Version:	CETIO	7.0	
Analysis ib. Analyzed:	20 Jul-10 16:01		•		ntrol vs Trea	lmenis		is version: :ial Results:	CETISv1 Yes	.7.0	
			ilalyolo. I a		illioi va Tica		Onic	iai Results.	168		
Data Transfo	orm	Zeta	Alt Hyp	Monte Ca	ırlo	NOEL	LOEL	TOEL	TU	PMSD	_
Angular (Con	rected)	0	C > T	Not Run		10	50	22,4	10	13.7%	
===== Dunnett's M	ultiple Compariso	n Test									•
Control	vs Conc-%		Test Stat	Critical	MSD	P-Value	Decision	(5%)			
Lab Water Co			-1.43	2.3	0.2	0.9926		ificant Effect			
LGD TTL.O. O.	10		0.269	2,3	0.2	0.7017	_	ificant Effect			
	50*		2.73	2.3	0.2	0.0213	Significan				
	100*		3.88	2.3	0.2	0.0017	Significan				
ANOVA Tabl			· · · · · · · · · · · · · · · · · · ·					<del></del>			
Source	Sum Squa	res	Mean Squ	iare	DF	F Stat	P-Value	Decision(	5%)		
Between	0.7049681		0.176242	-	4	9.36	0.0002	Significant	<u> </u>		
Ептог	0.3767461		0.0188373	3	20	0.50	0.0002	Olgilliloziik	Lilicot		
Total	1.081714		0.1950793		24						
ANOVA Assi			<del></del> _		_						
Attribute	Test			Test Stat	Critical	P-Value	Decision	(49/)			
Variances	Bartlett Ed	ruality of	Variance	3.51	13.3	0.4759	Decision( Equal Var	<u> </u>			
Distribution	Shapiro-V			0.942	10.0	0.4759	Normal Di				
		-									
Survival Rate	-	_									
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
)	Lab Water Contr		0.907	0.885	0.928	0.863	1	0.0105	0.0564	6.23%	0.0%
1		5	0.952	0.922	0.981	0.824	1	0.0143	0.0768	8.07%	-4.97%
10		5	0.891	0.867	0.916	0.846	1	0.012	0.0646	7.25%	1.7%
50		5	0.749	0.728	0.771	0.703	0.835	0.0103	0.0556	7.42%	17.3%
100	<u> </u>	5	0.657	0.617	0.698	0.516	0.775	0.0197	0.106	16.2%	27.5%
Angular (Co	rrected) Transform	ned Sum	nmary		<del></del>	<del>_</del>					
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
)	Lab Water Cont	5	1.29	1.23	1.34	1.19	1.53	0.0265	0.143	11.1%	0.0%
1		5	1.41	1.34	1.48	1.14	1.53	0.0334	0.18	12.8%	-9.69%
10		5	1.26	1.2	1.32	1.17	1.53	0.0289	0.155	12.3%	1.82%
50		5	1.05	1.02	1.07	0.995	1.15	0.0123	0.0664	6.34%	18.4%
100		5	0.949	0.906	0.992	0.802	1.08	0.021	0.113	11.9%	26.2%
Graphics		_					<del></del> -			<del></del>	
1.0~											
	•					0.30					•
0.9		•				0.25				•	
0.0 -				Reject Hull		0.20					
					_	0.15				• •	
				•	1	0.10			• •		
				_	- E						
BUT DA					Continued				•		
					S. C.	0.00		•••	•		
Brayangs					Gerts				•		
0.7 - 0.5 - 0.5 -					C	0.00	. • • •		•		
0.7 - 0.8 0.7 - 0.4 0.5 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 -					S	0.00 -0.05	• • • •		•		
0.5 - 0.4 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.					Corri	0.00 -0.05 — -0.10	• • • •		•		
0.7 - 0.8 0.7 - 0.4 0.5 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 -					Corri	0.00 -0.05 – -0.10 -0.15	• • • •	•••••	•		
88 0.7 - 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106 · 106	•	10	50	100	Corti	0.00   -0.05   -0.10   -0.15			03 116	. 15	20

20 Jul-10 16:02 (p 1 of 2)

18-6831-4622/39436

acific EcoRis
•
<del></del>
В
910
910
910
910
910
-

Report Date:

20 Jul-10 16:02 (p 2 of 2)

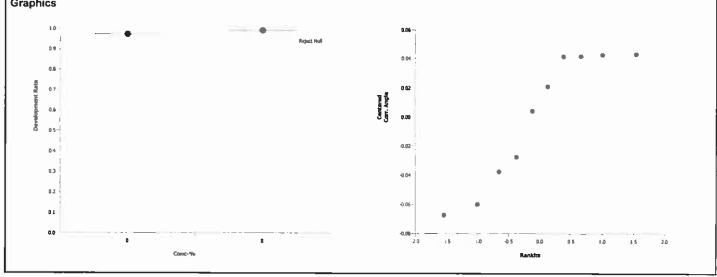
Test Code: 18-6831-4622/39436 **Bivalve Larval Survival and Development Test** Pacific EcoRisk 12-6431-1769 Analysis ID: Endpoint: Survival Rate CETIS Version: **CETISv1.7.0** 20 Jul-10 16:00 Linear Regression (MLE) Analyzed: Analysis: Official Results: Yes Graphics

Report Date:

20 Jul-10 16:01 (p 2 of 4)

							Test	Test Code:			18-6831-4622/39436	
Bivalve Larv	al Survival and D	evelopr	nent Test							Paci	fic EcoRlsk	
Analysis ID: Analyzed:	17-3724-4183 20 Jul-10 15:59			urvival Rate arametric-Two	) Sample	_		IS Version: ial Results:	CETISv1 Yes	.7.0		
Data Transfo	orm	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD		
Angular (Cori	rected)	0	C>T	Not Run		0 >0			7.77%			
Equal Varian	ice t Two-Sample	Test					•			_		
Control	vs Control		Test Sta	t Critical	MSD	P-Value	Decision	[5%)				
Lab Water Co	ontrol Site Water	Site Water 0.88 1.86 0.131 0.2022 Non-Significant Effect										
ANOVA Tabl	8											
Source	Sum Squa	ares	Mean So	juare	DF	F Stat	P-Value	Decision(	5%)			
Between	0.0096848	17	0.009684	1817	1	0.775	0.4043	Non-Signif	icant Effect			
Error	0.0999605	8	0.012495	507	8							
Total	0.1096454		0.022179	89	9			_				
ANOVA Assu	umptions						-					
Attribute	Test			Test Stat	Critical	P-Value	Decision(	(1%)				
Variances	Variance	Ratio F		4.49	23.2	0.1746	Equal Var	iances				
Distribution	Shapiro-V	Vilk Nor	mality —	0.847		0.0532	Normal Di	stribution				
Survival Rate	B Summary											
Conc-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%	
0	Site Water	5	0.881	0.864	0.898	0.813	0.918	0.00837	0.0451	5.11%	0.0%	
0	Lab Water Contr	5	0.907	0.885	0.928	0.863	1	0.0105	0.0564	6.23%	-2.87%	
Angular (Cor	rected) Transfort	ned Su	ımmary							_		
Conc-%	Control Type	Count	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%	
0	Site Water	5	1.22	1.2	1.25	1.12	1.28	0.0125	0.0674	5,51%	0.0%	
0	Lab Water Cont	5	1.29	1.23	1.34	1.19	1.53	0.0265	0.143	11.1%	-5.09%	
Graphics						<del>-</del>		·			·	
1.0-						0.25				_		
09	t. == 0-									•		
			====			6.20						
0.00				Rigars Null								
B 07					₹2	Q 15						
107 07 10 10 10 10 10 10 10 10 10 10 10 10 10					Page	Ę.						

0.05


-0 10 | -2 D

Report Date:

20 Jul-10 16:01 (p 4 of 4)

18-6831-4622/39436

							Test	Code:		18-6831	-4622/3943
Bivalve Larva	al Survival and Do	evelopm	ent Test							Paci	fic EcoRisk
Analysis ID: Analyzed:	06-7674-0949 20 Jul-10 15:57		•	velopment R rametric-Two				IS Version: cial Results		.7.0	
Data Transfo	rm	Zeta	<b>Al</b> t Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	ΤU	PMSD	
Angular (Corre	ected)	0	C > T	Not Run		0	>0			1.83%	
Equal Varian	ce t Two-Sample	Test		<del></del>	·						
Control	vs Control		Test Stat	Critical	MSD	P-Value	Decision	(5%)			
Lab Water Control Site Water -2.43 1.86			1.86	0.0556	0.9793	Non-Sign	ificant Effect	t			
ANOVA Table	9								<del></del>	<del></del>	
Source	Sum Squa	res	Mean Sq	uare	DF	F Stat	P-Value	Decision	(5%)		
Between	0.0131558	2	0.013155	82	1	5.89	0.0413	Significan	t Effect		
Error	0.0178539	3	0.002231	742	8			•			
Total	0.0310097	6	0.015387	56	9						
ANOVA Assu	mptions			<u>_</u> _					_	-	
Attribute	Test			Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Variance	Ratio F		1,26	23.2	0.8272	Equal Variances				
Distribution	Shapiro-V	Vilk Norm	nality	0.849		0.0569	Normal Distribution				
Development	Rate Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	DIff%
0	Sile Water	5	0.992	0.989	0.996	0.98	1	0.00157	0.00846	0.85%	0.0%
0	Lab Water Contr	5	0.975	0.968	0.981	0.952	0.988	0.00299	0.0161	1.65%	1.8%
Angular (Core	rected) Transform	ned Sur	nmary	<del></del>							
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Site Water	5	1.49	1.47	1.51	1.43	1.53	0.00825	0.0444	2.98%	0.0%
0	Lab Water Cont	5	1.42	1.4	1.44	1.35	1.46	0.00927	0.0499	3.52%	4.87%
Graphics											



# Mytilus sp. Development Toxicity Test Count Data

Client:	ACOE-San Rafael Channel	Test Start Date:	7-7-10	
Test Material:	Salt Control/Site Water	Test End Date:	7/9/10	
Test ID #:	39435-44	Enumeration Date:	7/20/10	
Project #:	16087	Investigator:	Jr.	
Sample Salinity	y adjusted with: Crystal Sey Salts	Innoculation Counts:	182	

Concentration	Replicate	Number of Normal Larvae	Number of Abnormal Larvae	Total Number Larvae	Percent Normal Development	Percent Survival
	A	141	2	143	99	88
	В	158	8	164	95	87
Control	С	186	7	193	96	100
	D	147	3	170	98	92_
	Е	157	2	159	99	86
	Α	187	1	188	99.5	100
	В	183	4	187	97.9	100
Salt Control	С	180	3	183	98.4	98.9
	D	189	2	19/	99.0	100
	Е			ſ		
	А	165	0	165	100	90.7
Gr. III.	В	117	2	169	98.8	91.8
Site Water Control	С	166	1	167	99.4	91.2
	D	148	3	15)	98	81.3
	Е	156	0	156	100	857

# Mytilus sp. Development Toxicity Test Count Data

Client:	ACOE - San Rafael Channel	Test Start Date:	7.7-10	
Test Material:	SF-11	Test End Date:	7-9-10	
Test ID #:	39436	Enumeration Date:	7/20/10	
Project #:	16087	Investigator:	JM	
Sample Salinity	adjusted with: Crystal Sea Sults	Innoculation Count:	182	

Concentration	Replicate	Number of Normal Larvae	Number of Abnormal Larvae	Total Number Larvae	Percent Normal Development	Percent Survival
	A	161	2	143	99	88
	В	158	8	166	95	87
Control	С	186	7	193	94	100
	D	167	3	170	98	92
	Е	157	2	159	99	86
	A	150	L	(5)	91.7	82.4
	В	197	3	200	98.5	100
1.0%	С	200	0	200	100	100
	D	170	ŀ	171	99.4	934
	Е	210	_	211	79.5	100
	A	182	2	184	98.5	100
	В	164	3	157	98.1	84.6
10%	С	164	4	168	47,0	901
	D	158	3	158	97.5	85.7
	E	156		157	99.4	85.7
	Α	om+08152	om + 3	155	98.1	83.5
	В	on-116 128	4	132	97	70.3
50%	С	129	1	130	99.2	70.9
	D	om 78 132	Jm & 1	1733	99.2	72.5
	Е	3-1-12 141	on 8 4	145	97.2	77.5
	Α	3m 39 94	om & 1	95	98.9	51.6
	В	on 62 109	2	#11	98.2	599
100%	C	on 6 2 141	on + 3	144	97.9	17.5
	D	2m 66 +36/16	on 3-81	119	99.2	64.8
	E	86 184	+2	138	9816	740

### Mytilus sp. Development Toxicity Test Water Chemistry Data

 Client:
 ACOE - San Rafael Channel

 Test Material:
 SF-11

 Test ID#:
 39436
 Project #: 16087

 Test Date:
 7.7./c
 Randomization:

Sample Salinity adjusted with : Crystal Sea Salt 5

	Day 0									
Treatment	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff					
Control	16.4	7.80	8.7	<i>3</i> 0.7	Test Solution Prep:					
1.0%	16.4	7.83	8.4	31.1	New WQ:					
10%	16.4	7.84	8.6	30.7	Innoculation Date: フ・フ・ノン					
50%	16.4	7.88	8.6	29.6	Innoculation Time:					
100%	16.4	7.92	8.5	28.1	Innoculation Signoff:					
Meter ID	23'	Ph 14	RD03	ECU3						

	Day 1									
Treatment	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff					
Control	16.3				Date: 7/8/10					
1.0%	16.3				Signoff:					
10%	16.3									
50%	16.3									
100%	16.3									
Meter ID	23									

	Day 2									
Treatment	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff					
Control	14.2	7.94	8.7	31.0	Termination Signoff:					
1.0%	14.2	7-96	9.1	31-2	Termination Date: 7-9-10					
10%	16.2	8-00	8.9	30.8	Termination Time:					
50%	14.2	8.04	9.0	29.8	Old WO: NV					
100%	14.2	8.07	8.9	28.3						
Meter ID	23	PH14	RD03	Ec 05						

Sample Salinity adjusted with: Crystal Sea Salts

## Mytilus sp. Development Toxicity Test Water Chemistry Data

Client: ACOE-San Rafael Channel

Test Material: Salt Control/Site Water

Test ID#: 39435-44 Project #: 16087 Control/Diluent: 30 ppt FSW

Test Date: 3-7-/9 Randomization:

		Day 0			
Treatment	Temperature (°C)	pH	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	16-4	7.80	8.7	<i>3</i> 0·7	Date & Inoculation Time:
Crystal Sea Sait Control	16.4	8.13	8.3	29.0	Test Solution Prep:
Site Water Control	16.4	8.01	8.2	28.0	Inoculation Signoff:
Meter ID	23	ph14	RD03	BC03	New WQ:

Day 1								
Treatment	Temperature (°C)	рН	D.O. (mg/L)	Salinity (ppt)	Signoff			
Control	16.3				Date: 7/8/10			
Crystal Sea Salt Control	163				Old WQ: 2			
Site Water Control	10.3							
Meter ID	23							

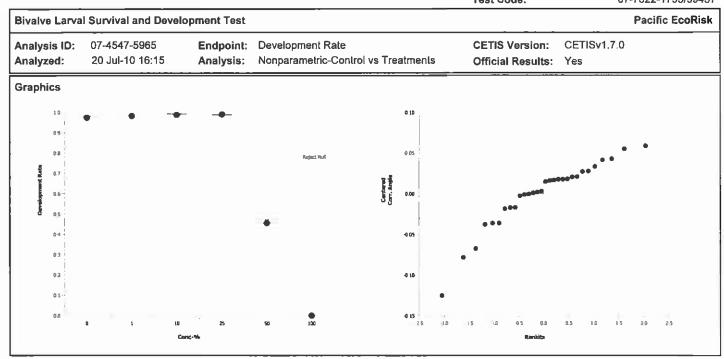
		Day 2			
Treatment	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	16.2	7.91	9.0	30.3	Date: 7/9/10
Crystal Sea Salt Control	14.2	8.05	7-3	29.0	Termination: #B 150
Site Water Control	14.2	8.12	7.3	28-3	Old WQ: NVS
Meter ID	23	PH 12	RD02	803	

### **CETIS Summary Report**

Report Date: Test Code: 20 Jul-10 16:16 (p 1 of 2) 07-7822-1795/39437

								1051 COU			0	
Bivalve Larval	Survival and De	velopi	ment Test								Pacif	ic EcoRisk
Batch ID: Start Date: Ending Date: Duration:	18-8220-2847 07 Jul-10 15:10 09 Jul-10 15:50 49h		Test Type: Protocol: Species: Source:	Development-Survival ASTM E724-98 (Bivalve) Mytilus galloprovincialis Dave Gutoff				Analyst: Jason Walker Dlluent: Diluted Seawate Brine: Crystal Sea Age: N/A		er 		
Sample ID:	17-0782-1094		Code:	SRC-2010-01	<u> </u>		Cilent:		AC	OE .		
Sample Date:	08 Jun-10 09:20	ı	Material:	Elutriate				Project:	160	87		
Receive Date:	08 Jun-10 19:00	ı	Source:	San Rafael Cha	innel							
Sample Age:	29d 6h (2.4 °C)		Station:	SRC-2010-01		_		<b>-</b>				
Comparison S	ummary							_			-	
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Me	thod			
07-4547-5965	Development Ra	ate	25	50	35.4	2.27%	4	Sle	el Mar	ny-One Rank	Test	
18-8621-9088	Survival Rate		25	50	35.4	12.2%	4	Du	nnett's	Multiple Cor	mparison T	est
Point Estimate	Summary											
Analysis ID	Endpoint		Level		95% LCL	95% UCL	TU		thod			
19-4802-1863	Development Ra	ate	EC5	27.4	27	27.6	3.66		ear Int	erpolation (I	CPIN)	
			EC10		29	30.3	3.36					
			EC15		30.9	32.9	3.12					
			EC20 EC25		32.9 34.9	35.5 38.1	2.9 2.72					
			EC25		40.8	46	2.72					
			EC50		44.8	51.8	2.06					
03-6779-1230	Survival Rate		EC50		47.7	50	2.05		mmed	Spearman-K	(ärber	
Development	Rate Summary					_		·				
Conc-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	Ste	d Err	Std Dev	CV%	Diff%
0	Lab Water Contr	5	0.975	0.969	0.981	0.952	0.98	8 0.0	0294	0.0161	1.65%	0.0%
0	Site Water	5	0.992	0.989	0,996	0.98	1	0.0	0155	0.00846	0.85%	-1.83%
1		5	0.983	0.981	0.986	0.973	0.98	8 0.0	0123	0.00672	0.68%	-0.87%
10		5	0.988	0.984	0.992	0.968	0.99	5 0.0	0209	0.0114	1.16%	-1.39%
25		5	0,99	0.988	0.993	0.983	1	0.0	012	0.00659	0.67%	-1.63%
50		5	0.456	0.429	0.482	0.333	0.51	4 0.0	129	0.0706	15.5%	53.2%
100		5	0	0	0	0	0	0		0		100.0%
Survival Rate	Summary											
Conc-%	Control Type	Coun			95% UCL		Max		d Err	Std Dev	CV%	Diff%
0	Lab Water Contr	5	0.907		0.928	0.863	1		103	0.0564	6.23%	0.0%
0	Site Water	5	0.881	0.864	0.898	0.813	0.91		0823	0.0451	5.11%	2.79%
1		5	0.845		0.867	0.769	0.89		106	0.0581	6.87%	6.79%
10		5	0.932	0.899	0.965	0.83	1		162	0.0885	9.49%	-2.79%
25		5	0.905		0.919	0.863	0.96		0674	0.0369	4.08%	0.12%
50		5	0.429	0.379	0.479	0.242	0.57		244	0,134	31.2%	52,7%
100		5	0	0	0	0	0	0		0		100.0%

20 Jul-10 16:16 (p 2 of 2) 07-7822-1795/39437


							rest code.	01-1022-1130/03401
Bivalve Lar	val Survival and De	velopme	nt Test	_				Pacific EcoRisk
Developme	ent Rate Detail		•					
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Water Contr	0.988	0.952	0.964	0.982	0.987	<del></del>	
0	Sile Waler	1	0.988	0.994	0.98	1		
1		0.988	0.988	0.973	0.979	0.988		
10		0.994	0.995	0.99	0.994	0.968		
25		1	0.983	0.988	0.994	0.987		
50		0.514	0.489	0.473	0.47	0.333		
100		0	0	0	0	0		
Survival Ra	ite Detail						-	
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Water Contr	0.885	0.868	1	0.918	0.863		
0	Sile Waler	0.907	0.918	0.912	0.813	0.857		
1		0.896	0.874	0.797	0.769	0.89		
10		0.841	1	1	0.989	0.83		
25		0.912	0.962	0.885	0.907	0,863		
50		0.505	0.473	0.577	0.346	0.242		
100		0	0	0	0	0		

20 Jul-10 16:16 (p 3 of 4) 07-7822-1795/39437

Bivalve Larval Survival and Development Test Pacific EcoRisk Analysis ID: 07-4547-5965 Endpoint: **Development Rate CETIS Version: CETISv1.7.0** 20 Jul-10 16:15 Analyzed: Analysis: Nonparametric-Control vs Treatments Official Results: Yes **Data Transform** Zeta Monte Carlo LOEL **TOEL** TU Alt Hyp NOEL **PMSD** Angular (Corrected) 0 C > T Not Run 25 50 35.4 4 2.27% Steel Many-One Rank Test Control Conc-% ٧S Test Stat Critical Ties P-Value Decision(5%) Lab Water Control 1 33 16 0 0.9907 Non-Significant Effect 10 37 16 0 0.9996 Non-Significant Effect 25 36 16 2 0.9991 Non-Significant Effect 50* 15 16 0 0.0191 Significant Effect 0 100* 15 16 0.0191 Significant Effect **ANOVA Table** Source **Sum Squares** Mean Square DF F Stat P-Value Decision(5%) Between 8.741861 1.748372 5 900 <0.0001 Significant Effect Error 0.04660997 0.001942082 24 Total 8.788471 1.750314 29 **ANOVA Assumptions Attribute** Critical P-Value Test Stat Decision(1%) Bartlett Equality of Variance Variances 15.1 0.0003 **Unequal Variances** Distribution Shapiro-Wilk Normality 0.905 Normal Distribution 0.0114 **Development Rate Summary** Conc-% **Control Type** Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff% 0 Lab Water Contr 5 0.975 0.968 0.981 0.952 0.988 0.00299 0.0161 1.65% 0.0% 5 1 0.983 0.981 0.986 0.973 0.988 0.00125 0.00672 0.68% -0.87% 10 5 0.988 0.9840.992 0.968 0.995 0.00212 0.0114 -1.39% 1.16% 25 5 0.99 0.988 0.993 0.983 1 0.00122 0.00659 0.67% -1.63% 50 5 0.456 0.429 0.483 0.333 0.514 0.0131 0.0706 15.5% 53.2% 100 5 n n O 0 0 0 0 100.0% Angular (Corrected) Transformed Summary Control Type Conc-% Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff% Lab Water Cont 5 0 1.42 1.4 1.44 1.35 1.46 0.00927 0.0499 3.52% 0.0% 5 1.44 1.43 1.45 1.41 1.46 0.00466 0.0251 1.74% -1.79% 10 5 1.47 1.45 1.49 1.39 1.5 0.00836 0.045 3.06% -3.68% 25 5 1.48 1.46 1.49 1.44 1.53 0.00673 0.0362 2.45% -4.23% 50 5 0.741 0.713 0.768 0.615 0.799 0.0134 0.072 9.73% 47.7% 100 5 0.0401 0.0393 0.0409 0.0375 0.043 0.000392 0.00211 5.27% 97.2%

Analyst: V QA: FUE

Report Date: Test Code: 20 Jul-10 16:16 (p 4 of 4) 07-7822-1795/39437



Report Date: Test Code: 20 Jul-10 16:16 (p 1 of 1) 07-7822-1795/39437

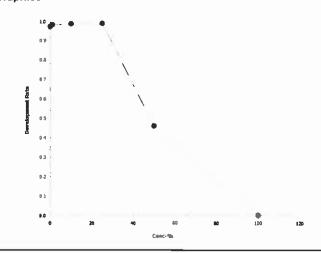
Bivalve Larval Survival and Development Test

Analysis ID: 19-4802-1863 Endpoint: Development Rate

CETIS Version: CETISv1.7.0

Analyzed: 20 Jul-10 16:15 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Linear Interpolation	Options
----------------------	---------


X Transform	Y Transform	Seed	Resamples	Exp <b>95% CL</b>	Method
Linear	Linear	57951	200	Yes	Two-Point Interpolation

Point E	stimates					
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC5	27.4	27	27.6	3.66	3.62	3.71
EC10	29.7	29	30.3	3.36	3.31	3.45
EC15	32.1	30,9	32.9	3.12	3.04	3.23
EC20	34.4	32.9	35.5	2.9	2.82	3.04
EC25	36.8	34.9	38.1	2.72	2.62	2.87
EC40	43.9	40.8	46	2.28	2.17	2.45
EC50	48.6	44.8	51.8	2.06	1.93	2.23

Developm	ent Rate Summary		Calculated Variate(A/B)								
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	Α	В
0	Lab Water Contr	5	0.975	0.952	0.988	0,00294	0.0161	1.65%	0.0%	829	851
1		5	0.983	0.973	0.988	0.00123	0.00672	0.68%	-0.87%	769	782
10		5	0.988	0.968	0.995	0.00209	0.0114	1.16%	-1.39%	867	877
25		5	0.99	0.983	1	0.0012	0.00659	0.67%	-1.63%	824	832
50		5	0.456	0.333	0.514	0.0129	0.0706	15 5%	53.2%	390	843
100		5	0	0	0	0	0		100.0%	0	784

Developm	ent Rate Detail					
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep <b>5</b>
0	Lab Water Control	0.988	0.952	0.964	0.982	0.987
1		0.988	0.988	0.973	0.979	0.988
10		0.994	0.995	0.99	0.994	0.968
25		1	0.983	0.988	0.994	0.987
50		0.514	0.489	0.473	0.47	0.333
100		0	0	0	0	0

#### Graphics



20 Jul-10 16:15 (p 1 of 4) 07-7822-1795/39437

							1851	Code:		01-1022-	-1795/39437	
Bivalve Larva	al Survival and De	evelopmen	t Test							Pacif	ic EcoRisk	
Analysis ID: Analyzed:	18-8621-9088 20 Jul-10 16:15			vival Rate ametric-Con	itrol vs Treat	tments		S Version:	CETISv1 Yes	.7.0		
Allalyzed.	20 30-10 10.13	Alle	ilysis. Tai	ametric-con		unents	Oinc	ial Results:	168			
Data Transfo	rm	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD		
Angular (Corr	ected)	0	C > T	Not Run		25	50	35.4	4	12.2%		
Dunnett's Mu	ıltiple Compariso	n Test										
Control	vs Conc-%		Test Stat	Critical	MSD	P-Value	Decision(	5%)				
Lab Water Co	ontrol 1		1.48	2.36	0.183	0.2307	Non-Signi	ficant Effect				
	10		-1.06	2.36	0.183	0.9859	Non-Signi	ficant Effect				
	25		0.282	2.36	0.183	0.7370	Non-Signi	ficant Effect				
	50*		7.42	2.36	0.183	< 0.0001	Significant	t Effect				
	100*		16.1	2.36	0.183	<0.0001	Significan	l Effect				
ANOVA Table	0			-								
Source	Sum Squa	res	Mean Squ	are	DF	F Stat	P-Value	Decision(	5%)			
Between	6.609546		1.321909		5	88.1	<0.0001	Significant	Effect			
Error	0,3600617		0.0150025	57	24							
Total	6.969607		1.336912		29							
ANOVA Assu	ımptions											
Attribute	Test			Test Stat	Critical	P-Value	Decision(	1%)				
Variances	Mod Leve	ne Equality	of Variance	1.98	4.25	0.1313	Equal Vari	iances				
Distribution	Shapiro-V	Vilk Normal	ity	0.975		0.6946	Normal Distribution					
Survival Rate	Summary										<del></del>	
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%	
0	Lab Water Contr	5	0.907	0.885	0.928	0.863	1	0.0105	0.0564	6.23%	0.0%	
1		5	0.845	0.823	0.867	0.769	0.896	0.0108	0.0581	6.87%	6.79%	
10		5	0.932	0.898	0.966	0.83	1	0.0164	0.0885	9.49%	-2.79%	
25		5	0.905	0.891	0.92	0.863	0.962	0.00686	0.0369	4.08%	0.12%	
50		5	0.429	0.378	0.479	0.242	0.577	0.0248	0.134	31.2%	52.7%	
100		5	0	0	0	0	0	0	0		100.0%	
Angular (Cor	rected) Transform	ned Sumn	nary		<del></del>					<del></del>		
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%	
0	Lab Water Cont	5	1,29	1.23	1.34	1.19	1.53	0.0265	0.143	11.1%	0.0%	
1		5	1.17	1.14	1.2	1.07	1,24	0.0147	0.0791	6.76%	8.91%	
10		5	1.37	1.29	1.44	1.15	1.53	0.0368	0.198	14.5%	-6.39%	
25		5	1.26	1.24	1.29	1.19	1.37	0.0308	0.0688	5.44%	1.7%	
50		5	0.711	0.658	0.764	0.514	0.863	0.0120	0.0000	19.5%	44.7%	
_		~	0.7 1 1	0.000	J. 1 U-4	0.017	0.000	0.0230	J. 1 J J	10,070	77.170	
100		5	0,0371	0.0371	0.0371	0.0371	0.0371	0	0	0.0%	97.1%	

Analyst: Analyst: QA: Ex

20 Jul-10 16:15 (p 2 of 4) 07-7822-1795/39437

**Bivalve Larval Survival and Development Test** Pacific EcoRisk Endpoint: Survival Rate Analysis ID: 18-8621-9088 **CETIS Version:** CETISv1.7.0 20 Jul-10 16:15 Analyzed: Parametric-Control vs Treatments Analysis: Official Results: Yes Graphics 10 0.25 0.20 0.05 0.00 -0.05 0.3 0.2 -0.15 01. -0.20 -0.25

Report Date: Test Code:

20 Jul-10 16:16 (p 1 of 1)

07-7822-1795/39437

**Bivalve Larval Survival and Development Test** 

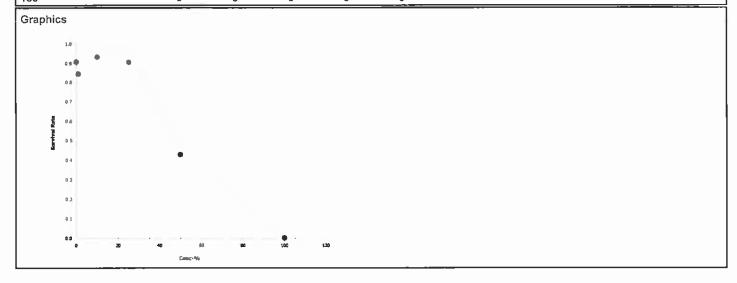
Pacific EcoRisk

Analysis ID: Analyzed:

03-6779-1230 20 Jul-10 16:15 Endpoint: Survival Rate

Analysis: Trimmed Spearman-Kärber **CETIS Version:** 

**CETISv1.7.0** 


Official Results: Yes

Trimmed Spearma	n-Kärber Estimates
-----------------	--------------------

Threshold Option	Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL
Control Threshold	0.0934	1.37%	1.69	0.00516	48.8	47.7	50

Survival R	late Summary			mmary Calculated Variate(A/B)					Calculated Variate(A/B)					
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	A	В			
0	Lab Water Contr	5	0.907	0.863	1	0.0103	0.0564	6.23%	0.0%	825	910			
1		5	0.845	0.769	0.896	0.0106	0.0581	6.87%	6.79%	769	910			
10		5	0.932	0.83	1	0.0162	0.0885	9.49%	-2.79%	848	910			
25		5	0.905	0.863	0,962	0.00674	0.0369	4.08%	0.12%	824	910			
50		5	0.429	0.242	0.577	0.0244	0.134	31.2%	52.7%	390	910			
100		5	0	0	0	0	0		100.0%	0	910			

Survival R	tate Detail					
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
0	Lab Water Control	0.885	0.868	1	0.918	0.863
1		0.896	0.874	0.797	0.769	0.89
10		0.841	1	1	0.989	0.83
25		0,912	0.962	0.885	0.907	0.863
50		0.505	0.473	0.577	0.346	0.242
100		0	0	0	0	0



Report Date:

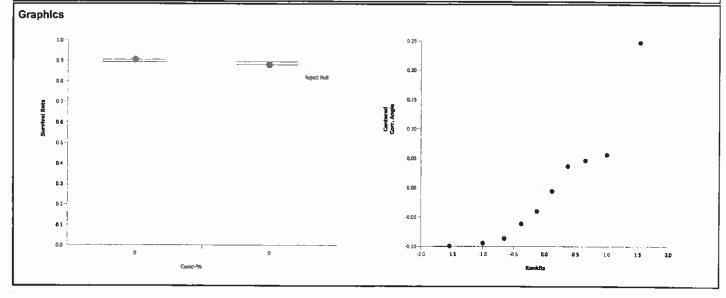
20 Jul-10 16:01 (p 4 of 4)

							1051	Code:		10-0031	-4622/3943
Bivaive Larva	al Survival and D	evelopme	nt Test							Paci	fic EcoRisk
Analysis ID: Analyzed:	06-7674-0949 20 Jul-10 15:57		•	velopment R rametric-Two		<u> </u>		IS Version: ial Results:	CETISv1 Yes	.7.0	
Data Transfo	ırm	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	_
Angular (Corr	rected)	0	C>T	Not Run		0	>0			1.83%	
Equal Varian	ce t Two-Sample	Test									
Control	vs Control		Test Stat	Critical	MSD	P-Value	Decision	(5%)			
Lab Water Co	ontrol Site Water	er	-2.43	1.86	0.0556	0.9793		ficant Effect			
ANOVA Table	<del> </del>	_			···		<del></del>		<u> </u>		
Source	Sum Squa	ires	Mean Sq	uare	DF	F Stat	P-Value	Decision(	5%)		
Between	0.0131558	2	0.013155	82	1	5.89	0.0413	Significant	Effect		
Error	0.0178539	13	0.002231	742	8						
Total	0.0310097	6	0.015387	56	9						
ANOVA Assu	ımptions									<del></del>	
Attribute	Test			Test Stat	Critical	P-Value	Decision(	(1%)			
Variances	Variance	Ratio F		1.26	23.2	0.8272	Equal Var	iances			
Distribution	Shapiro-V	Vilk Norma	lity	0.849		0.0569	Normal Di	stribution			
Development	t Rate Summary		<del></del>		· <u>-</u>	_					
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Site Water	5	0.992	0.989	0.996	0.98	1	0.00157	0.00846	0.85%	0.0%
0	Lab Water Contr	5	0.975	0.968	0.981	0.952	0.988	0.00299	0.0161	1.65%	1.8%
Angular (Cor	rected) Transfort	ned Sum	mary			-					
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Site Water	5	1.49	1.47	1.51	1.43	1.53	0.00825	0.0444	2.98%	0.0%
0	Lab Waler Cont	5	1.42	1.4	1.44	1.35	1.46	0.00927	0.0499	3.52%	4.87%
Graphics										<del></del> -	
1.0						0.06					
				Rejust Null							
0.9						0.04				•	
0.0											
g 07-					_	0.02		•			
06					1	N. A.					
					3	§ 0.00		•			
<b>□</b> p5·J											
0.4						-0.02		•			
0.3						-0.04		•			

Analyst: M QA: KKK

1.0

Report Date:


20 Jul-10 16:01 (p 2 of 4)

								Test	Code:		18-6831-4622/3943
Bivalve Larva	l Surv	vival and Develo	pment Test				_				Pacific EcoRIs
Analysis ID: Analyzed:		3724-4183 Jul-10 15:59	•		vival Rale ametric-Tw	o Sample			IS Version		v1.7.0
Data Transfor	m	Zeta	Alt Hy	/p	Monte Ca	irlo	NOEL	LOEL	TOEL	TU	PMSD
Angular (Corre	ected)	0	C > T		Not Run		0	>0			7.77%
Equal Variance	e t Tv	vo-Sample Test					<del>-</del>				
Control	vs	Control	Test S	tat	Critical	MSD	P-Value	Decision	(5%)		
Lab Water Cor	ntrol	Site Water	0,88		1.86	0.131	0.2022	Non-Signi	ficant Effec	ct	
ANOVA Table										-	
Source		Sum Squares	Mean :	Squ	are	DF	F Stat	P-Value	Decision	n(5%)	
Between		0.009684817	0.0096	848	17	1	0.775	0.4043	Non-Sigr	nificant Effe	ect
Error		0.09996058	0.0124	950	7	8			•		
Total		0.1096454	0.0221	798	9	9					

ANUVA ASSUM	ptions					
Attribute	Test	Test Stat	Critical	P-Value	Decision(1%)	
Variances	Variance Ratio F	4.49	23.2	0.1746	Equal Variances	
Distribution	Shapiro-Wilk Normality	0.847		0.0532	Normal Distribution	
Survival Rate S	ummary					

Cui vivai itati	o Gammary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	MIn	Max	Std Err	Std Dev	CV%	Diff%
0	Site Water	5	0.881	0.864	0.898	0.813	0.918	0.00837	0.0451	5.11%	0.0%
0	Lab Water Contr	5	0.907	0.885	0.928	0.863	1	0.0105	0.0564	6.23%	-2.87%

Angular (Cor	rected) Transform	ned Summ	ary								
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Site Water	5	1.22	1.2	1,25	1.12	1.28	0.0125	0.0674	5.51%	0.0%
0	Lab Water Cont	5	1.29	1.23	1.34	1.19	1.53	0.0265	0.143	11.1%	-5.09%



## Mytilus sp. Development Toxicity Test Count Data

Client:	ACOE - San Rafael Channel	Test Start Date:	7.7-10	
Test Material:	SRC-2010-01	Test End Date:	7-9-10	
Test ID #:	39437	Enumeration Date:	7120/10	
Project #:	16087	Investigator:	Fn	
Sample Salinity	adjusted with: Crystal Sea Salts	Inoculation Count:	182	

Concentration	Replicate	Number of Normal Larvae	Number of Abnormal Larvae	Total Number Larvae	Percent Normal Development	Percent Survival
	Α	161	2	163	99	88
	В	158	8	166	95	87
Control	С	186	7	193	96	100
	D _	167	3	170	98	92
	Е	157	2	159	99	86
	Α	L63	2	165	98.8	89.6
	В	159	2	161	98.8	874_
1.0%	С	145	4	149	97.3	79.7
	D	140	3	143	97.9	76.9
	E	162	2	164	વક્ ક	89.0
	Α	163	l l	154	99.4	84.1
	В	183		184	99.5	100
10%	С	200	2	202	99.0	100
	D	180	1	181	99.4	98.9
<u> </u>	Е	151	5	156	26.8 a c - Tom	83
	A	166	ð	166	100	91.2
	В	175	3	178	98.3	96.2
25%	С	161	2	163	98.8	88.5
	D	165		166	99.4	90.7
	Е	157	2	159	98.7	86.3
	Α	92	87	179	51.4	50.5
	В	86	-90	176	48.9	47.3
50%	С	106	117	222	47.3	57.7
	D	63	71	134	47.0	34.6
	Е	44	88	132	73.3	242
	Α	0	.178	178	0	0
	В	ð	-14 g	148	D	0
100%	С	0	136	135	0	0
	D_	٥	164	164	0	0
	E	0	169	159	O	ð

### Mytilus sp. Development Toxicity Test Water Chemistry Data

Client:	ACOE - San Rafael Channel	Organism Log#:	5286 Age:	N/A
Test Material:	SRC-2010-01	Organism Supplier:	Cutoff	
Test ID#:	39437 Project #: 16087	Control/Diluent:	30ppt FSW	
Test Date:	7-7-10 Randomization:			
Sample Salinity	adjusted with: Crystal Sea SoltS			

		Day 0			
Treatment	Temperature (°C)	рН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	16.4	7.80	8.7	30.7	Test Solution Prep
1%	16.4	7.86	8.5	30.9	New WQ: ODB
10%	16.4	7.85	8.5	30.7	Inoculation Dale:
25%	16.4	7.87	8.4	30.2	Inoculation Time
50%	16-4	7.89	8.3	29.5	Inoculation Signoff:
100%	16.4	7.94	7.7	28.0	
Meter ID	23	Ph14	RD03	E033	

	Day 1										
Treatment	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff						
Control	16.3				Date 7/8/10						
1%	16.3				Signoff AV						
10%	16.3										
25%	16.3	100									
50%	16.3										
100%	16.3										
Meter ID	23										

Day 2										
Treatment	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff					
Control	16.2	7.94	8.6	31.2	Termination Signoff:					
i%	14.2	7.99	9.1	31-2	Termination Date:					
10%	14.2	8.05	8.9	30.8	Termination Time:					
25%	14.2	8-10	8.9	30.5	Old WQ: NVS					
50%	14.2	8.17	8.9	29-7	***************************************					
100%	16.2	8.24	9.0	NM						
Meter ID	23	PHIA	RD 03	Ec 05						

20 Jul-10 16:28 (p 1 of 2) 18-9108-5089/39438

							16	est Code:			10-9100-	5069/3943
Bivalve Larval	Survival and De	velop	ment Test								Pacifi	c EcoRisk
Batch ID:	18-8220-2847		Test Type:	Development-S	urvival		Aı	nalyst:	Jaso	n Walker		
Start Date:			Protocol:	ASTM E724-98				Diluent: Diluted Seaw		ed Seawate	er	
Ending Date:	09 Jul-10 15:50			Mytilus galloprovincialis			В	Brine: Crystal Sea		tal Sea		
Duration:	49h		Source:	Dave Gutoff			A	ge:	N/A			
Comple ID:	24 4252 5504		Code:	CDC 2040 02					ACO		<u> </u>	
Sample ID:	21-4363-5601 09 Jun-10 08:00	,		SRC-2010-02				lient:	1608			
			Material:	Elutriate	1		Pi	roject:	1000	· t		
	09 Jun-10 19:00		Source:	San Rafael Cha	innei							
Sample Age:	28d 7h (1.6 °C)		Station:	SRC-2010-02		<del> </del>						
Comparison S	ummary											
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Meth	od			
10-4884-0897	Development Ra	ate	25	50	35.4	1.7%	4	Steel	Many	/-One Rank	Test	
13-2907-0402	Survival Rate		25	50	35.4	12.8%	4	Steel	Many	-One Rank	Test	
Point Estimate	e Summary											
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	TU	Meth	od			
13-7464-8732 Developm	Development Ra	ate	EC5	26.2	25,9	26.3	3.81	Linea	ar Inte	rpolation (K	CPIN)	
			EC10	27.5	27.2	27.5	3.64					
			EC15	28.7	28.5	28.8	3.48					
			EC20	30	29.7	30	3.33					
			EC25	31.2	31	31.3	3.2					
			EC40	35	34.8	35	2.86					
			EC50	37,5	37.3	37.6	2.67					
13-0969-1803	Survival Rate		EC50	35.4	35.3	35.4	2.83	Spea	ırman-	-Kärber		
Development I	Rate Summary											
	Control Type	Coun		95% LCL	95% UCL	Min	Max	Std E	Err	Std Dev	CV%	Diff%
0	Lab Water Contr	5	0.975	0.969	0.981	0.952	0.988	0.002	294	0.0161	1.65%	0.0%
0	Site Water	5	0.992	0.989	0.996	0.98	1	0.001	155	0.00846	0.85%	-1.83%
1		5	0,992	0.988	0.995	0.977	1	0.001	155	0.0085	0.86%	-1.74%
10		5	0.993	0.991	0.994	0.989	1	0.000	0886	0.00485	0.49%	-1.85%
25		5	0.986	0.981	0.99	0.967	0.994	0.002	205	0.0112	1.14%	-1.13%
50		5	0.001	0.000248	0.00276	0	0.0075	2 0.000	0614	0.00336	224.0%	99.8%
100		5	0	0	0	0	0	0		0		100.0%
Survival Rate	Summary											
Conc-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std E	Err	Std Dev	CV%	Diff%
0	Lab Water Contr	5	0.907	0.886	0.928	0.863	1	0.010	03	0.0564	6.23%	0.0%
0	Site Water	5	0.881	0.864	0.898	0.813	0.918	0.008	323	0.0451	5.11%	2.79%
1		5	0.897	0.838	0.955	0.621	1	0.028	35	0.156	17.4%	1.09%
10		5	0.986	0.979	0.993	0.956	1	0.003	345	0.0189	1.91%	-8.73%
25		5	0.938	0.92	0.956	0.868	1	0.008	381	0.0483	5.14%	-3.52%
50		5	0.001		0.00202	0	0.0054			0.00246	224.0%	99.9%
		5	0	0	0	0				0		100.0%

20 Jul-10 16:28 (p 2 of 2) 18-9108-5089/39438

Bivalve Lar	val Survival and De	velopme	nt Test				Pacific EcoRisk
Developme	nt Rate Detail						
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep <b>5</b>	
0	Lab Water Contr	0.988	0.952	0.964	0.982	0.987	
0	Site Water	1	0.988	0.994	0.98	1	
1		0.977	0.994	0.995	0,991	1	
10		0.99	0.989	0.995	0.989	1	
25		0.967	0.994	0.985	0.994	0.989	
50		0	0.00752	0	0	0	
100		0	0	0	0	0	
Survival Ra	nte Detail						
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep <b>5</b>	
0	Lab Water Contr	0.885	0.868	1	0.918	0.863	* *
0	Site Water	0.907	0.918	0.912	0.813	0.857	
1		0.951	0.973	1	0.621	0.94	
10		1	0.995	1	0.978	0.956	
25		0.956	0.868	1	0.923	0.945	
50		0	0.00549	0	0	0	
100		0	0	0	0	0	

Report Date:

20 Jul-10 16:28 (p 3 of 4)

Test Code: 18-9108-5089/39438

Bivalve Larv	al Survival and De	velopmen	t Test							Pacif	ic EcoRisk
Analysis ID: Analyzed:	10-4884-0897 20 Jul-10 16:27		•	velopment R nparametric-		reatments		S Version: ial Results:	CETISv1 Yes	.7.0	
Data Transfo	rm	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Com	ected)	0	C > T	Not Run		25	50	35.4	4	1.7%	
Steel Many-C	One Rank Test				•						
Control	vs Conc-%		Test Stat	Critical	Ties	P-Value	Decision(	5%)			
Lab Water Co	ontrol 1		37	16	0	0,9996	Non-Signi	ficant Effect			
	10		40	16	0	1.0000	Non-Signi	ficant Effect			
	25		35	16	0	0.9979	Non-Signi	ficant Effect			
	50*		15	16	0	0.0191	Significant	l Effect			
	100*		15	16	0	0.0191	Significan	l Effect			
ANOVA Tabl	е										
Source	Sum Squa	ires	Mean Squ	iare	DF	F Stat	P-Value	Decision(	5%)		
Between	13.38251		2.676502		5	2180	<0.0001	Significant	Effect		
Error	0.0294557	4	0.0012273	322	24			_			
Total	13.41197		2.677729		29						
ANOVA Assu	ımptions					_					
Attribute	Test			Test Stat	Critical	P-Value	Decision(	1%)			
Variances	Bartlett Ed	quality of Va	ariance	23.6	15.1	0.0003	Unequal \	arlances			
Distribution	Shapiro-V	Vilk Normali	ty	0.933		0.0584	Normal Di	stribution			
Developmen	t Rate Summary			<del></del>		<u> </u>					
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water Contr	5	0.975	0.968	0.981	0.952	0.988	0.00299	0,0161	1.65%	0.0%
1		5	0.992	0.988	0,995	0.977	1	0.00158	0.0085	0.86%	-1.74%
10		5	0.993	0.991	0.994	0.989	1	0.000901	0.00485	0.49%	-1.85%
25		5	0.986	0.981	0.99	0.967	0.994	0.00209	0.0112	1.14%	-1.13%
50		5	0.0015	0.000225	0.00278	0	0.00752	0.000624	0.00336	224.0%	99.8%
100		5	0	0	0	0	0	0	0		100.0%
Angular (Cor	rected) Transform	ned Summ	nary						<del></del>		
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water Cont	5	1.42	1.4	1.44	1.35	1.46	0.00927	0.0499	3.52%	0.0%
1		5	1.48	1.47	1.5	1.42	1.53	0.00767	0.0413	2.78%	-4.77%
10		5	1.49	1.48	1.5	1.47	1.53	0.00548	0.0295	1.98%	-4.96%
25		5	1.46	1.44	1.47	1.39	1.49	0.00806	0.0434	2.98%	-2.82%
50		5	0.0507	0,043	0.0584	0.0393	0.0868	0.00378	0.0203	40.1%	96.4%
-		J	0.0007	0,040	0.0004	0.0030	0.0000	0.00010	0.0203	70.170	30.470

3.39%

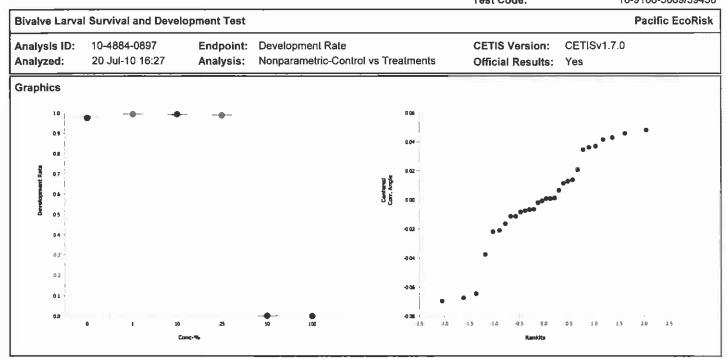
97.2%

100

5

0.04

0.0395


0.0406

0.038

0.0413

0.000252 0.00136

20 Jul-10 16:28 (p 4 of 4) 18-9108-5089/39438



Report Date: **Test Code:** 

20 Jul-10 16:28 (p 1 of 1)

18-9108-5089/39438

**Bivalve Larval Survival and Development Test** 

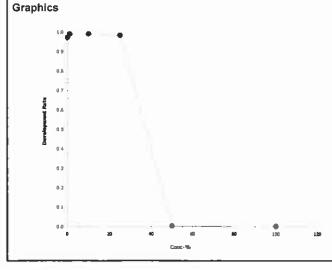
Pacific EcoRisk

Analysis ID: Analyzed:

13-7464-8732 20 Jul-10 16:27 Endpoint: Development Rate

Analysis: Linear Interpolation (ICPIN) **CETIS Version:** Official Results: Yes

**CETISv1.7.0** 


Linear	interp	oolation	Options
--------	--------	----------	---------

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	57951	200	Yes	Two-Point Interpolation

Point E	stimates					
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC5	26,2	25.9	26.3	3.81	3.81	3.86
EC10	27.5	27.2	27.5	3.64	3.63	3.68
EC15	28.7	28.5	28.8	3.48	3.48	3,51
EC20	30	29.7	30	3.33	3,33	3.36
EC25	31.2	31	31.3	3.2	3.2	3.23
EC40	35	34.8	35	2.86	2.85	2.87
EC50	37.5	37.3	37.6	2.67	2.66	2.68

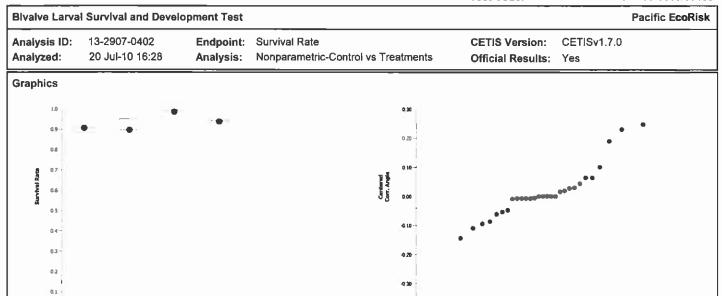
Developm	evelopment Rate Summary			Calculated Variate(A/B)							
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	A	В
0	Lab Water Contr	5	0.975	0.952	0.988	0.00294	0.0161	1.65%	0.0%	829	851
1		5	0.992	0.977	1	0.00155	0.0085	0.86%	-1.74%	818	825
10		5	0.993	0.989	1	0.000886	0.00485	0.49%	-1.85%	935	942
25		5	0.986	0.967	0.994	0.00205	0.0112	1.14%	-1.13%	870	883
50		5	0.0015	0	0.00752	0.000614	0.00336	224.0%	99.8%	1	715
100		5	0	0	0	0	0		100.0%	0	782

Developm	ent Rate Detail					
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
0	Lab Water Control	0.988	0.952	0.964	0.982	0.987
1		0.977	0.994	0.995	0.991	1
10		0.99	0.989	0.995	0.989	1
25		0.967	0.994	0.985	0.994	0.989
50		0	0.00752	0	0	0
100		0	0	0	0	0



Report Date: Test Code:

20 Jul-10 16:28 (p 1 of 4)


18-9108-5089/39438

							1031			10 0100	
Bivaive Larv	al Survival and De	evelopmen	t Test				_			Pacif	lc EcoRis
Analysis ID:	13-2907-0402	End	ipoint: Sur	vival Rate			CETI	S Version:	CETISv1	.7.0	
Analyzed:	20 Jul-10 16:28				Control vs T	reatments		ial Results:	Yes		
Allaly 200.		7411				-	-	iai itosuits.			
Data Transfo	orm	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Com	rected)	0	C > T	Not Run		25	50	35.4	4	12.8%	
Steel Many-C	One Rank Test										
Control	vs Conc-%		Test Stat	Critical	Ties	P-Value	Decision(	5%)			
Lab Water Co	ontrol 1		31.5	16	1	0.9757	Non-Signi	ficant Effect			
	10		36	16	1	0,9991	Non-Signi	ficant Effect			
	25		33	16	2	0.9907	-	ficant Effect			
	50*		15	16	0	0.0191	Significant				
	100*		15	16	0	0.0191	Significant				
							Cigninican	-			
ANOVA Tabi			M 0		D.F.	F. 04 .	D.W.	D11-1	E0/ \		
Source	Sum Squa	ires	Mean Squ	are	DF	F Stat	P-Value	Decision(	<del></del>		
Between	11.53393		2.306787	_	5	142	<0.0001	Significant	Effect		
Error	0.3886414		0.0161933	9	24						
Total  ANOVA Assi	11.92257		2.32298		29						
Attribute	Test			Test Stat	Critical	P-Value	Decision(	1%)			
Variances		ne Fauslit	of Variance		4.25	0.1936	Equal Var				
Distribution		Vilk Normal		0.864	7.20	0.0012	•	al Distributio	n		
		The Horning				0.0012	11011-1101111		···		
Survival Rate											
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
ס	Lab Water Contr		0.907	0.885	0.928	0.863	1	0.0105	0.0564	6.23%	0.0%
1		5	0.897	0.837	0.956	0.621	1	0.029	0.156	17.4%	1.09%
10		5	0.986	0.979	0.993	0.956	1	0.0035	0.0189	1.91%	-8.73%
25		5	0.938	0.92	0.957	0.868	1	0.00896	0.0483	5.14%	-3.52%
50		5	0.0011	0.000164	0.00203	0	0.00549	0.000456	0.00246	224.0%	99.9%
100		5	0	0	0	0	0	0	0		100.0%
Angular (Co	rrected) Transfor	ned Sumr	narv								
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
CUIIC- /6				1.23	1.34	1.19	1.53	0.0265	0.143	11.1%	0.0%
		5	1.29	1.23					2		5,570
0	Lab Water Cont	_	1.29			0.907	1 53	0.0438	0.236	18 1%	-1 35%
0		5	1.3	1.21	1.39	0.907	1.53	0.0438	0.236	18.1%	
0 1 10		5 5	1.3 1.47	1.21 1.44	1,39 1.5	1.36	1.53	0.0142	0.0764	5.2%	-14.3%
0 1 10 25		5 5 5	1.3 1,47 1.34	1.21 1.44 1.3	1.39 1.5 1.39	1.36 1.2	1.53 1.53	0.0142 0.0228	0.0764 0.123	5.2% 9.14%	-14.3% -4.49%
0 1 10 25 50		5 5	1.3 1.47	1.21 1.44	1,39 1.5	1.36	1.53	0.0142	0.0764	5.2%	-1.35% -14.3% -4.49% 96.5% 97.1%

0.0

Report Date: Test Code: 20 Jul-10 16:28 (p 2 of 4)

18-9108-5089/39438



Report Date: Test Code: 20 Jul-10 16:28 (p 1 of 1)

18-9108-5089/39438

**Bivalve Larval Survival and Development Test** 

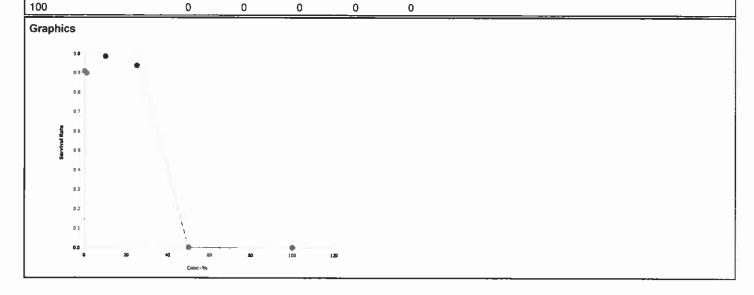
Pacific EcoRisk

Analysis ID: Analyzed: 13-0969-1803 20 Jul-10 16:28 Endpoint: Survival Rate

Analysis: Untrimmed Spearman-Kärber

CETIS Version: CETISv1.7.0

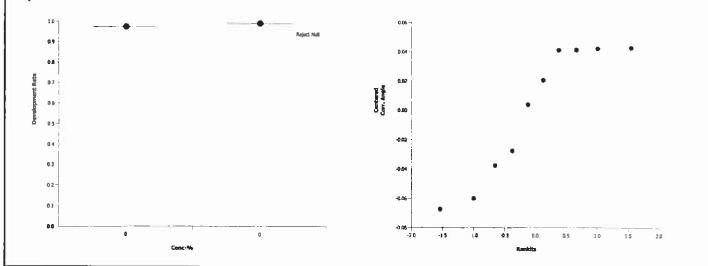
Official Results: Yes


Spearman-Kärber Estimates

 Threshold Option
 Threshold
 Trim
 Mu
 Sigma
 EC50
 95% LCL
 95% UCL

 Control Threshold
 0.0934
 0.00%
 1.55
 0.000342
 35.4
 35.3
 35.4

Survival R	urvival Rate Summary			Calculated Variate(A/B)							
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	A	В
0	Lab Water Contr	5	0.907	0.863	1	0.0103	0.0564	6.23%	0.0%	825	910
1		5	0.897	0.621	1	0.0285	0.156	17.4%	1.09%	816	910
10		5	0.986	0.956	1	0.00345	0.0189	1.91%	-8.73%	897	910
25		5	0.938	0.868	1	0.00881	0.0483	5.14%	-3.52%	854	910
50		5	0.0011	0	0.00549	0.000449	0.00246	224.0%	99.9%	1	910
100		5	0	0	0	0	0		100.0%	0	910


Su	ırvival R	ate Detail						
Co	опс-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep <b>5</b>	
0		Lab Water Control	0.885	0.868	1	0.918	0.863	
1			0.951	0.973	1	0.621	0.94	
10	1		1	0.995	1	0.978	0.956	
25	;		0.956	0.868	1	0.923	0.945	
50	)		0	0.00549	0	0	0	
10	0		0	0	0	0	0	



Report Date:

20 Jul-10 16:01 (p 4 of 4)

						Test	18-6831-4622/39436				
Bivalve Larv	al Survival and De	evelopme	nt Test							Paci	fic EcoRis
Analysis ID: Analyzed:	06-7674-0949 20 Jul-10 15:57		•	elopment R ametric-Two				IS Version: ial Results		.7.0	
Data Transfe	orm	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Cor	rected)	0	C > T	Not Run		0	>0	_		1.83%	
Equal Varia	nce t Two-Sample	Test									
Control	vs Control		Test Stat	Critical	MSD	P-Value	Decision	(5%)			
Lab Water C	ontrol Site Wate	r	-2.43	1.86	0.0556	0.9793	Non-Sign	ficant Effect			
ANOVA Tab	le										
Source	Sum Squa	ires	Mean Squ	are	DF	F Stat	P-Value	Decision	(5%)		
Between	0.0131558	2	0.0131558	12	1	5.89	0.0413	Significan	t Effect		
Error	0.01785393		0.0022317	42	8						
Total	al 0.03100976		0.0153875	6	9						
ANOVA Ass	umptions										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Variance	Ralio F		1.26	23.2	0.8272	Equal Variances				
Distribution	Shapiro-V	Vilk Norma	lity	0.849			Normal D	stribulion			
Developmen	t Rate Summary			_							
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Site Water	5	0.992	0.989	0.996	0.98	1	0.00157	0.00846	0.85%	0.0%
0	Lab Water Contr	5	0.975	0.968	0.981	0.952	0,988	0.00299	0.0161	1.65%	1.8%
Angular (Co	rrected) Transform	ned Sumi	mary						· · · · · · · · · · · · · · · · · · ·		****
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Site Water	5	1.49	1.47	1.51	1.43	1.53	0.00825	0.0444	2.98%	0.0%
0	Lab Water Cont	5	1.42	1.4	1.44	1.35	1.46	0.00927	0.0499	3.52%	4.87%
Graphics										-	
107											
** ]			-	Rejuct Hull		0.06 ¬					



Report Date:

20 Jul-10 16:01 (p 2 of 4)

Test Code: 18-6831-4622/39436

							Test	Code:		18-6831	-4622/3943
Bivalve Larva	al Survival and Do	evelopmer	nt Test							Paci	fic EcoRisi
Analysis ID: Analyzed:	17-3724-4183 20 Jul-10 15:59		•	urvival Rate arametric-Two	o Sample			IS Version: cial Results:	CETISv1	.7.0	
Data Transfo	rm	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	<del></del>
Angular (Corr	ected)	0	C > T	Not Run		0	>0			7.77%	
Equal Varian	ce t Two-Sample	Test									·
Control	vs Control		Test Sta	t Critical	MSD	P-Value	Decision	(5%)			
Lab Water Co	ontrol Site Wate	er	0.88	1.86	0.131	0.2022	Non-Sign	ificant Effect			
ANOVA Table	e								···	_	
Source	Sum Squa	ares	Mean Sq	_l uare	DF	F Stat	P-Value	Decision(	5%)		
Between	0.0096848		0.009684		1	0.775	0.4043	Non-Signit	icant Effect	:	
Error	0.0999605		0.012495		8						
Total	0.1096454		0.022179	189	9						
ANOVA Assu	ımptions										
Attribute	Test			Test Stat		P-Value	Decision	(1%)			
Variances	Variance i		1.	4.49	23.2	0.1746	Equal Vai				
Distribution		Vilk Normal	lty	0.847		0.0532	Normal D	istribution	·		
Survival Rate	•										
Conc-%	Control Type	Count	Mean	95% LCL		Min	Max	Std Err	Std Dev	CV%	Diff%
0	Site Water	5	0.881	0.864	0.898	0.813	0.918	0.00837	0.0451	5.11%	0.0%
0	Lab Water Contr	5	0.907 ————	0.885	0.928	0.863	1 	0.0105	0.0564	6.23%	-2.87%
Angular (Cor	rected) Transform	ned Sumn	nary						· ·		
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Мах	Std Err	Std Dev	CV%	Diff%
0	Site Water	5	1.22	1.2	1.25	1.12	1.28	0.0125	0.0674	5.51%	0.0%
0	Lab Water Conl	5	1.29 	1,23	1.34	1.19	1.53	0.0265	0.143	11.1%	-5.09%
Graphics											
1.0-1						0.25 ¬					
0.9										•	
0.8			•	Rejust Null		0.20 -					
į											
0.7-1 0.6					E	0.15 S					
<b>5</b> ° •						0 10-					
a s									_		
04						0.05			• • •		
0.3						0.00					
02-											
01						-0.05-		•			

Conc-%

# Mytilus sp. Development Toxicity Test Count Data

Client:	ACOE - San Rafael Channel	Test Start Date:	7-7-10
Test Material:	SRC-2010-02	Test End Date:	7-9-10
Test ID #:	39438	Enumeration Date:	7/20110
Project #:	16087	Investigator:	)0~
Sample Salinity	adjusted with: Coustal Sea Salts	Inoculation Count:	182

Concentration	Replicate	Number of Normal Larvae	Number of Abnormal Larvae	Total Number Larvae	Percent Normal Development	Percent Survival
	Α	161	2	143	99	88'
	В	158	8	144	95	87
Control	С	186	7	193	96	100
ļ	D	167	3	170	98	92
	E	157	2	151	99	86
	Α	173	4	177	97.7	95.1
	В	177	1	178	994	97.3
1.0%	С	194	1	185	99.5	100
	D	11/2		114	99.1	62.1
	E	ini	0	171	ر ر در ر	94.0
	Α	108	2	200	99	100
	В	181	2	183	98.9	99.5
10%	С	204	ŧ	205	99.5	טטן
	D	178	2	180	98.9	97.8
	Е	174	6	174	100.0	95.6
	Α	174	6	180	96.7	95.6
	В	158	1	159	99.4	87
25%	C	108	3	201	98.5	100
	D	168	Ī	169	99.4	86.8
	E	172	2	174	98.9	94.5
	Α	0	162	162	0	0
	В	1	132	133	600 8.008	€0.5 0.005
50%	C	0	128	128	Ô	O
	D	0	130	130	0	0
	Е	0	162	162	0	0
	A	0	162	162	0	0
	В	0	147	147	0	0
100%	C	0	173	173	0	6
	D	0	150	150	0	0
	E	0	148	150	0	0

## Mytilus sp. Development Toxicity Test Water Chemistry Data

 Client:
 ACOE - San Rafael Channel

 Test Material:
 SRC-2010-02

 Test ID#:
 39438
 Project #: 16087

 Test Date:
 7-7-/0
 Randomization:

Sample Salinity adjusted with : Oystal Sen Salts

	Day 0										
Treatment	Temperature (°C)	рН	D.O. (mg/L)	Salinity (ppt)	Signoff						
Control	160.4	7.80	8.7	30.7	Test Solution Prep:						
1%	16.4	7.87	8.4	30.9	New WQ:						
10%	16-4	7.86	8.5	30.8	Inoculation Date:						
25%	16.4	7.92	<i>8</i> .s	30.9	Inoculation Time 10						
50%	16.4	7.98	8.3	30.₹	Inoculation Signoff.						
100%	16.4	8.02	7.7	30.4							
Meter ID	23	Ph 14	RDUS	ECU3							

		Day 1			
Treatment	Temperature ("C)	рH	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	16.3				Date: 7/8/10
1%	16.3				Signal) 2
10%	16.3				
25%	16.3				
50%	163				
100%	16.3				
Meter ID	23				

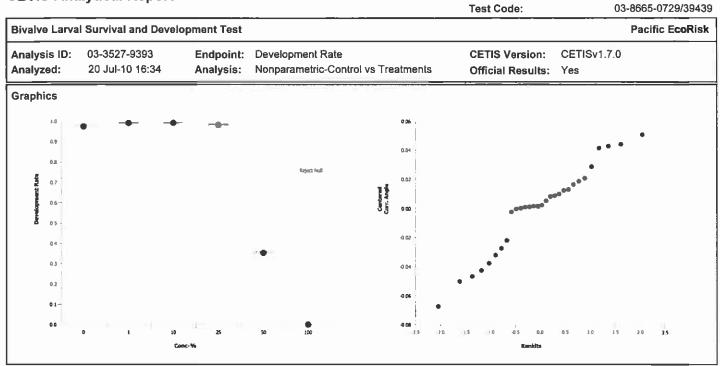
	Day 2										
Treatment	Temperature (°C)	pH	D.O. (mg/L)	Salinity (ppt)	Signoff						
Control	16.2	8.01	8.8	31.1	Termination Signoff:						
1%	16.2	8.02	8.9	31.2	Termination Date:						
10%	14.2	8-07	9.1	31.1	Termination Time.						
25%	16.2	8.15	8.9	30.7	Old WQ: NV5						
50%	14.2	8.20	9.2	30.8							
100%	16.2	8-32	9.0	30.6							
Meter ID	23	PH 14	RP03	Ec05	**************************************						

#### **CETIS Summary Report**

Report Date: Test Code: 20 Jul-10 16:35 (p 1 of 2) 03-8665-0729/39439

Blvalve Larval Survival and Development Test Pacific EcoRisk Batch ID: 18-8220-2847 Test Type: Development-Survival Analyst: Jason Walker Start Date: 07 Jul-10 15:10 ASTM E724-98 (Bivalve) Diluted Seawater Protocol: Diluent: Ending Date: 09 Jul-10 15:50 Species: Mytilus galloprovincialis Brine: Crystal Sea **Duration:** 49h Dave Guloff Source: Age: N/A Sample ID: 15-3808-8719 Code: SRC-2010-03 Client: ACOE Sample Date: 09 Jun-10 11:05 Material: Elutriate 16087 Project: Receive Date: 09 Jun-10 19:00 Source: San Rafael Channel 28d 4h (1.6 °C) SRC-2010-03 Sample Age: Station: Comparison Summary Analysis ID **Endpoint NOEL** LOEL **TOEL PMSD** TU Method 03-3527-9393 25 50 Development Rate 35.4 1.54% 4 Steel Many-One Rank Test 15-2854-7142 Survival Rate 25 50 35.4 14.5% 4 Dunnett's Multiple Comparison Test Point Estimate Summary Analysis ID **Endpoint** % Level 95% LCL 95% UCL TU Method 13-4014-5099 Development Rate EC5 26.8 26.3 27.1 3.74 Linear Interpolation (ICPIN) EC10 28.7 28.2 29.1 3.48 EC15 30.7 30.1 31.1 3.26 EC20 32.7 32 33.1 3.06 EC25 34,6 33.9 35.1 2.89 **EC40** 40.5 39.6 41.3 2.47 EC50 44.5 43.3 45.3 2.25 09-8801-6635 Survival Rate **EC50** 39.2 37.8 40.5 2.55 Spearman-Kärber **Development Rate Summary** Conc-% Control Type Count 95% LCL 95% UCL Mean Min Max Std Err Std Dev CV% Diff% 0 Lab Water Contr 5 0.975 0.969 0.981 0.952 0.988 0.00294 0.0161 0.0% 1.65% 0 Site Water 5 0.992 0.989 0.996 0.98 0.00846 1 0.00155 0.85% -1.83% 1 5 0.992 0.989 0.994 0.982 1 0.00125 0.00683 0.69% -1.73% 10 5 0.992 0.99 0.994 0.986 1 0,00104 0.00571 0.58% -1.8% 25 5 0.981 0.978 0.983 0.968 0.986 0.00134 0.00736 0.75% -0.62% 50 5 0.353 0.343 0,364 0.306 0.381 0.00516 0.0283 8.0% 63.7% 100 5 0 0 0 0 0 0 100.0% Survival Rate Summary Conc-% **Control Type** Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff% 0 Lab Water Contr 5 0.907 0.886 0.928 0.863 0.0103 0.0564 6.23% 0.0% 0 Site Water 5 0.881 0.864 0.918 0.898 0.813 0.00823 0.0451 5.11% 2.79% 1 5 0.909 0.869 0.949 0.736 1 0.0197 0.108 11.9% -0.24% 10 5 0.83 0.805 0.855 0.769 0.934 0.0121 0.0665 8.02% 8.48% 25 5 0.89 0.853 0.928 0.764 1 0.0183 0.1 11.3% 1.82% 50 5 0.3 0.281 0.319 0.225 0.352 0.00926 0.0507 16.9% 66.9% 5 100 0 0 0 0 0 0 100.0% 0

20 Jul-10 16:35 (p 2 of 2) 03-8665-0729/39439


val Survival and De	velopme	nt Test					Pacific EcoRlsk
nt Rate Detail							
Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Lab Water Contr	0.988	0.952	0.964	0.982	0.987		
Site Water	1	0.988	0.994	0.98	1		
	0.995	0.988	1	0.982	0.993		
	0.986	1	0.987	0.994	0.993		
	0.968	0.984	0.983	0.982	0.986		
	0.365	0.381	0.306	0.354	0.361		
	0	0	0	0	0		
ate Detail				_	-		
Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Lab Water Contr	0.885	0.868	1	0.918	0.863		·
Site Water	0.907	0.918	0.912	0.813	0.857		
	1	0.907	1	0.901	0.736		
	0.775	0.769	0.841	0.934	0.83		
	0.824	1	0.978	0.885	0.764		
	0.275	0.352	0.225	0.313	0.335		
	0	0	0	0	0		
	Control Type Lab Water Control Site Water  ate Detail Control Type Lab Water Control	Control Type Rep 1  Lab Water Control 0.988 Site Water 1 0.995 0.986 0.968 0.365 0  Ate Detail Control Type Rep 1 Lab Water Control Type Rep 1 Lab Water Control 0.885 Site Water 0.907 1 0.775 0.824 0.275	Control Type         Rep 1         Rep 2           Lab Water Contr         0.988         0.952           Site Water         1         0.988           0.995         0.988           0.986         1           0.968         0.984           0.365         0.381           0         0           ate Detail           Control Type         Rep 1         Rep 2           Lab Water Contr         0.885         0.868           Site Water         0.907         0.918           1         0.907         0.769           0.824         1         0.275         0.352	Control Type Rep 1 Rep 2 Rep 3  Lab Water Contr 0.988 0.952 0.964 Site Water 1 0.988 0.994 0.995 0.988 1 0.986 1 0.987 0.968 0.984 0.983 0.365 0.381 0.306 0 0 0  Ate Detail  Control Type Rep 1 Rep 2 Rep 3  Lab Water Contr 0.885 0.868 1 Site Water 0.907 0.918 0.912 1 0.907 1 0.775 0.769 0.841 0.824 1 0.978 0.275 0.352 0.225	Control Type	Control Type	Control Type   Rep 1   Rep 2   Rep 3   Rep 4   Rep 5

20 Jul-10 16:35 (p 3 of 4) 03-8665-0729/39439

Bivalve Larva	al Survival and D	evelopmen	t Test							Pacit	ic EcoRisi
Analysis ID: Analyzed:	03-3527-9393 20 Jul-10 16:34		•	elopment R		reatments		S Version: ial Results:	CETISv1 Yes	.7.0	
Data Transfo	orm	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TÜ	PMSD	
Angular (Corr	rected)	0	C > T	Not Run		25	50	35.4	4	1.54%	
Steel Many-C	One Rank Test										
Control	vs Conc-%		Test Stat	Critical	Ties	P-Value	Decision(	5%)			
Lab Water Co	ontrol 1		37	16	0	0.9996	Non-Signi	ficant Effect			
	10		36	16	0	0.9991	Non-Signi	ficant Effect			
	25		28	16	0	0.8627	Non-Signi	ficant Effect			
	50*		15	16	0	0.0191	Significan	t Effect			
	100*		15	16	0	0.0191	Significant				
ANOVA Table	е		·· · · · ·				-				
Source	Sum Squa	ares	Mean Squ	are	DF	F Stat	P-Value	Decision(	5%)		
Between	9.191415		1.838283		5	1740	<0.0001	Significant	Effect		
Error	0.0253341	8	0.0010555	91	24						
Total	9.216749		1.839339		29						
ANOVA Assu	umptions										
Attribute	Test			Test Stat	Critical	P-Value	Decision(	1%)			
Variances	Bartlett E	quality of Va	ariance	21	15.1	0.0008	Unequal \	/ariances			
Distribution	Shapiro-V	Vilk Normal	ity	0.948		0.1518	Normal Di	stribution			
Development	t Rate Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water Conti	- 5	0.975	0.968	0.981				0.0404		
		3	0.0.0	0.000	0.301	0.952	0.988	0.00299	0.0161	1.65%	0.0%
1	245 174101 00111	5	0.992	0.989	0.994	0.952 0.982	0.988 1	0.00299 0.00127	0.0161	1.65% 0.69%	0.0% -1.73%
1 10	245 (7416) 0011	-									
	Zab Waler Colla	5	0.992	0.989	0.994	0.982	1	0.00127	0.00683	0.69%	-1.73%
10		5 5	0.992 0.992	0.989 0.99	0.994 0.994	0.982 0.986	1 1	0.00127 0.00106	0.00683 0.00571	0.69% 0.58% 0.75%	-1.73% -1.8% -0.62%
10 25		5 5 5	0.992 0,992 0.981	0.989 0.99 0.978	0.994 0.994 0.983	0.982 0.986 0.968	1 1 0.986	0.00127 0.00106 0.00137	0.00683 0.00571 0.00736	0.69% 0.58%	-1.73% -1.8%
10 25 50 100	rected) Transfor	5 5 5 5 5	0.992 0.992 0.981 0.353	0.989 0.99 0.978 0.343	0.994 0.994 0.983 0.364	0.982 0.986 0.968 0.306	1 1 0.986 0.381	0.00127 0.00106 0.00137 0.00525	0.00683 0.00571 0.00736 0.0283	0.69% 0.58% 0.75%	-1.73% -1.8% -0.62% 63.7%
10 25 50 100		5 5 5 5 5	0.992 0.992 0.981 0.353	0.989 0.99 0.978 0.343	0.994 0.994 0.983 0.364	0.982 0.986 0.968 0.306	1 1 0.986 0.381	0.00127 0.00106 0.00137 0.00525	0.00683 0.00571 0.00736 0.0283	0.69% 0.58% 0.75%	-1.73% -1.8% -0.62% 63.7%
10 25 50 100 <b>Angular (Cor</b>	rected) Transfor	5 5 5 5 5 med Sumn	0.992 0.992 0.981 0.353 0	0.989 0.99 0.978 0.343 0	0.994 0.994 0.983 0.364	0.982 0.986 0.968 0.306 0	1 1 0.986 0.381 0	0.00127 0.00106 0.00137 0.00525 0	0.00683 0.00571 0.00736 0.0283 0	0.69% 0.58% 0.75% 8.0%	-1.73% -1.8% -0.62% 63.7% 100.0%
10 25 50 100 Angular (Cor	теcted) Transford Control Type	5 5 5 5 5 med Sumn	0.992 0.992 0.981 0.353 0	0.989 0.99 0.978 0.343 0	0.994 0.994 0.983 0.364 0	0.982 0.986 0.968 0.306 0	1 1 0.986 0.381 0 Max 1.46	0.00127 0.00106 0.00137 0.00525 0	0.00683 0.00571 0.00736 0.0283 0	0.69% 0.58% 0.75% 8.0% CV% 3.52%	-1.73% -1.8% -0.62% 63.7% 100.0% Diff%
10 25 50 100 Angular (Cor Conc-%	теcted) Transford Control Type	5 5 5 5 5 med Sumn Count	0.992 0.992 0.981 0.353 0 mary Mean 1.42	0.989 0.99 0.978 0.343 0 95% LCL 1.4 1.47	0.994 0.994 0.983 0.364 0 95% UCL 1.44 1.5	0.982 0.986 0.968 0.306 0 Min 1.35 1.44	1 1 0.986 0.381 0 Max 1.46 1.53	0.00127 0.00106 0.00137 0.00525 0 Std Err 0.00927 0.0069	0.00683 0.00571 0.00736 0.0283 0 Std Dev 0.0499 0.0372	0.69% 0.58% 0.75% 8.0% CV% 3.52% 2.5%	-1.73% -1.8% -0.62% 63.7% 100.0% Diff% 0.0% -4.67%
10 25 50 100 <b>Angular (Cor</b> <b>Conc-%</b> 0 1	теcted) Transford Control Type	5 5 5 5 5 5 <b>med Sumn</b> <b>Count</b> 5 5	0.992 0.992 0.981 0.353 0 mary Mean 1.42 1.48	0.989 0.99 0.978 0.343 0 95% LCL 1.4 1.47	0.994 0.994 0.983 0.364 0 95% UCL 1.44 1.5	0.982 0.986 0.968 0.306 0 Min 1.35 1.44 1.45	1 1 0.986 0.381 0 Max 1.46 1.53 1.53	0.00127 0.00106 0.00137 0.00525 0 Std Err 0.00927 0.0069 0.00577	0.00683 0.00571 0.00736 0.0283 0 Std Dev 0.0499 0.0372 0.0311	0.69% 0.58% 0.75% 8.0% CV% 3.52% 2.5% 2.09%	-1.73% -1.8% -0.62% 63.7% 100.0% Diff% 0.0% -4.67% -4.76%
10 25 50 100 Angular (Cor Conc-% 0	теcted) Transford Control Type	5 5 5 5 5 med Sumn Count 5	0.992 0.992 0.981 0.353 0 nary Mean 1.42 1.48	0.989 0.99 0.978 0.343 0 95% LCL 1.4 1.47	0.994 0.994 0.983 0.364 0 95% UCL 1.44 1.5	0.982 0.986 0.968 0.306 0 Min 1.35 1.44	1 1 0.986 0.381 0 Max 1.46 1.53	0.00127 0.00106 0.00137 0.00525 0 Std Err 0.00927 0.0069	0.00683 0.00571 0.00736 0.0283 0 Std Dev 0.0499 0.0372	0.69% 0.58% 0.75% 8.0% CV% 3.52% 2.5%	-1.73% -1.8% -0.62% 63.7% 100.0% Diff% 0.0% -4.67%

Report Date:

20 Jul-10 16:35 (p 4 of 4) 03-8665-0729/39439



EC50

44.5

43.3

**Bivalve Larval Survival and Development Test** 

Report Date: Test Code: 20 Jul-10 16:35 (p 1 of 1)

03-8665-0729/39439

Pacific EcoRisk

Analysis ID: 13-4014-5099 Endpoint: Development Rate CETIS Version: CETISv1.7.0

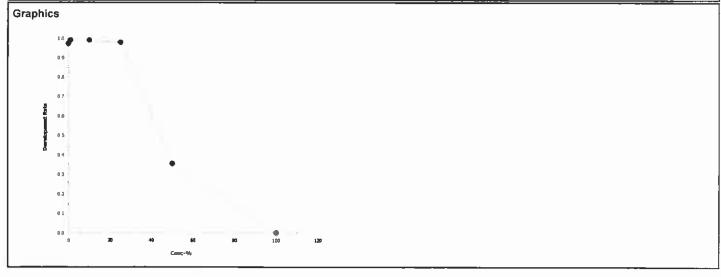
Analyzed: 20 Jul-10 16:34 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

2.21

Linear interpoi	ation Options			
X Transform	Y Transform	Seed	Resamples	Exp 9

A Halistonii	r mansionii	Jeeu	Resamples	Exh 22% CF	Metriod
Linear	Linear	57951	200	Yes	Two-Point Interpolation

Point Es	stimates					
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC5	26.8	26.3	27.1	3.74	3.69	3.8
EC10	28.7	28.2	29.1	3.48	3.44	3.54
EC15	30.7	30.1	31.1	3.26	3.21	3.32
EC20	32.7	32	33.1	3.06	3.02	3.13
EC25	34.6	33.9	35.1	2.89	2.85	2.95
EC40	40.5	39.6	41.3	2.47	2.42	2.53


2.25

45.3

Developm	ent Rate Summary			Calculated Variate(A/B)							
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	Α	В
0	Lab Water Contr	5	0.975	0.952	0.988	0.00294	0.0161	1.65%	0.0%	829	851
1		5	0.992	0.982	1	0.00125	0.00683	0.69%	-1.73%	843	850
10		5	0.992	0.986	1	0.00104	0.00571	0.58%	-1.8%	755	761
25		5	0.981	0.968	0.986	0.00134	0.00736	0.75%	-0.62%	818	834
50		5	0.353	0.306	0.381	0.00516	0.0283	8.0%	63.7%	272	769
100		5	0	0	0	0	0		100.0%	0	713

2.31

Developm	Development Rate Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Water Control	0.988	0.952	0.964	0.982	0.987	<u> </u>	<u> </u>			
1		0.995	0.988	1	0.982	0.993					
10		0.986	1	0.987	0.994	0.993					
25		0.968	0.984	0.983	0.982	0.986					
50		0.365	0.381	0.306	0.354	0.361					
100		0	0	0	0	0					



20 Jul-10 16:35 (p 1 of 4)

03-8665-0729/39439

Analysis   D:   15-2854-7142   C								1921	Code:		03-6003	-0729/3943
Part	Bivalve Larv	al Survival and Do	evelopmer	nt Test							Paci	fic EcoRlsk
Angular (Corrected)	-			•		ntrol vs Trea	tments				.7.0	
Control   vs   Conc-y   Test Stat   Critical   MSD   P-Value   Decision(5%)	Data Transfo	orm	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Control   Vs   Conc-%   Test Stat   Critical   MSD   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   P-Value   Decision(5%)   Test Stat   Test Stat   P-Value   Decision(5%)   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test Stat   Test	Angular (Corr	rected)	0	C > T	Not Run		25	50	35.4	4	14.5%	
Lab Water Control	Dunnett's Mi	ultiple Compariso	n Test						<del></del>			
10	Control	vs Conc-%		Test Stat	Critical	MSD	P-Value	Decision	(5%)			
10	Lab Water Co	ontrol 1		-0.412	2.36	0.209	0.9268	Non-Signi	ficant Effect			_
25		10		1.5				•				
Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Tot		25		0.105				•				
No		50*						-				
Source   Sum Squ=se   Mean Squ=se   DF   F Stat   P-Value   Decision(5%)		100*						_				
Between   6.847641   1.369528   5   69.9	ANOVA Tabl	e										
Error         0.4700412         0.01958505         24           Total         7.317682         1.389113         29           ANOVA Assumptions           Attribute         Test         Test Stat         Critical         P-Value         DecIsion(1%)           Variances Shapiro-Wilk Normality         0.933         Critical         P-Value         DecIsion(1%)           Survival Rate Summary           Conc-%         Control Type         Count         Mean         95% LCL         95% UCL         Min         Max         Std Err         Std Dev         CV%         1           0         Lab Waler Control         5         0.909         0.868         0.95         0.736         1         0.0105         0.0564         6.23%         0.           10         5         0.83         0.804         0.855         0.769         0.934         0.0123         0.0665         8.02%         8.           25         0.83         0.804         0.855         0.769         0.934         0.0123         0.0656         8.02%         6.           25         0.83 </td <td>Source</td> <td>Sum Squa</td> <td>ires</td> <td>Mean Squ</td> <td>are</td> <td>DF</td> <td>F Stat</td> <td>P-Value</td> <td>Decision(</td> <td>5%)</td> <td></td> <td></td>	Source	Sum Squa	ires	Mean Squ	are	DF	F Stat	P-Value	Decision(	5%)		
Total   7.317682	Between	6.847641		1.369528		5	69.9	<0.0001	Significant	Effect		
ANOVA Assumptions  Attribute Test Test Variances   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,000   10,00	Error	0.4700412		0.0195850	5	24			_			
Attribute         Test         Test Stat         Critical         P-Value         Decision(1%)           Variances Distribution         Mod Levers Equality of Variances Shapiro-Wilk Normality         2.96         4.25         0.0402 Equal Variances Normal Distribution         Normal Distribution           Survival Rate Summary           Conc-%         Control Type         Count         Mean         95% LCL         95% UCL         Min         Max         Std Err         Std Dev         CV%         Max           0         Lab Water Control Type         0.907         0.885         0.928         0.863         1         0.0105         0.0564         6.23%         0           1         5         0.909         0.868         0.95         0.736         1         0.02         0.108         11.9%         -           10         5         0.83         0.804         0.855         0.769         0.934         0.0123         0.0665         8.02%         8           25         0.89         0.852         0.928         0.764         1         0.0146         0.1         11.3%         1           100         5         0.3         0.281         0.319         0.225         0.352         0.00942	Total	7.317682		1.389113		29						
Variances Distribution         Mod Lever Equality of Variance Shapiro-Wilk Normality         2.96         4.25         0.0402 0.0592         Equal Variances Normal Distribution           Survival Rate Summary           Conc-%         Control Type         Count         Mean         95% LCL         95% UCL         Min         Max         Std Err         Std Dev         CV%         I           0         Lab Water Contr         5         0.907         0.885         0.928         0.863         1         0.0105         0.0564         6.23%         0           1         5         0.909         0.868         0.95         0.736         1         0.02         0.108         11.9%         -           10         5         0.83         0.804         0.855         0.769         0.934         0.0123         0.0665         8.02%         8           25         5         0.89         0.852         0.928         0.764         1         0.0186         0.1         11.3%         1           50         5         0.3         0.281         0.319         0.225         0.352         0.00942         0.0507         16.9%         6           100         5         0.3         0.281 <td>ANOVA Assu</td> <td>umptions</td> <td></td>	ANOVA Assu	umptions										
Distribution   Shapiro-Wilk Normality   D.933   D.0592   Normal Distribution	Attribute	Test			Test Stat	Critical	P-Value	Decision(	(1%)			
Conc-%   Control Type   Count   Mean   95% LCL   95% UCL   Min   Max   Std Err   Std Dev   CV%   I	Variances	Mod Leve	ne Equality	of Variance	2.96	4.25	0.0402	Equal Var	iances			
Conc-%         Control Type         Count         Mean         95% LCL         95% UCL         Min         Max         Std Err         Std Dev         Cv%         E           0         Lab Waler Contr         5         0.907         0.885         0.928         0.863         1         0.0105         0.0564         6.23%         0           1         5         0.909         0.868         0.95         0.736         1         0.02         0.108         11.9%            10         5         0.83         0.804         0.855         0.769         0.934         0.0123         0.0665         8.02%         8           25         5         0.89         0.852         0.928         0.764         1         0.0186         0.1         11.3%         1           50         5         0.3         0.281         0.319         0.225         0.352         0.00942         0.0507         16.9%         6           100         5         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <	Distribution	Shapiro-V	Vilk Normal	ity	0.933		0.0592	Normal Di	stribution			
0 Lab Waler Contr 5 0.907 0.885 0.928 0.863 1 0.0105 0.0564 6.23% 0.10 5 0.909 0.868 0.95 0.736 1 0.02 0.108 11.9% -10 5 0.83 0.804 0.855 0.769 0.934 0.0123 0.0665 8.02% 8.10 0.10 5 0.30 0.885 0.928 0.764 1 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11.3% 1.10 0.0186 0.1 11	Survival Rate	e Summary	_									
1 5 0.909 0.868 0.95 0.736 1 0.002 0.108 11.9% - 10 5 0.83 0.804 0.855 0.769 0.934 0.0123 0.0665 8.02% 8 25 5 0.89 0.852 0.928 0.764 1 0.0186 0.1 11.3% 1 50 5 0.3 0.281 0.319 0.225 0.352 0.00942 0.0507 16.9% 6 100 5 0 0 0 0 0 0 0 0 0 0  Angular (Corrected) Transformed Summary  Conc-% Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% 0 0 Lab Water Cont 5 1.29 1.23 1.34 1.19 1.53 0.0265 0.143 11.1% 0 1 5 1.32 1.24 1.4 1.03 1.53 0.0397 0.214 16.2% - 10 5 1.15 1.12 1.19 1.07 1.31 0.0181 0.0974 8.45% 1 25 5 1.28 1.2 1.35 1.06 1.53 0.0365 0.197 15.4% 0	Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
10	0	Lab Waler Contr	5	0.907	0.885	0.928	0.863	1	0.0105	0.0564	6.23%	0.0%
10	1		5	0.909	0.868	0.95	0.736	1	0.02	0.108	11.9%	-0.24%
25 5 0.89 0.852 0.928 0.764 1 0.0186 0.1 11.3% 1 50	10		5	0.83	0.804	0.855	0.769	0.934		0.0665		8.48%
50	25		5	0.89	0.852	0.928	0.764	1	0.0186	0.1		1.82%
Angular (Corrected) Transformed Summary           Conc-%         Control Type         Count         Mean         95% LCL         95% UCL         Min         Max         Std Err         Std Dev         CV%         D           0         Lab Water Cont         5         1.29         1.23         1.34         1.19         1.53         0.0265         0.143         11.1%         0.00           1         5         1.32         1.24         1.4         1.03         1.53         0.0397         0.214         16.2%            10         5         1.15         1.12         1.19         1.07         1.31         0.0181         0.0974         8.45%         1           25         5         1.28         1.2         1.35         1.06         1.53         0.0365         0.197         15.4%         0	50		5									66.9%
Conc-%         Control Type         Count         Mean         95% LCL         95% UCL         Min         Max         Std Err         Std Dev         CV%         Err           0         Lab Water Cont         5         1.29         1.23         1.34         1.19         1.53         0.0265         0.143         11.1%         0.00           1         5         1.32         1.24         1.4         1.03         1.53         0.0397         0.214         16.2%            10         5         1.15         1.12         1.19         1.07         1.31         0.0181         0.0974         8.45%         1           25         5         1.28         1.2         1.35         1.06         1.53         0.0365         0.197         15.4%         0	100								· · · · · ·		10,0,0	100,0%
0 Lab Water Cont 5 1.29 1.23 1.34 1.19 1.53 0.0265 0.143 11.1% 0 1 5 1.32 1.24 1.4 1.03 1.53 0.0397 0.214 16.2% - 10 5 1.15 1.12 1.19 1.07 1.31 0.0181 0.0974 8.45% 1 25 5 1.28 1.2 1.35 1.06 1.53 0.0365 0.197 15.4% 0	Angular (Cor	rected) Transform	ned Sumr	nary								
0 Lab Water Cont 5 1.29 1.23 1.34 1.19 1.53 0.0265 0.143 11.1% 0 1 5 1.32 1.24 1.4 1.03 1.53 0.0397 0.214 16.2% - 10 5 1.15 1.12 1.19 1.07 1.31 0.0181 0.0974 8.45% 1 25 5 1.28 1.2 1.35 1.06 1.53 0.0365 0.197 15.4% 0	Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
1     5     1.32     1.24     1.4     1.03     1.53     0.0397     0.214     16.2%     -       10     5     1.15     1.12     1.19     1.07     1.31     0.0181     0.0974     8.45%     1       25     5     1.28     1.2     1.35     1.06     1.53     0.0365     0.197     15.4%     0	0	Lab Water Cont	5		1.23							0.0%
10     5     1.15     1.12     1.19     1.07     1.31     0.0181     0.0974     8.45%     1       25     5     1.28     1.2     1.35     1.06     1.53     0.0365     0.197     15.4%     0	1		5									-2.83%
25 5 1.28 1.2 1.35 1.06 1.53 0.0365 0.197 15.4% C												10.3%
100 100 100 100 100 100 100 100 100 100												0.73%
50 5 0.578 0.557 0.6 0.495 0.635 0.0105 0.0563 9.74% 5												55.0%
0.000 0.000 0.000 0.000												97.1%

Report Date: Test Code: 20 Jul-10 16:35 (p 2 of 4) 03-8665-0729/39439

**Bivalve Larval Survival and Development Test** Pacific EcoRisk Analysis ID: 15-2854-7142 Survival Rate Endpoint: **CETIS Version: CETISv1.7.0** Analyzed: 20 Jul-10 16:34 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 0.30 0.20 Q.á 0.15 0 10 -0.05 -0.10 -0.3 -0 15 -0.20 -0.25

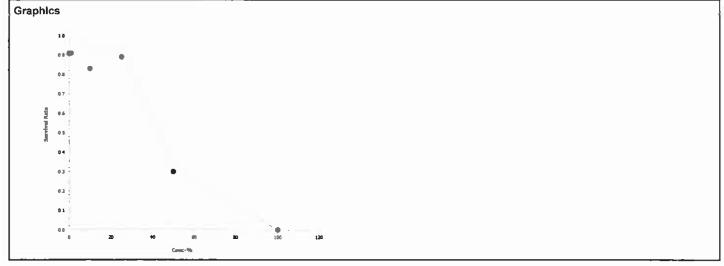
Report Date: Test Code: 20 Jul-10 16:35 (p 1 of 1)

03-8665-0729/39439

Bivalve Larval Survival and Development Test

Pacific EcoRisk

Analysis ID: 09-8801-6635 Endpoint: Survival Rate CETIS Version: CETISv1.7.0


Analyzed: 20 Jul-10 16:34 Analysis: Untrimmed Spearman-Kärber Official Results: Yes

Spearman-Kärber Estimates

Threshold Option	Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL
Control Threshold	0.0934	0.00%	1.59	0.00745	39.2	37.8	40,5

Survival R	ate Summary				Calc	ulated Varia	te(A/B)		Calculated Variate(A/B)					
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	Α	В			
0	Lab Water Contr	5	0.907	0.863	1	0.0103	0.0564	6.23%	0.0%	825	910			
1		5	0.909	0.736	1	0.0197	0.108	11.9%	-0.24%	827	910			
10		5	0.83	0.769	0.934	0.0121	0.0665	8.02%	8.48%	755	910			
25		5	0.89	0.764	1	0.0183	0.1	11.3%	1.82%	810	910			
50		5	0.3	0.225	0.352	0.00926	0.0507	16.9%	66.9%	273	910			
100		5	0	0	0	0	0		100.0%	0	910			

Survival Ra	ate Detail						
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Lab Water Control	0.885	0.868	1	0.918	0.863	
1		1	0.907	1	0.901	0.736	
10		0.775	0.769	0,841	0.934	0.83	
25		0.824	1	0.978	0.885	0.764	
50		0.275	0.352	0.225	0.313	0.335	
100		0	0	0	0	0	



Report Date:

20 Jul-10 16:01 (p 4 of 4) 18-6831-4622/39436

Pacific EcoRisk

Analysis ID:	06-7674-0949	Endnoint:	Development Rate	-	CETIS V	ergion:	CETISv1.7.0
Allalysis ID.	00-1014-0343	Lilupoint.	Development reate		OF 119 A	6131011.	OL 11041.1.0

Analyzed: 20 Jul-10 15:57	Analysis:	Parametric-Two Sample	Official Results: Ye	25
---------------------------	-----------	-----------------------	----------------------	----

Data Transform	Zeta	Alt Hyp	Monte Carlo	NOEL _	LOEL	TOEL	ΤU	PMSD	1
Angular (Corrected)	0	C > T	Not Run	0	>0			1.83%	Ш

## Equal Variance t Two-Sample Test

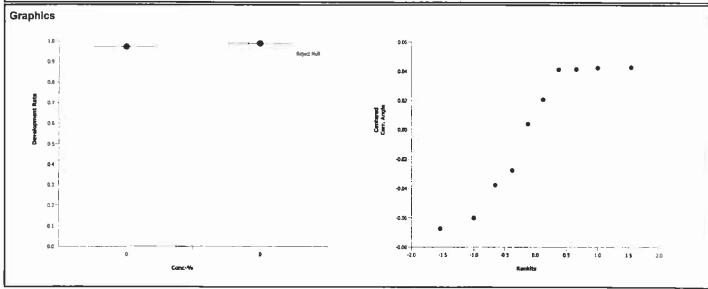
**Bivalve Larval Survival and Development Test** 

Control vs	Control	Test Stat	Critical	MSD	P-Value	Decision(5%)
Lab Water Control	Site Water	-2.43	1.86	0.0556	0,9793	Non-Significant Effect

#### **ANOVA Table**

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(5%)
Between	0.01315582	0.01315582	1	5.89	0.0413	Significant Effect
Error	0.01785393	0.002231742	8			
Total	0.03100976	0.01538756	9			

#### ANOVA Assumptions


Attribute	Test	Test Stat	Critical	P-Value	Decision(1%)
Variances	Variance Ratio F	1.26	23.2	0.8272	Equal Variances
Distribution	Shapiro-Wilk Normality	0.849		0.0569	Normal Distribution

#### **Development Rate Summary**

L	Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	DIff%
1	0	Site Water	5	0.992	0.989	0.996	0.98	1	0.00157	0.00846	0.85%	0.0%
	0	Lab Waler Contr	5	0.975	0.968	0.981	0.952	0,988	0.00299	0.0161	1.65%	1.8%

#### Angular (Corrected) Transformed Summary

Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Site Water	5	1.49	1.47	1.51	1.43	1.53	0.00825	0.0444	2.98%	0.0%
0	Lab Water Conl	5	1.42	1.4	1.44	1.35	1.46	0.00927	0.0499	3.52%	4.87%



Report Date: Test Code: 20 Jul-10 16:01 (p 2 of 4) 18-6831-4622/39436

Bivalve Larval Survival and Development Test

Pacific EcoRisk

Analysis ID:	17-3724-4183	Endpoint:	Survival Rate	CETIS Version:	CETISv1.7.0
Analyzed:	20 Jul-10 15:59	Analysis:	Parametric-Two Sample	Official Results:	Yes

Data Transform	Zeta	Alt Hyp	Monte Carlo	NOEL	LOEL	TOEL	TU	PMSD
Angular (Corrected)	0	C>T	Not Run	0	>0		_	7.77%

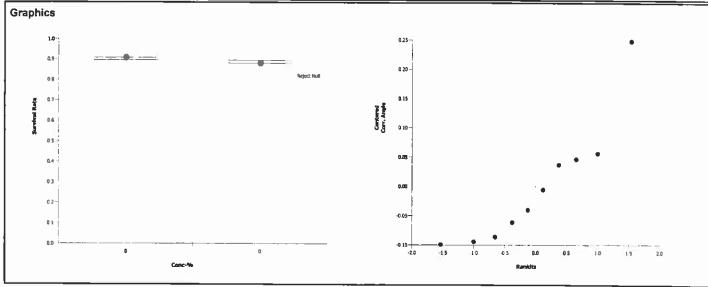
#### Equal Variance t Two-Sample Test

L	Control v	/8	Control	Test Stat	Critical	MSD	P-Value	Decision(5%)	
	Lab Water Contro	ol	Site Water	0.88	1.86	0.131	0.2022	Non-Significant Effect	

#### ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(5%)
Between	0.009684817	0.009684817	1	0.775	0.4043	Non-Significant Effect
Error	0.09996058	0.01249507	В			-
Total	0.1096454	0.02217989	9			

#### ANOVA Assumptions


Attribute	Test	Test Stat	Critical	P-Value	Decision(1%)
Variances	Variance Ratio F	4.49	23.2	0.1746	Equal Variances
Distribution	Shapiro-Wilk Normality	0.847		0.0532	Normal Distribution

#### Survival Rate Summary

	Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
	0	Site Water	5	0.881	0.864	0.898	0.813	0.918	0.00837	0.0451	5.11%	0.0%
l	0	Lab Water Contr	5	0.907	0.885	0.928	0.863	1	0.0105	0.0564	6.23%	-2.87%

#### Angular (Corrected) Transformed Summary

1			•								
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0 .	Site Water	5	1.22	1.2	1.25	1.12	1.28	0.0125	0.0674	5.51%	0.0%
0	Lab Waler Cont	5	1.29	1.23	1.34	1.19	1.53	0.0265	0.143	11.1%	-5.09%



# Mytilus sp. Development Toxicity Test Count Data

Client:	ACOE - San Rafael Channel	Test Start Date: _	7.7-10	
Test Material:	SRC-2010-03	Test End Date:	7-9-10	
Test ID #:	39439	Enumeration Date:	1/20/10	
Project #:	16087	Investigator:	)~	
Sample Salinity	adjusted with: Gystal Sea Selfs	Inoculation Count:	182	_

Concentration	Replicate	Number of Normal Larvae	Number of Abnormal Larvae	Total Number Larvae	Percent Normal Development	Percent Survival
	Α	141	2	143	99	88
	В	158	8	144	95	87
Control	С	184	7	193	90	100
	D	147	3	170	98	92
	Ē	157	2	159	99	86
	_A	196		197	99.5	100
	В	16 L 165	2	167	98.8	90.7
1.0%	С	184	0	184	العرا	100
	D	(64	3	167	98.7	90.1_
	E	13h		135	99.3	73.6
	Α	141	2	143	98.6	77.5
	В	INO	D	140	100	76.9
10%	С	153	2	155	98.7	84.1
	D	170		171	99.4	93.4
	Е	151		157	99.3	83.0
	Α	150	5	155	96.8	82.4
	В	190	3	193	98.4	100
25%	С	178	3	181	98.3	97.8
	D	161	3	164	98.2	88.5
	E	139	2	141	98.6	76.4
	A	50 4	128,87	137	36.5	27.5
	В	64	104	168	38.1	35.2
50%	Ç	41	93	134	and 1 30.6	22.5
	D	57	104	161	FRES \$5.4	31.3
	E	61	108	169	36.1	375
	Α	0	135	135	0	U
	В_	0	1+1	141	0	0
100%	C	0	145	145	0	0
	D	0	160	160	0	0
	E	0	132	132	0	0

## Mytilus sp. Development Toxicity Test Water Chemistry Data

Client: _	ACOE - San Rafael Ch	annel	Organism Log#:	- 1111	<u>N</u> /A
Test Material:	SRC-2010-03		Organism Supplier:	Gerard	_
Test ID#:	39439 Project #:	16087	Control/Diluent:	30ppt FSW	
Test Date: _ Sample Salinity	7-7-10 Randomization				

		Day 0			
Treatment	Temperature (°C)	рН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	16.4	7.80	8.7	30.7	Test Solution Prep:
1%	16.4	7.93	8.2	31.0	New WQ
10%	16.4	7.89	8.5	30.6	Inoculation Date. 7-7-10
25%	16.4	7.91	8.4	30.1	Inoculation Time:
50%	10.4	7.96	8.2	29.3	Inoculation Signoff:
100%	16.4	8.03	7.6	<del>2017.4</del> 28.3	
Meter ID	23	PH14	<b>RD03</b>	EC03	

		Day 1			
Treatment	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	16.3				Date 7/8/10
1%	16.3	. 2			Signoff 2
10%	10.3				
25%	16.3				
50%	16.3				
100%	16.3	A V			
Meter ID	23	11 24			

		Day 2			
Treatment	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	16.2	8.01	8.9	30.8	Termination Signoff
1%	16.2	7.99	9.0	30.5	Termination Date
10%	16.2	8.04	9.1	30.9	Termination 5150
25%	16.2	8.09	9.1	30.3	Old WQ. NVS
50%	16.2	8.18	9.1	29.4	m=====================================
100%	16.2	8.27	8.9	28.2	
Meter ID	23	0H 14	RD03	Ec 05	

## **CETIS Summary Report**

Report Date:

20 Jul-10 18:27 (p 1 of 2)

Test Code: 17-4631-1017/39440

Pacific EcoRisk

Bivalve Larval	Survival and De	velop	ment Test					_			Pacif	ic EcoRisk
Batch ID: Start Date: Ending Date: Duration:	18-8220-2847 07 Jul-10 15:10 09 Jul-10 15:50 49h		Test Type: Protocol: Species: Source:	Development-S ASTM E724-98 Mytilus gallopro Dave Gutoff	(Bivalve)		!	Analyst: Diluent: Brine: Age:	Dilut	n Walker ed Seawale tal Sea	er	,
1 '	03-3478-6159 11 Jun-10 08:40 11 Jun-10 17:00 26d 7h (0.2 °C)	)	Code: Material: Source: Station:	SRC-2010-04 Elutriate San Rafael Chr SRC-2010-04	annel			Client: Project:	ACO 1608			
Comparison S	Summary							·				
Analysis ID	Endpoint		NOEL	. LOEL	TOEL	PMSD	TU	Meth	nod			
05-5081-9119 04-1802-0416	Development Ra Survival Rate	ale	25 25	50 50	35.4 35.4	1.2% 13.3%	4		•	y-One Rank y-One Rank		
Point Estimate	e Summary						_					
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	TU	Meth	nod			
Conc-% 0 0	Survival Rate Rate Summary Control Type Lab Water Contr	Cour	EC5 EC10 EC15 EC20 EC25 EC40 EC50 EC50	28.8 30 31.3 35 37.5 35 <b>95% LCL</b> 0.969 0.989	26.1 27.3 28.6 29.8 31.1 34.9 37.4 34.6 <b>95% UCL</b> 0.981 0.996 0.988	26.3 27.5 28.8 30 31.3 35 37.5 35.3 <b>Min</b> 0.952 0.98	3.81 3.64 3.48 3.33 3.2 2.86 2.67 2.86 Max 0.988 1	Std   3 0.00 0.00	med 8 Err 294 155	Std Dev 0.0161 0.00846 0.00519	CV% 1.65% 0.85%	Diff% 0.0% -1.83%
1 10		5	0.986	0.985 0.982	0.988	0.981 0.978	0.994		0948 127	0.00519	0.53% 0,71%	-1.21% -1.0%
25 50 100		5 5 5	0.983 0 0	0.982 0 0	0.985 0 0	0.978 0 0	0.987 0 0		0678	0.00371 0 0	0.38%	-0.87% 100.0% 100.0%
Survival Rate												
0 0 1 10 25 50	Control Type Lab Water Contr Site Water	5 5 5 5 5 5	0.907 0.861 0.881 0.887 0.885	0.886 0.864 0.867 0.844	95% UCL 0.928 0.898 0.896 0.949 0.911 0	0.863 0.813 0.835 0.67 0.808	Max 1 0.918 0.923 1 0.998 0	0.00 0.02	03 823 715 55	0.0564 0.0451 0.0392 0.14 0.072	6.23% 5.11% 4.44% 15.6% 8.13%	Diff% 0.0% 2.79% 2.79% 1.09% 2.42% 100.0%
100		5	0	0	0	0	0	0		0		100.0%

20 Jul-10 18:27 (p 2 of 2) 17-4631-1017/39440

Bivalve La	rval Survival and De	velopme	nt Test				 Pacific EcoRlsk
Developme	ent Rate Detail						
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Lab Water Contr	0.988	0.952	0.964	0.982	0.987	
0	Site Water	1	0.988	0.994	0.98	1	
1		0.987	0.981	0.988	0.994	0.982	
10		0.984	0.995	0.978	0.987	0.978	
25		0.987	0.981	0.978	0.987	0.982	
50		0	0	0	0	0	
100		0	0	0	0	0	
Survival Ra	ate Detail						
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep <b>5</b>	
0	Lab Water Contr	0.885	0.868	1	0.918	0.863	 
0	Site Water	0.907	0.918	0.912	0.813	0.857	
1		0.846	0.835	0.912	0.89	0.923	
10		0.67	1	0.973	0.852	0,989	
25		808.0	0.863	0.995	0.846	0.912	
50		0	0	0	0	0	
100		0	0	0	0	0	

20 Jul-10 18:26 (p 3 of 4) 17-4631-1017/39440

							1621				
Bivalve Larva	al Survival and De	velopmen	t Test							Pacif	ic EcoRis
Analysis ID:	05-5081-9119	End	point: Dev	elopment R	ale		CETI	S Version:	CETISv1.	7.0	
Analyzed:	20 Jul-10 18;26		•	parametric-		realments		ial Results:	Yes		
						<u> </u>					
Data Transfo	rm	Zeta	Alt Hyp	Monte Car	lo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre	ecled)	0	C > T	Not Run		25	50	35.4	4	1.2%	
Steel Many-O	ne Rank Test										
Control	vs Conc-%		Test Stat	Critical	Ties	P-Value	Decision(	5%)			
Lab Waler Co	ontrol 1		33	16	0	0,9907	Non-Signi	ficant Effect			
	10		30	16	0	0.9446	Non-Signit	ficant Effect			
	25		27	16	0	0.8003	Non-Signif	ficant Effect			
	50*		15	16	0	0.0191	Significant	Effect			
	100*		15	16	0	0.0191	Significant	Effect			
ANOVA Table	9					_				<del></del>	<del></del>
Source	Sum Squa	res	Mean Squ	iare	DF	F Stat	P-Value	Decision(	5%)		
Between	13,08188		2.616376		5	3690	<0.0001	Significant	Effect		
Ептог	0.0170161		0.0007090	0042	24						
Total	13.0989		2.617085		29						
ANOVA Assu	ımptions										
Attribute	Test			Test Stat	Critical	P-Value	Decision(	1%)			
Variances	Bartlett E	quality of V	ariance	37,1	15.1	<0.0001	Unequal V	/ariances			
Distribution	Shapiro-V	Vilk Normal	ity	0.94		0.0889	Normal Di				
	Shapiro-V  TRate Summary	Vilk Normal	ity	0.94			•				a.u.
Development		Vilk Normal	Mean	0.94 95% LCL	95% UCL		•		Std Dev	CV%	Diff%
	t Rate Summary	Count			95% UCL 0.981	0.0889	Normal Di	stribution	<b>Std Dev</b> 0.0161	CV% 1.65%	Diff% 0.0%
Development Conc-%	t Rate Summary Control Type	Count	Mean	95% LCL		0,0889 Min	Normal Di	Std Err			0.0%
Development Conc-% 0	t Rate Summary Control Type	Count 5 5	<b>Mean</b> 0.975 0.986	95% LCL 0.968 0.984	0,981 0.988	0.0889 Min 0.952 0.981	Max 0.988	Std Err 0.00299	0.0161	1.65%	0.0%
Development Conc-% 0 1	t Rate Summary Control Type	Count 5 5 5 5	Mean 0.975 0.986 0.984	95% LCL 0.968 0.984 0.982	0.981 0.988 0.987	0.0889 Min 0.952 0.981 0.978	Max 0.988 0.994 0.995	Std Err 0.00299 0.000964 0.00129	0.0161 0.00519 0.00695	1.65% 0.53% 0.71%	0.0% -1.21% -1.0%
Development Conc-% 0 1 10 25	t Rate Summary Control Type	Count 5 5 5 5 5 5	Mean 0.975 0.986 0.984 0.983	95% LCL 0.968 0.984 0.982 0.982	0.981 0.988 0.987 0.985	0.0889 Min 0.952 0.981 0.978 0.978	Max 0.988 0.994 0.995 0.987	Std Err 0.00299 0.000964 0.00129 0.00069	0.0161 0.00519 0.00695 0.00371	1.65% 0.53%	0.0% -1.21% -1.0% -0.87%
Development Conc-% 0 1 10 25 50	t Rate Summary Control Type	Count 5 5 5 5 5 5 5 5	Mean 0.975 0.986 0.984 0.983 0	95% LCL 0.968 0.984 0.982 0.982 0	0,981 0.988 0.987 0.985	0.0889 Min 0.952 0.981 0.978 0.978	Max 0.988 0.994 0.995 0.987	Std Err 0.00299 0.000964 0.00129 0.00069 0	0.0161 0.00519 0.00695 0.00371	1.65% 0.53% 0.71%	0.0% -1.21% -1.0% -0.87% 100.0%
Development Conc-% 0 1 10 25 50	t Rate Summary Control Type Lab Water Contr	Count 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0.975 0.986 0.984 0.983 0	95% LCL 0.968 0.984 0.982 0.982	0.981 0.988 0.987 0.985	0.0889 Min 0.952 0.981 0.978 0.978	Max 0.988 0.994 0.995 0.987	Std Err 0.00299 0.000964 0.00129 0.00069	0.0161 0.00519 0.00695 0.00371	1.65% 0.53% 0.71%	0.0% -1.21% -1.0% -0.87% 100.0%
Development Conc-% 0 1 10 25 50 100 Angular (Cor	t Rate Summary Control Type Lab Water Control	Count  5 5 5 5 5 5 med Summ	Mean 0.975 0.986 0.984 0.983 0	95% LCL 0.968 0.984 0.982 0.982 0	0.981 0.988 0.987 0.985 0	0.0889 Min 0.952 0.981 0.978 0.978	Max 0.988 0.994 0.995 0.987 0	Std Err 0.00299 0.000964 0.00129 0.00069 0	0.0161 0.00519 0.00695 0.00371 0	1.65% 0.53% 0.71% 0.38%	0.0% -1.21% -1.0% -0.87% 100.0%
Development Conc-% 0 1 10 25 50 100 Angular (Cor	t Rate Summary Control Type Lab Water Control rected) Transford	Count  5 5 5 5 5 5 med Summ	Mean 0.975 0.986 0.984 0.983 0 0	95% LCL 0.968 0.984 0.982 0.982 0	0,981 0,988 0,987 0,985 0 0	0.0889 Min 0.952 0.981 0.978 0.978 0	Max 0.988 0.994 0.995 0.987 0	Std Err 0.00299 0.000964 0.00129 0.00069 0 0	0.0161 0.00519 0.00695 0.00371 0 0	1.65% 0.53% 0.71% 0.38%	0.0% -1.21% -1.0% -0.87% 100.0% 100.0%
Development Conc-% 0 1 10 25 50 100 Angular (Conc-% 0	t Rate Summary Control Type Lab Water Control	Count  5 5 5 5 5 5 med Sumr Count	Mean 0.975 0.986 0.984 0.983 0 0 Mean 1.42	95% LCL 0.968 0.984 0.982 0.982 0 0	0.981 0.988 0.987 0.985 0 0 0 95% UCL	0.0889  Min 0.952 0.981 0.978 0 0  Min 1.35	Max 0.988 0.994 0.995 0.987 0 0	Std Err 0.00299 0.000964 0.00129 0.00069 0 0 Std Err 0.00927	0.0161 0.00519 0.00695 0.00371 0 0 Std Dev 0.0499	1.65% 0.53% 0.71% 0.38% CV% 3.52%	0.0% -1.21% -1.0% -0.87% 100.0% 100.0%
Development Conc-% 0 1 10 25 50 100 Angular (Cor Conc-% 0 1	t Rate Summary Control Type Lab Water Control rected) Transford	Count  5 5 5 5 5 5 Count Count 5	Mean 0.975 0.986 0.984 0.983 0 0  mary Mean 1.42 1.46	95% LCL 0.968 0.984 0.982 0.982 0 0 95% LCL 1.4 1.45	0.981 0.988 0.987 0.985 0 0 0 <b>95% UCL</b> 1.44 1.47	0.0889  Min 0.952 0.981 0.978 0 0  Min 1.35 1.43	Max 0.988 0.994 0.995 0.987 0 0  Max 1.46 1.49	Std Err 0.00299 0.000964 0.00129 0.00069 0 0 Std Err 0.00927 0.00445	0.0161 0.00519 0.00695 0.00371 0 0 Std Dev 0.0499 0.024	1.65% 0.53% 0.71% 0.38% CV% 3.52% 1.65%	0.0% -1.21% -1.0% -0.87% 100.0% 100.0% Diff% 0.0% -2.77%
Development Conc-% 0 1 10 25 50 100 Angular (Conc-% 0	t Rate Summary Control Type Lab Water Control rected) Transford	Count  5 5 5 5 5 5 med Sumr Count	Mean 0.975 0.986 0.984 0.983 0 0 Mean 1.42	95% LCL 0.968 0.984 0.982 0.982 0 0	0.981 0.988 0.987 0.985 0 0 0 95% UCL	0.0889  Min 0.952 0.981 0.978 0 0  Min 1.35	Max 0.988 0.994 0.995 0.987 0 0	Std Err 0.00299 0.000964 0.00129 0.00069 0 0 Std Err 0.00927	0.0161 0.00519 0.00695 0.00371 0 0 Std Dev 0.0499	1.65% 0.53% 0.71% 0.38% CV% 3.52%	0.0% -1.21% -1.0% -0.87% 100.0% 100.0%  Diff% 0.0% -2.77% -2.24%
Development Conc-% 0 1 10 25 50 100 Angular (Cor Conc-% 0 1	t Rate Summary Control Type Lab Water Control rected) Transford	Count  5 5 5 5 5 5 Count Count 5	Mean 0.975 0.986 0.984 0.983 0 0  mary Mean 1.42 1.46	95% LCL 0.968 0.984 0.982 0.982 0 0 95% LCL 1.4 1.45	0.981 0.988 0.987 0.985 0 0 0 <b>95% UCL</b> 1.44 1.47	0.0889  Min 0.952 0.981 0.978 0 0  Min 1.35 1.43	Max 0.988 0.994 0.995 0.987 0 0  Max 1.46 1.49	Std Err 0.00299 0.000964 0.00129 0.00069 0 0 Std Err 0.00927 0.00445	0.0161 0.00519 0.00695 0.00371 0 0 Std Dev 0.0499 0.024	1.65% 0.53% 0.71% 0.38% CV% 3.52% 1.65%	0.0% -1.21% -1.0% -0.87% 100.0% 100.0%  Diff% 0.0% -2.77% -2.24%
Development Conc-% 0 1 10 25 50 100 Angular (Cor Conc-% 0 1 10	t Rate Summary Control Type Lab Water Control rected) Transford	Count  5 5 5 5 5 5 Count  Count 5 5 5	Mean 0.975 0.986 0.984 0.983 0 0  mary Mean 1.42 1.46 1.45	95% LCL 0.968 0.984 0.982 0.982 0 0 0 95% LCL 1.4 1.45 1.44	0.981 0.988 0.987 0.985 0 0 	0.0889  Min 0.952 0.981 0.978 0 0  Min 1.35 1.43 1.42	Max 0.988 0.994 0.995 0.987 0 0  Max 1.46 1.49 1.5	Std Err 0.00299 0.000964 0.00129 0.00069 0 0 Std Err 0.00927 0.00445 0.00579	0.0161 0.00519 0.00695 0.00371 0 0 Std Dev 0.0499 0.024 0.0312	1.65% 0.53% 0.71% 0.38% CV% 3.52% 1.65% 2.15%	0.0% -1.21% -1.0% -0.87% 100.0% 100.0%

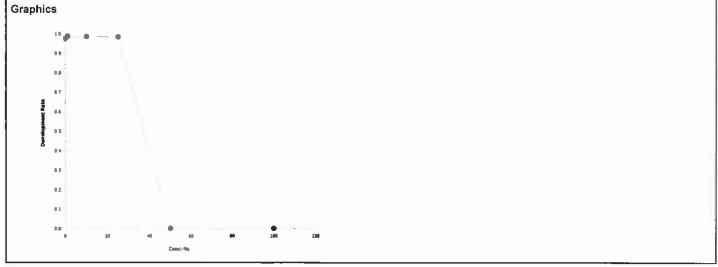
Report Date: Test Code: 20 Jul-10 18:26 (p 4 of 4) 17-4631-1017/39440

Pacific EcoRisk **Bivalve Larval Survival and Development Test CETIS Version: CETISv1.7.0** Analysis ID: 05-5081-9119 Endpoint: Development Rate Nonparametric-Control vs Treatments Yes Analyzed: 20 Jul-10 18:26 Analysis: Official Results: Graphics 0.04 -0.04 0.5

Report Date: Test Code:

20 Jul-10 18:27 (p 1 of 1)

17-4631-1017/39440


Bivalve Larva	I Survival and Deve	elopment Test	_				Pacific EcoRisk
Analysis ID:	04-2788-1947	Endpoint:	Development Rate	CET	IS Version:	CETISv1.7.0	
Analyzed:	20 Jul-10 18:26	Analysis:	Linear Interpolation (ICPIN)	Offi	cial Results:	Yes	

Linear Interpola	tion Options				
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	57951	200	Yes	Two-Point Interpolation

Point E	Point Estimates											
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL						
EC5	26.3	26.1	26.3	3.81	3.81	3.84						
EC10	27.5	27 3	27.5	3.64	3.64	3.66						
EC15	28.8	28.6	28.8	3.48	3.48	3.5						
EC20	30	29.8	30	3.33	3.33	3.35						
EC25	31.3	31.1	31.3	3.2	3.2	3.22						
EC40	35	34.9	35	2.86	2.86	2.87						
EC50	37.5	37.4	37.5	2.67	2.67	2.67						

Developm	ent Rate Summary		Calculated Variate(A/B)								_
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	Α	В
0	Lab Water Contr	5	0.975	0.952	0.988	0.00294	0.0161	1.65%	0.0%	829	851
1		5	0.986	0.981	0.994	0.000948	0.00519	0.53%	-1.21%	802	813
10		5	0.984	0.978	0.995	0.00127	0.00695	0.71%	-1.0%	819	832
25		5	0.983	0.978	0.987	0.000678	0.00371	0.38%	-0.87%	805	819
50		5	0	0	0	0	0		100.0%	0	766
100		5	0	0	0	0	0		100.0%	0	800

Developme	nt Rate Detail						
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Lab Water Control	0.988	0.952	0.964	0.982	0.987	
1		0.987	0.981	0.988	0.994	0.982	
10		0.984	0.995	0.978	0.987	0.978	
25		0.987	0.981	0.978	0.987	0.982	
50		0	0	0	0	0	
100		0	0	0	0	0	



20 Jul-10 18:26 (p 1 of 4) 17-4631-1017/39440

							Test	Code:		17-4631	-1017/39440
Bivalve Larva	al Survival and D	evelopmen	t Test							Pacif	fic EcoRisk
Analysis ID:	04-1802-0416	End	point: Sur	vival Rate			CETI	S Version:	CETISv1	.7.0	
Analyzed:	20 Jul-10 18:26		•	parametric-	Control vs T	reatments	Offic	ial Results:	Yes		
Data Transfo	rm	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	-
Angular (Corre	ected)	0	C > T	Not Run		25	50	35.4	4	13.3%	
Steel Many-C	ne Rank Test										
Control	vs Conc-%		Test Stat	Critical	Ties	P-Value	Decision(	5%)			
Lab Water Co	ntrol 1		25	16	0	0.6353	Non-Signi	ficant Effect		_	
	10		27.5	16	1	0.8333	Non-Signi	ficant Effect			
	25		22.5	16	1	0.3937	Non-Signi	ficant Effect			
	50*		15	16	0	0.0191	Significant	t Effect			
	100*		15	16	0	0.0191	Significan	t Effect			
ANOVA Table	9								- <del>-</del>		
Source	Sum Squa	ares	Mean Squ	are	DF	F Stat	P-Value	Decision(	5%)		
Between	10.091		2.0182		5	118	<0.0001	Significant	Effect		
Error	0.410012		0.0170838	3	24						
Total	10.50101		2.035284		29						
ANOVA Assu	ımptions										
Attribute	Test			Test Stat	Critical	P-Value	Decision(	1%)			
Variances	Mod Leve	ne Equality	of Variance	2.6	4.25	0.0615	Equal Vari	iances			
Distribution	Shapiro-V	Vilk Normali	ty	0.893		0.0057	Non-normal Distribution				
Survival Rate	Summary				_						
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water Contr	5	0.907	0.885	0.928	0.863	1	0.0105	0.0564	6.23%	0.0%
1		5	0.881	0.866	0.896	0.835	0.923	0.00727	0.0392	4.44%	2,79%
10		5	0.897	0.844	0.95	0.67	1	0.026	0.14	15.6%	1.09%
25		5	0.885	0.857	0.912	0.808	0.995	0.0134	0.072	8.13%	2.42%
50		5	0	0	0	0	0	0	0		100.0%
100		5	0	0	0	0	0	0	0		100.0%
Angular (Cor	rected) Transfor	ned Summ	narv						<u> </u>		
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Waler Cont		1.29	1.23	1.34	1.19	1.53	0.0265	0.143	11.1%	0.0%
1		5	1.22	1.2	1.25	1.15	1.29	0.0113	0.0607	4.96%	4.9%
10		5	1.31	1.22	1.4	0.959	1.53	0.044	0.237	18.1%	-1.72%
25		5	1.25	1.19	1.31	1.12	1.5	0.0277	0.237	12.0%	2.89%
50		5	0.0371	0.0371	0.0371	0.0371	0.0371	0	0	0.0%	97.1%
100		5	0.0371	0.0371	0.0371	0.0371	0.0371	0	0	0.0%	97.1%

20 Jul-10 18:26 (p 2 of 4) 17-4631-1017/39440

**Bivalve Larval Survival and Development Test** Pacific EcoRisk Analysis ID: 04-1802-0416 Endpoint: Survival Rate **CETIS Version:** CETISv1.7.0 Analyzed: 20 Jul-10 18:26 Analysis: Nonparametric-Control vs Treatments Official Results: Yes Graphics 09 0.20 -0.8 D 10 -0.10 0.3 40.20 -0.30 0.0

Report Date: Test Code:

20 Jul-10 18:27 (p 1 of 1)

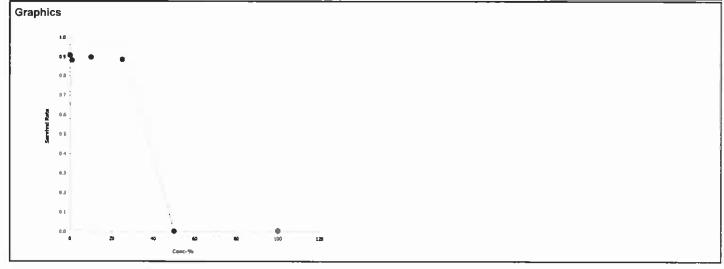
17-4631-1017/39440

**Bivalve Larval Survival and Development Test** 

Pacific EcoRisk

Analysis ID: 20-9542-8667 Endpoint: Survival Rate

**CETIS Version:** CETISv1.7 0


20 Jul-10 18:26 Trimmed Spearman-Kärber Analyzed: Analysis: Official Results: Yes

Trimmed Spearman-Kärber Estimates

Threshold Option	Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL
Control Threshold	0.0934	1.94%	1.54	0.00208	35	34.6	35.3

Survival R	late Summary		Calculated Variate(A/B)								
Сопс-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	Α	В
0	Lab Water Contr	5	0.907	0.863	1	0.0103	0.0564	6.23%	0.0%	825	910
1		5	0.881	0.835	0.923	0.00715	0.0392	4.44%	2.79%	802	910
10		5	0.897	0.67	1	0.0255	0.14	15.6%	1.09%	816	910
25		5	0.885	0.808	0.995	0.0131	0.072	8.13%	2.42%	805	910
50		5	0	0	0	0	0		100.0%	0	910
100		5	0	0	0	0	0		100.0%	0	910

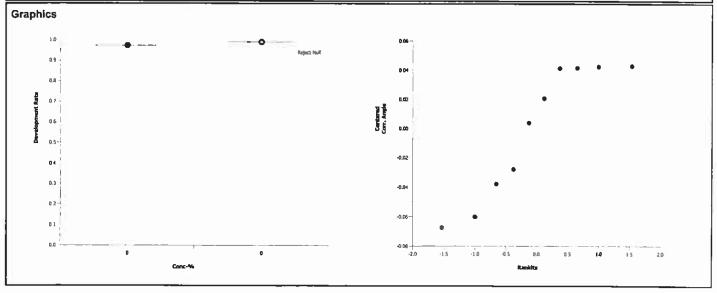
Survival R	tate Detail						
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep <b>5</b>	
0	Lab Water Control	0.885	0.868	1	0.918	0.863	
1		0.846	0.835	0.912	0.89	0.923	
10		0.67	1	0.973	0.852	0.989	
25		0.808	0.863	0.995	0.846	0.912	
50		0	0	0	0	0	
100		0	0	0	0	0	



Report Date: Test Code: 20 Jul-10 16:01 (p 2 of 4)

18-6831-4622/39436

										10 0001	102270011
Bivalve Larva	I Survival and De	velopmen	t Test	-						Paci	fic EcoRis
Analysis ID: Analyzed:	17-3724-4183 20 Jul-10 15:59		•	Survival Rate Parametric-Two	Sample			IS Version:	CETISv1	.7.0	_
Data Transfo		Zeta	Alt Hy	p Monte Car	rlo	NOEL	LOEL	TOEL	TU	PMSD	<del></del>
Angular (Corre	ecled)	0	C > T	Not Run		0	>0			7.77%	
Equal Variand	ce t Two-Sample	Test			· · · · · ·						
Control	vs Control		Test St	tat Critical	MSD	P-Value	Decision	(5%)			
Lab Water Cor	ntrol Site Water		0.88	1.86	0.131	0.2022	Non-Signi	ficant Effect			-
ANOVA Table	·										<del></del>
Source	Sum Squai	res	Mean S	Square	DF	F Stat	P-Value	Decision(	5%)		
Between	0.00968481	17	0.0096	84817	1	0.775	0.4043		ficant Effect		
Error	0.09996058	3	0.0124		8						
Total	0.1096454		0.0221	7989 —————	9						<u>·</u>
ANOVA Assu	mptions										
Attribute	Test			Test Stat	Critical	P-Value	Decision(	(1%)	_	_	
√ariances	Variance R			4.49	23.2	0.1746	Equal Var				
Distribulion	Shapiro-W	ilk Normali	ity	0.847		0.0532	Normal Di	stribution		200	
Survival Rate	Summary										
Conc-%		Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
)		5	0.881	0.864	0.898	0.813	0.918	0.00837	0.0451	5.11%	0.0%
) 	Lab Water Contr	5	0.907	0.885	0.928	0.863	1	0.0105	0.0564	6.23%	-2.87%
Angular (Corr	ected) Transform	ed Summ	nary								
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0		5	1.22	1.2	1.25	1.12	1.28	0.0125	0.0674	5.51%	0.0%
) 	Lab Water Cont	5 ————	1.29	1.23	1.34	1.19	1.53	0.0265	0.143	11.1%	-5.09%
Graphics											
10.						0.25 ¬				•	
0.9										_	
0.0 -				Arject hull		0.20					
				V		0.15					
104 U					Contract	¥ 5					
100					5	<b>5</b> 0 10					
0.5											
0.4						0.05			• •		
0.3						0.00					
0.2								•			
D I 4						-0.05		•			
1							_	•			
۵0	0			0	-	-0.10	15 1.0	-05 00	Q5 1.0	1.5	2.0
		Come-%						Rankits			


Report Date: Test Code: 20 Jul-10 16:01 (p 4 of 4) 18-6831-4622/39436

								103	. 0000.		10 0001 4022103	700
Bivalve Larva	l Sur	vival and Develo	pment Test		_						Pacific EcoR	isk
Analysis ID: Analyzed:		7674-0949 Jul-10 15:57	•		elopment F ametric-Tw				IS Version		v1.7.0	
Data Transfor	rm	Zeta	a Alt Hy	p	Monte Ca	irlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre	ected)	0	C > T		Not Run		0	>0			1.83%	
Equal Variand	ce t Tv	wo-Sample Test			•							
Control	vs	Control	Test S	tat	Critical	MSD	P-Value	Decision	(5%)			
Lab Water Cor	ntrol	Site Water	-2.43		1.86	0.0556	0.9793	Non-Sign	ificant Effec	ct		
ANOVA Table	<del>-</del>										-	-,-
Source		Sum Squares	Mean S	Squa	are	DF	F Stat	P-Value	Decision	n(5%)		
Between		0.01315582	0.0131	5582	2	1	5.89	0.0413	Significa	nt Effect	-	
Error		0.01785393	0.0022	3174	42	8			_			
Total		0.03100976	0.0153	8756	5	9						

Attribute	Test	Test Stat	Critical	P-Value	Decision(1%)
Varlances	Variance Ratio F	1.26	23.2	0.8272	Equal Variances
Distribution	Shapiro-Wilk Normality	0 849		0.0569	Normal Distribution
Development Ra	ite Summary		<u> </u>		

Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Site Water	5	0.992	0.989	0.996	0.98	1	0.00157	0.00846	0.85%	0.0%
0	Lab Water Contr	5	0.975	0.968	0.981	0.952	0.988	0.00299	0.0161	1.65%	1.8%
4	4 0 7 4			<del></del>				_			

Angular (C	orrected) Transfort	ned Sum	mary								
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	DIff%
0	Site Water	5	1.49	1.47	1.51	1.43	1.53	0.00825	0.0444	2.98%	0.0%
0	Lab Waler Cont	5	1.42	1.4	1.44	1.35	1.46	0.00927	0.0499	3.52%	4.87%



# Mytilus sp. Development Toxicity Test Count Data

Client:	ACOE - San Rafael Channel	Test Start Date:	7.7.10	
Test Material:	SRC-2010-04	Test End Date:	7-9-10	
Test ID #:	39440	Enumeration Date:	7/20/10	
Project #:	16087	Investigator:	om	
Sample Salinity	adjusted with: Crystal Sea Calfs	Inoculation Count:	182	

Concentration	Replicate	Number of Normal Larvae	Number of Abnormal Larvae	Total Number Larvae	Percent Normal Development	Percent Survival
	А	141	2	163	99	88
	В	158	8	146	95	87
Control	С	186	7	193	96	100
	D	167	3	170	98	92
	E	157	2	159	99	86
	Ą	154	_ 2	156	99	85
	В	152	્યું જી	156	98	84
1.0%	С	166	2	168	99	91
	D	162	1	163	99	89
	Е	168	ડ	171	98	92
	Α	122	2	124	98	67
ĺ	В	186	-	186	99	100
10%	С	177	4	181	98	97
	D	155	2	157	29	85
	Е	180	Ч	184	98	99
	_A	147	2	149	99	81
	В	167	3	160	98	86
25%	С	181	4	188	28	99
	D	164	2	156	99	82
	Е	166	3	169	98	91
	Α _	0	146	146	6	0
	В	0	159	159	0	O
50%	C	0	760	160	G	0
	D	ð	133	133	G	0
	E	0	168	168	0	0
	Α	0	144	144	0	0
	В	0	173	173	O	0
100%	C	6	162	162	0	ø
	D	0	141	141	0	
	Е	0	180	180	Ò	0

## Mytilus sp. Development Toxicity Test Water Chemistry Data

Client:	ACOE -	San Rafael (	Channel
Test Material:	S	RC-2010-04	<u> </u>
Test ID#:	39440	Project #:	16087
Test Date:		Randomiza	
Sample Salinity	adjusted with	: Crystul	Seu Solts

Organism Log#: 5266 Age: N/A
Organism Supplier: 30ppt FSW

		Day 0			
Treatment	Temperature (°C)	рН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	16.4	7.80	8.7	30.7	Test Solution Prep:
1%	16.4	7.86	8.4	31.6	New WQ:
10%	16-4	7.88	6.5	30.6	Inoculation Date:
25%	16.4	7.93	8.5	30.1	Inoculation Time:
50%	16.4	7.99	8.2	29.2	Inoculation Signo
100%	16.4	8.07	7.6	25.4	
Meter ID	22	Ph 14	RDOB	EC03	

Day 1									
Treatment	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff				
Control	16.3				Date: 7/8/10				
1%	16.3				Signoff Av				
10%	163								
25%	100.3								
50%	163								
100%	16.3								
Meter ID	73	T dree							

Day 2										
Treatment	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff					
Control	16.2	8.00	9.0	30.8	Termination Signoff:					
1%	16.2	7.98	9.0	31-2	Termination Date:					
10%	14.2	8-03	9.1	30-8	Termination Time:					
25%	16.2	8.09	9.1	30.3	Old WQ.					
50%	16.2	8-17	9.0	29.4						
100%	16.2	8.27	8.6	27.3						
Meter ID	23	PH 14	RD 03	Ec 05						

### **CETIS Summary Report**

Report Date: Test Code:

21 Jul-10 12:43 (p 1 of 2)

12-0421-4632/39441

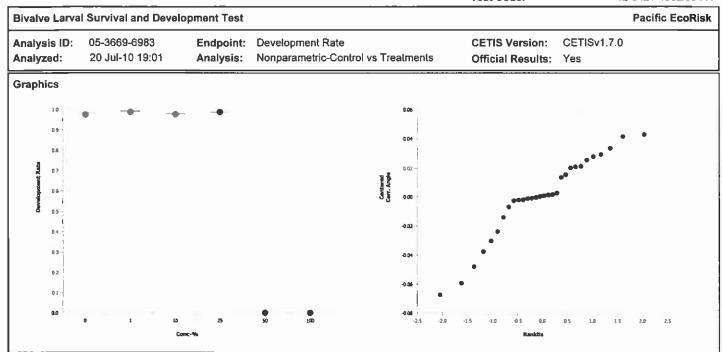
								i est Code:			12-042	1-4632/394
Bivalve Larva	Survival and De	evelop	ment Test			_					Paci	fic EcoRis
Batch ID:	18-8220-2847		Test Type:	Development-S	Survival			Analyst:	Jaso	n Walker		-
Start Date:	07 Jul-10 15:10 Protocol:		Protocol:	ASTM E724-98	3 (Bivalve)			Diluent: Diluted Seaw		d Seawat	er	
Ending Date:	09 Jul-10 15:50		Species:	Mytilus gallopro	ovincialis			Brine:	Crvst	al Sea		
Duration:	49h		Source:	Dave Guloff				Age:	N/A			
Sample ID:	02-1820-9844	-	Code:	SRC-2010-05				Client:	ACO	<del></del> -	_	
Sample Date:	08 Jun-10 14:45	5	Material:	Elutriate				Project:	1608			
Receive Date:	08 Jun-10 19:00	)	Source:	San Rafael Ch	annei							
	29d Oh (2.4 °C)		Station:	SRC-2010-05								
Comparison S	iummary											
Analysis ID	Endpoint		NOEL	. LOEL	TOEL	PMSD	TU	Meth	nod			
05-3669-6983	Development R	ate	25	50	35.4	1.42%	4			-One Ranl	k Test	
08-7263-6112	Survival Rate		25	50	35.4	6.93%	4			-One Rani		
Point Estimate	Summary											
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	TU	Meth	od			
00-3150-2275 Development R	Development Ra	ate	EC5	26.3	26	26.3	3.81	Linea	ar Inter	polation (I	CPIN)	<u> </u>
			EC10	27.5	27.2	27.5	3.64					
			EC15	28.8	28.5	28.8	3.48					
		EC20	30	29.8	30	3.33						
		EC25	31,3	31	31.3	3.2						
		EC40	35	34.8	35	2.86						
			EC50	37.5	37.4	37.5	2.67					
00-5965-0086	Survival Rale		EC50	35,1	34.9	35.2	2.85	Trimi	med S	pearman-k	(ärber	
Development l	Rate Summary							-		T)		
	Control Type	Coun		95% LCL	_95% UCL	Min	Max	Std E	Err	Std Dev	CV%	Diff%
	Lab Waler Contr	5	0.975	0.969	0.981	0.952	0.988	0.002	294	0.0161	1.65%	0.0%
0	Sile Water	5	0.992	0.989	0.996	0.98	1	0.00	155	0.00846	0.85%	-1.83%
1		5	0.989	0.986	0.992	0.974	0.994	0.00	153	0.00839	0.85%	-1.45%
10		5	0.978	0.974	0.982	0.963	0.987	0.001	177	0.00971	0.99%	-0.35%
25		5	0.988	0.986	0.99	0.981	0.994	0.001	108	0.00589	0.6%	-1.37%
50		5	0	0	0	0	0	0		0		100.0%
100		5	0	0	0_	0	0	0		0		100.0%
Survival Rate	Summary											
	Control Type	Coun		95% LCL	95% UCL	Min	Max	Std E	Err	Std Dev	CV%	Diff%
	Lab Water Contr	5	0.907	0.886	0.928	0.863	1	0.010	)3	0.0564	6.23%	0.0%
D	Site Water	5	0.881	0.864	0.898	0.813	0.918	0.008	323	0.0451	5.11%	2.79%
1		5	0.876	0.855	0.897	0.824	0.945			0.0565	6.45%	3.39%
10		5	0.885	0.866	0.903	0.841	0.951			0.049	5.54%	2.42%
25		5	0.898	0.885	0.911	0.863	0.951			0.0353	3.93%	0.97%
50		5	0	0	0	0	0	0		0		100.0%
100		5	0	0	0	0	0	0		0		100.0%



21 Jul-10 12:43 (p 2 of 2)

12-0421	-4632/3944	11

							1001 4040.	12 0121 1002/05111
Bivalve La	rval Survival and De	velopme	nt Test		•			Pacific EcoRisk
Developme	ent Rate Detail					<del></del>		
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep <b>5</b>		
0	Lab Water Contr	0.988	0.952	0.964	0.982	0.987		<del>.</del>
0	Site Water	1	0.988	0.994	0.98	1		
1		0.994	0.988	0.993	0.974	0.994		
10		0.987	0.982	0.983	0.975	0.963		
25		0.983	0.994	0.988	0.981	0.994		
50		0	0	0	0	0		
100		0	0	0	0	0		
Survival Ra	ate Detail							
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Water Contr	0.885	0.868	1	0.918	0.863		
0	Sile Waler	0.907	0.918	0.912	0.813	0.857		
1		0.846	0.929	0.824	0.835	0.945		
10		0.857	0.923	0.951	0.841	0.852		
25		0.951	0.901	0.907	0.863	0.868		
50		0	0	0	0	0		
100		0	0	0	0	0		


20 Jul-10 19:02 (p 3 of 4)

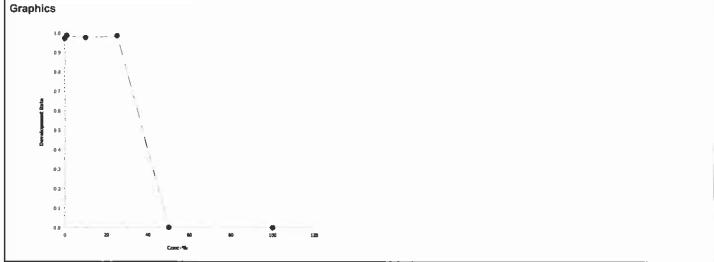
12-0421-4632/39441

							Test	Code:		12-0421	-4632/3944
Bivalve Larv	al Survival and De	evelopmer	nt Test							Paci	fic EcoRisk
Analysis ID: Analyzed:	05-3669-6983 20 Jul-10 19:01		•	velopment R		Frantmonla		IS Version:	CETISv1	.7.0	-"
		Alli	=		-Control vs 1	reauments	Onic	ial Results:	Yes		
Data Transfo		Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corr	rected) 	0	C > T	Not Run		25	50	35.4	4	1.42%	
Steel Many-C	One Rank Test								<u> </u>		
Control	vs Conc-%		Test Stat	Critical	Ties	P-Value	Decision(	(5%)			_
Lab Water Co	ontrol 1		37	16	0	0.9996	Non-Signi	ficant Effect			-
	10		27	16	0	0.8003	Non-Signi	ficant Effect			
	25		35	16	0	0.9979	Non-Signi	ficant Effect			
	50*		15	16	0	0.0191	Significan	t Effect			
	100*		15 	16	0	0.0191	Significan	l Effect			
ANOVA Tabl	е										<del></del>
Source	Sum Squa	ires	Mean Squ	ıare	DF	F Stat	P-Value	Decision(	5%)		
Between	13.12266		2.624531		5	2840	<0.0001	Significant	Effect		
Error	0.0221897	6	0.0009245	734	24						
Total	13.14485		2.625456		29						
ANOVA Assu	umptions								_	<del></del>	
Attribute	Test			Test Stat	Critical	P-Value	Decision(	1%)			
Variances	Bartlett Ed	quality of V	ariance	38.2	15.1	<0.0001	Unequal V	/ariances			<del></del>
Distribution	Shapiro-V	Vilk Norma	lity	0.933		0.0603	Normal Di	stribution			
Developmen	t Rate Summary				•		_ <del></del> _	<del></del>		· · · · · · · · · · · · · · · · · · ·	
Conc-%	Control Type	Count	Меап	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water Contr	5	0.975	0.968	0.981	0.952	0.988	0.00299	0.0161	1.65%	0.0%
1		5	0.989	0.986	0.992	0.974	0.994	0.00156	0.00839	0.85%	-1.45%
10		5	0.978	0.974	0.982	0.963	0.987	0.0018	0.00971	0.99%	-0.35%
25		5	0.988	0.986	0.99	0.981	0.994	0.00109	0.00589	0.6%	-1.37%
50		5	0	0	0	0	0	0	0		100.0%
100		5	0	0	0	0	0	0	0		100.0%
Angular (Cor	rected) Transform	ned Sumr	nary								
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Waler Cont	5	1.42	1.4	1.44	1.35	1.46	0.00927	0.0499	3.52%	0.0%
1		5	1.47	1.46	1.48	1.41	1,49	0.0066	0.0356	2.42%	-3.7%
10		5	1.42	1,41	1.44	1,38	1.46	0.0059	0.0318	2.23%	-0.54%
25		5	1.46	1.45	1.47	1.43	1.49	0.00518	0.0279	1.9%	-3.31%
50		5	0.0426	0.0418	0.0434	0.0404	0.0453	0.00038	0.00205	4.81%	97.0%
100		5	0.0398	0.0393	0.0403	0.0404	0.0455				
100		J	0.0380	0.0383	0.0403	0.03/0	0.0411	0.000242	0.0013	3.27%	97.2%

Report Date: Test Code: 20 Jul-10 19:02 (p 4 of 4)

12-0421-4632/39441




Report Date: Test Code: 20 Jul-10 19:02 (p 1 of 1)

12-0421-4632/39441

Bivalve	Larva	I Survival and D	evelopmer	t Test							Pacific EcoRis
Analys	is ID:	00-3150-2275	End	point:	Development F	Rate	_	CET	IS Version:	CETISv1.7.0	
Analyz	ed:	20 Jul-10 19:01	Ana	lysis:	Linear Interpola	ation (ICPIN)		Offic	ial Results:	Yes	
Linear	Interpo	olation Options									
X Trans	sform	Y Transform	See	d	Resamples	Exp 95% (	CL Meth	nod			
Linear		Linear	579	51	200	Yes	Two-	Point Interp	olation		
Point E	stimat	es									
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL					
EC5	26.3	26	26.3	3.81	3.81	3.85					
EC10	27.5	27.2	27.5	3.64	3.64	3.67					
EC15	28.8	28.5	28.8	3.48	3.48	3.51					
EC20	30	29.8	30	3.33	3.33	3.36					
EC25	31.3	31	31.3	3.2	3.2	3.22					
EC40	35	34.8	35	2.86	2.86	2.87					
EC50	37.5	37.4	37.5	2.67	2.67	2.68					
Develo	pment	Rate Summary				Calcula	ated Varia	te(A/B)			
Conc-%	6 (	Control Type	Count	Mear	n Min	Max	Std Err	Std Dev	CV%	Diff% A	В
n		ah Water Contr	5	0.975	0.052	0.088	U UU304	0.0161	1 65%	0.0% 81	00 964

Developm	ent Rate Summary										
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	Α	В
0	Lab Water Contr	5	0.975	0.952	0.988	0.00294	0.0161	1.65%	0.0%	829	851
1		5	0.989	0.974	0.994	0.00153	0.00839	0.85%	-1.45%	797	8 <b>06</b>
10		5	0.978	0.963	0.987	0.00177	0.00971	0.99%	-0.35%	805	823
25		5	0.988	0.981	0.994	0.00108	0.00589	0.6%	-1.37%	817	827
50		5	0	0	0	0	0		100.0%	0	693
100		5	0	0	0	0	0		100.0%	0	790

Developme	nt Rate Detail						
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep <b>5</b>	
0	Lab Water Control	0.988	0.952	0.964	0.982	0.987	
1		0.994	0.988	0.993	0.974	0.994	
10		0.987	0.982	0.983	0.975	0.963	
25		0.983	0.994	0.988	0.981	0.994	
50		0	0	0	0	0	
100		0	0	0	0	0	



20 Jul-10 19:01 (p 1 of 4)

12-0421-4632/39441

							1031	oode.		12-0721	700210077
Bivalve Larva	al Survival and De	evelopmen	t Test					33 .0		Paci	fic EcoRis
Analysis ID:	08-7263-6112	End	point: Sur	vival Rate			CET	IS Version:	CETISv1	,7.0	
Analyzed:	20 Jul-10 19;01	Ana	<b>Iysis:</b> Nor	nparametric-	Control vs T	Freatments	Offic	ial Results:	Yes		
Data Transfo	orm	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corr	rected)	0	C > T	Not Run		25	50	35.4	4	6.93%	
Steel Many-C	One Rank Test		<del></del>			<u> </u>					
Control	vs Conc-%		Test Stat	Critical	Ties	P-Value	Decision	(5%)			
Lab Water Co	ontrol 1		23	16	0	0.4415	Non-Signi	ificant Effect		-	<u> </u>
	10		23	16	0	0.4415	Non-Signi	ificant Effect			
	25		27	16	2	0.8003	Non-Signi	ificant Effect			
	50*		15	16	0	0.0191	Significan	t Effect			
	100*		15	16	0	0.0191	Significan	t Effect			
ANOVA Table	е								_		
Source	Sum Squa	res	Mean Squ	are	DF	F Stat	P-Value	Decision(	5%)		
Between	9.759267		1.951853		5	297	<0.0001	Significant	Effect		
Егтог	0.1578731		0.0065780	48	24						
Total	9.91714		1.958431	_	29						
ANOVA Assu	ımptions									_	
Attribute	Test			Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Mod Leve	ne Equality	of Variance	1.55	4.25	0.2234	Equal Var	iances			
Distribution	Shapiro-W	Vilk Normali	ty	0.852		0.0007	Non-norm	al Distributio	n		
Survival Rate	Summary				-			··			
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water Contr	5	0.907	0.885	0.928	0.863	1	0.0105	0.0564	6.23%	0.0%
1		5	0.876	0.854	0.897	0.824	0.945	0.0105	0.0565	6.45%	3.39%
10		5	0.885	0.866	0.903	0.841	0.951	0.0091	0.049	5.54%	2.42%
25		5	0.898	0.884	0.911	0.863	0,951	0.00656	0.0353	3.93%	0.97%
50		5	0	0	0	0	0	0	0		100.0%
100		5	0	0	0	0	0	0	0		100.0%
Angular (Cor	тесted) Transform	ned Summ	arv								
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water Cont		1.29	1.23	1.34	1.19	1.53	0.0265	0.143	11.1%	0.0%
1		5	1.22	1.18	1.25	1.14	1.33	0.017	0.0914	7.5%	5.21%
10		5	1.23	1.2	1.26	1.16	1.35	0.0153	0.0825	6.7%	4.24%
25		5	1.25	1.23	1.27	1.19	1.35	0.0133	0.0623	4.98%	2.8%
50		5	0.0371	0.0371	0.0371	0.0371	0.0371				
50		5	0.0371	0.0371	0.0371	0.0371	0.03/1	0	0	0.0%	97.1%

0.0%

97.1%

100

5

0.0371

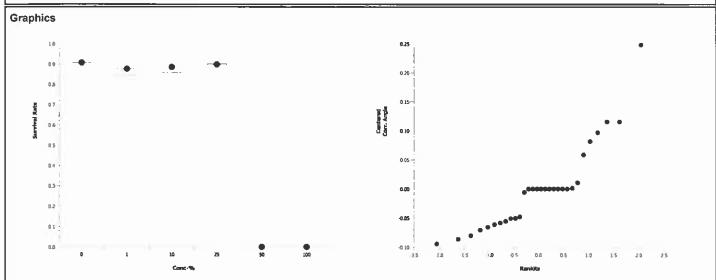
0.0371

0.0371

0.0371

0.0371

0


0

20 Jul-10 19:01 (p 2 of 4) 12-0421-4632/39441

 Bivalve Larval Survival and Development Test
 Pacific EcoRisk

 Analysis ID:
 08-7263-6112
 Endpoint:
 Survival Rate
 CETIS Version:
 CETISv1.7.0

 Analyzed:
 20 Jul-10 19:01
 Analysis:
 Nonparametric-Control vs Treatments
 Official Results:
 Yes



Report Date: Test Code: 20 Jul-10 19.02 (p 1 of 1)

ode: 12-0421-4632/39441

**Bivalve Larval Survival and Development Test** 

Pacific EcoRisk

Analysis ID: 0

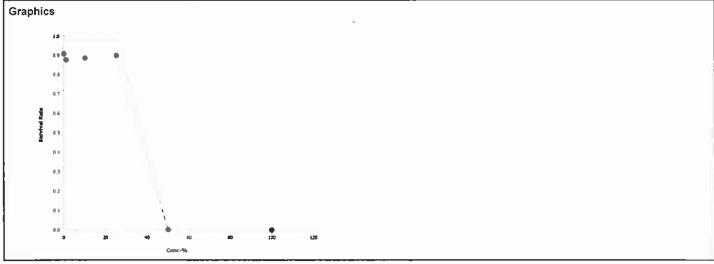
Analyzed:

00-5965-0086 20 Jul-10 19:01 Endpoint: Survival Rate

Analysis:

Trimmed Spearman-Kärber

CETIS Version:


CETISv1.7.0

Official Results: Yes

Threshold Option	Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL
Control Threshold	0.0934	2.26%	1.54	0.000777	35.1	34.9	35.2

Survival R	ate Summary										
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	Α	В
0	Lab Water Contr	5	0.907	0.863	1	0.0103	0.0564	6.23%	0.0%	825	910
1		5	0.876	0.824	0.945	0.0103	0.0565	6.45%	3.39%	797	910
10		5	0.885	0.841	0.951	0.00894	0.049	5.54%	2.42%	805	910
25		5	0.898	0.863	0.951	0.00645	0.0353	3.93%	0.97%	817	910
50		5	0	0	0	0	0		100.0%	0	910
100		5	0	0	0	0	0		100.0%	0	910


Survival Ra	ate Detail						
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep <b>5</b>	
0	Lab Water Control	0.885	0.868	1	0.918	0.863	
1		0.846	0.929	0.824	0.835	0.945	
10		0.857	0.923	0.951	0.841	0.852	
25		0.951	0.901	0.907	0.863	0.868	
50		0	0	0	0	0	
100		0	0	0	0	0	

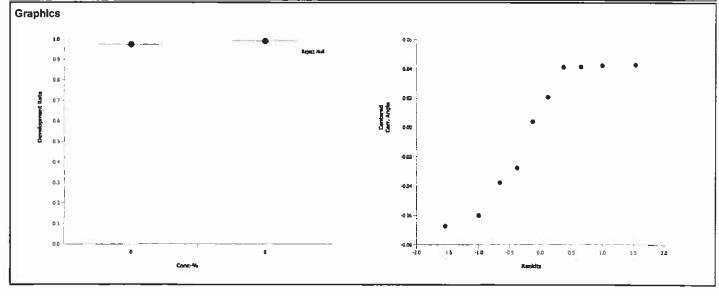


Report Date: Test Code: 20 Jul-10 16:01 (p 2 of 4)

18-6831-4622/39436

t Test								
							Pacif	ic EcoRisi
	vival Rate ametric-Two	Sample			S Version: ial Results		.7.0	
Alt Hyp	Monte Car	rlo	NOEL	LOEL	TOEL	TU	PMSD	
C > T	Not Run		0	>0			7.77%	
						<del></del>		
Test Stat	Critical	MSD	P-Value	Decision(	5%)			
0.88	1.86	0.131	0.2022	Non-Signi	ficant Effect			
					<del></del>		<del>`</del>	
Mean Squ	are	DF	F Stat	P-Value	Decision(	(5%)		
0.0096848	17	1	0.775	0.4043	Non-Signi	ficant Effect		
0.0124950	7	8						
0.0221798	9	9						
				-				
	Test Stat	Critical	P-Value	Decision(	1%)			
	4.49	23.2	0.1746	Equal Var	iances		- <u>-</u>	
.ty	0 847		0.0532	Normal Di	stribulion			
Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Mean 0.881	95% LCL 0.864	<b>95% UCL</b> 0.898	Min 0.813	<b>Max</b> 0,918	Std Err 0.00837	<b>Std Dev</b> 0.0451	CV% 5.11%	Diff% 0.0%
0.881	0.864	0.898	0.813	0.918	0.00837	0.0451	5.11%	0.0%
0.881 0.907	0.864	0.898	0.813	0.918	0.00837	0.0451	5.11%	0.0%
0.881 0.907	0.864 0.885	0.898 0.928 <b>95% UCL</b>	0.813 0.863 Min	0.918 1 Max	0.00837 0.0105	0.0451 0.0564	5.11% 6.23% CV%	0.0% -2.87% Diff%
0,881 0.907 nary Mean	0.864 0.885 <b>95%</b> LCL	0.898 0.928	0.813 0.863	0.918	0.00837 0.0105 Std Err	0.0451 0.0564 Std Dev	5.11% 6.23%	0.0% -2.87%
0.881 0.907 nary Mean 1.22	0.864 0.885 <b>95%</b> LCL 1.2	0.898 0.928 <b>95% UCL</b> 1.25	0.813 0.863 Min 1.12	0,918 1 Max 1,28	0.00837 0.0105 Std Err 0.0125	0.0451 0.0564 Std Dev 0.0674	5.11% 6.23% CV% 5.51%	0.0% -2.87% Diff% 0.0%
0.881 0.907 nary Mean 1.22	0.864 0.885 <b>95%</b> LCL 1.2	0.898 0.928 <b>95% UCL</b> 1.25	0.813 0.863 Min 1.12	0,918 1 Max 1,28	0.00837 0.0105 Std Err 0.0125	0.0451 0.0564 Std Dev 0.0674	5.11% 6.23% CV% 5.51%	0.0% -2.87% Diff% 0.0%
0.881 0.907 nary Mean 1.22	0.864 0.885 <b>95%</b> LCL 1.2	0.898 0.928 <b>95% UCL</b> 1.25	0.813 0.863 Min 1.12 1.19	0,918 1 Max 1,28	0.00837 0.0105 Std Err 0.0125	0.0451 0.0564 Std Dev 0.0674	5.11% 6.23% CV% 5.51%	0.0% -2.87% Diff% 0.0%
	Alt Hyp C > T  Test Stat 0.88  Mean Squ 0.0096848 0.0124950	Alt Hyp Monte Car C > T Not Run  Test Stat Critical 0.88 1.86  Mean Square 0.009684817 0.01249507 0.02217989  Test Stat 4.49	Alt Hyp         Monte Carlo           C > T         Not Run           Test Stat         Critical         MSD           0.88         1.86         0.131           Mean Square         DF           0.009684817         1           0.01249507         8           0.02217989         9           Test Stat         Critical           4.49         23.2	Alt Hyp         Monte Carlo         NOEL           C > T         Not Run         0           Test Stat         Critical         MSD         P-Value           0.88         1.86         0.131         0.2022           Mean Square         DF         F Stat           0.009684817         1         0.775           0.01249507         8         0.02217989           9         Test Stat         Critical         P-Value           4.49         23.2         0.1746	Alt Hyp         Monte Carlo         NOEL         LOEL           C > T         Not Run         0         >0           Test Stat         Critical         MSD         P-Value         Decision(           0.88         1.86         0.131         0.2022         Non-Signi           Mean Square         DF         F Stat         P-Value           0.009684817         1         0.775         0.4043           0.01249507         8         0.02217989         9           Test Stat         Critical         P-Value         Decision(           4.49         23.2         0.1746         Equal Variance	Alt Hyp         Monte Carlo         NOEL         LOEL         TOEL           C > T         Not Run         0         >0           Test Stat         Critical         MSD         P-Value         Decision(5%)           0.88         1.86         0.131         0.2022         Non-Significant Effect           Mean Square         DF         F Stat         P-Value         Decision           0.009684817         1         0.775         0.4043         Non-Significant Effect           0.01249507         8           0.02217989         9           Test Stat Critical P-Value Decision(1%)           4.49         23.2         0.1746         Equal Variances	Alt Hyp         Monte Carlo         NOEL         LOEL         TOEL         TU           C > T         Not Run         0         >0           Test Stat         Critical         MSD         P-Value         Decision(5%)           0.88         1.86         0.131         0.2022         Non-Significant Effect           Mean Square         DF         F Stat         P-Value         Decision(5%)           0.009684817         1         0.775         0.4043         Non-Significant Effect           0.01249507         8           0.02217989         9           Test Stat         Critical         P-Value         Decision(1%)           4.49         23.2         0.1746         Equal Variances	Alt Hyp         Monte Carlo         NOEL         LOEL         TOEL         TU         PMSD           C > T         Not Run         0         >0         7.77%           Test Stat         Critical MSD P-Value Decision(5%)           0.88         1.86         0.131         0.2022         Non-Significant Effect           Mean Square         DF         F Stat         P-Value Decision(5%)           0.009684817         1         0.775         0.4043         Non-Significant Effect           0.01249507         8         0.02217989         9           Test Stat Critical P-Value Decision(1%)           4.49         23.2         0.1746         Equal Variances




20 Jul-10 16:01 (p 4 of 4) 18-6831-4622/39436

									1950	Coue.		10-0031-402	2/35430
Bivaive Larva	l Surv	ival and De	velop	ment Test								Pacific E	coRisk
Analysis ID: Analyzed:		674-0949 ul-10 15:57		Endpoint: Analysis:		/elopment l ametric-Tw				IS Version		Sv1.7.0	
Data Transfo	rm		Zeta	All E	lyp	Monte Ca	arlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre	ected)		0	C > T		Not Run		0	>0			1.83%	
Equal Variand	ce t Tv	o-Sample	Test								, ,		
Control	VS	Control		Test	Stat	Critical	MSD	P-Value	Decision	(5%)			
Lab Water Co	nlro!	Site Wate	r	-2.43		1.86	0.0556	0.9793	Non-Sign	ificant Effe	ct		
ANOVA Table	)			_			-						
Source		Sum Squa	res	Mear	Squ	are	DF	F Stat	P-Value	Decision	n( <b>5</b> %)		
Between		0.0131558	2	0.013	1558	32	1	5.89	0.0413	Significa	nt Effect		
Error		0.0178539	3	0.002	2317	'42	8						
		0.0310097		0.015	3876	:6	9						

Attribute	Test			Test Stat	Critical	P-Value	Decision(1%)				
Variances	Variance	Ratio F		1.26	23.2	0.8272	Equal Variances				
Distribution	Shapiro-	Wilk Norma	ality	0.849		0.0569	Normal Distribution				
Development	Rate Summary		<u> </u>								
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%

Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Site Water	5	0.992	0.989	0.996	0.98	1	0.00157	0.00846	0.85%	0.0%
0	Lab Water Contr	5	0.975	0.968	0.981	0.952	0.988	0.00299	0.0161	1.65%	1.8%
Angular (C	orrected) Transform	ned Sum	manı		· · · · · · · · · · · · · · · · · · ·						

Angular (Cor	Angular (Corrected) Transformed Summary											
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%	
0	Sile Water	5	1.49	1.47	1.51	1.43	1.53	0.00825	0.0444	2.98%	0.0%	
0	Lab Water Cont	5	1.42	1.4	1.44	1.35	1.46	0.00927	0.0499	3.52%	4.87%	



## Mytilus sp. Development Toxicity Test Count Data

Client:	ACOE - San Rafael Channel	Test Start Date:	7.7-10
Test Material:	SRC-2010-05	Test End Date:	7-9-10
Test ID #:	39441	Enumeration Date:	7/20/10010 am
Project #:	16087	Investigator:	Jm
Sample Salinity:	adjusted with: Crystal Sea Salt 5	Inoculation Count:	182

Concentration	Replicate	Number of Normal Larvae	Number of Abnormal Larvae	Total Number Larvae	Percent Normal Development	Percent Survival
	A	14	2	163	99	88
	В	158	8'	166	95	87
Control	С	184	7	193	96	100
	D	147	3	170	98	92
	Е	157	2	159	99	86
	<u>A</u>	154	1	155	29	85
	В	169	2	171	29	93
1.0%	C	150	1	151	99	82
	D	152	4	156	97_	84
	Е	172	t	173	99	15
	A	156	2	158	99	86
	В	168	3	171	9.8	92
10%	C	173	3	17760	28	95
	D	153	4	167	વ જ	84
	Е	166	Q	161	ca 9 9 96	85
	Α	113	3	176	98	95
	В	164	1	165	99	90
25%	С	165	2	167	99	91
	_ D	157	3	160	98	87,
	E	158	1	159	29	87
	Α	0	122	122	.0	8
	В	0	163	163	0	0
50%	С	0	144	144	0	6
	D	Ø	146	146	0	0
	Е	ò	128	128	0 -	٥
	A	0	128	175	0	8
	В	0	151	151	0	0
100%	С	0	Rel	161	0	0
	D	6	148	148	o .	0
	E	0	168	158	ð	0

## Mytilus sp. Development Toxicity Test Water Chemistry Data

Client: _ Test Material:	ACOE - San Rafael Channel SRC-2010-05	Organism Log#: _ Organism Supplier:	3286 Age:	N/A
Test Material: _	39441 Project #: 16087	Control/Diluent:	30ppt FSW	
Test Date:	adjusted with: Crystal Sea Salts	_		

<u> </u>	Day 0											
Treatment	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff							
Control	16.4	7.80	8.7	30.7	Test Solution Prep.							
1%	10.4	7.93	8.1	31.0	New WQ.							
10%	16.4	7.89	8.5	30.7	Inoculation Date 7-7-10							
25%	16.4	7.95	8.4	30.2	Inoculation Time:							
50%	16.4	6.01	8.1	29.5	Inoculation Signoff:							
100%	16.4	8.07	7.6	26.0								
Meter ID	13	Ph 14	RD03	ECOB								

-		Day 1			
Treatment	Temperature (°C)	рН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	163				Date 7/8/10
1%	16.3				Signoff
10%	16.3		5		
25%	16.3				
50%	16.3			1	
100%	100:3				
Meter ID	23				

		Day 2			
Treatment	Temperature (°C)	рН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	16.2	8.00	8.8	31.1	Termination Signoff
1%	16.2	8.01	8.9	31.0	Termination Date:
10%	16.2	8.08	9.1	31.0	Termination Time:
25%	14.2	8.17	9.1	30.5	Old WÓ: NA2
50%	10.2	8:27	9.0	29.7	
100%	16.2	8.40	9.0	28-2	
Meter ID	23	PHIA	RD03	Ec 05	

### **CETIS Summary Report**

Report Date: Test Code: 21 Jul-10 12:42 (p 1 of 2) 06-8490-2457/39442

								est Code.		00-0450	-243113544.
Bivaive Larva	Survival and De	velop	ment Test							Paci	fic EcoRlsk
Batch ID: Start Date:	18-8220-2847 07 Jul-10 15:10		Protocol:	Development-S ASTM E724-98	(Bivalve)		1	Analyst: Diluent:	Jason Walker Diluted Seawar	ter	
Ending Date: Duration:	09 Jul-10 15:50 49h		Species: Source:	Mytilus gallopro Dave Gutoff	vincialis			Brine:	Crystal Sea N/A		
Duration.	4511		Source.	Dave Guton				Age:	19/A		
Sample ID:	15-6585-2712		Code:	SRC-2010-06				Client:	ACOE		
*	09 Jun-10 15:30		Material:	Elutriate	_		١	Project:	16087		
	09 Jun-10 19:00	)	Source:	San Rafael Cha	annel						
Sample Age:	28d (3.7 °C)		Station:	SRC-2010-06							
Comparison S	Summary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Meth	od		
00-7563-4510	Development Ra	ale	25	50	35.4	1.82%	4	Steel	Many-One Ran	k Test	
02-5291-4165	Survival Rate		25	50	35.4	13.2%	4	Dunr	ett's Multiple Co	mparison T	est
Point Estimate	e Summary					_					
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	TU	Meth	od		
10-2774-7116	Development Ra	ate	EC5	26.3	26.1	26.3	3.81	Linea	ır Interpolation (	ICPIN)	
			EC10	27.5	27.3	27.5	3.64				
			EC15	28.8	28.6	28.8	3.48				
			EC20	30	29.9	30	3,33				
			EC25	31.3	31.1	31.3	3.2				
			EC40	35	34.9	35	2.86				
	_		EC50	37.5	37.4	37.5	2.67				
02-2778-1281	Survival Rate		EC50	34.8	34.6	35.1	2.87	Spęa	rman-Kärber		
Development	Rate Summary										
Conc-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	Diff%
0	Lab Water Contr	5	0.975	0.969	0.981	0.952	0,988	0.002	294 0.0161	1.65%	0.0%
0	Site Water	5	0.992	0.989	0.996	0.98	1	0.001	155 0.00846	0.85%	-1.83%
1		5	0.983	0.979	0.987	0.969	0.994	0.002	201 0.011	1.12%	-0.83%
10		5	0.982	0.979	0.986	0.968	0.994	0.001	185 0.0101	1.03%	-0.8%
25		5	0.985	0.982	0.989	0.975	1	0.001	76 0.00966	0.98%	-1.1%
50		5	0	0	0	0	0	0	0		100.0%
100		5	0	0	0	0	0	0	0		100.0%
		J									
Survival Rate	Summary	- 5									
	Summary Control Type	Coun		95% LCL	95% UCL	Min	Max	Std E	Err Std Dev	CV%	Diff%
Conc-%	•	Coun		<b>95% LCL</b> 0.886	95% UCL 0.928	Min 0.863	Max 1	Std E		CV% 6.23%	Diff% 0.0%
Conc-%	Control Type	Coun	t Mean					0.010	0.0564		
Conc-% 0 0	Control Type  Lab Waler Contr	Coun 5	t Mean	0.886	0.928	0.863	1	0.010 0.006	0.0564 0.0451	6.23% 5.11%	0.0% 2.79%
<b>Conc-%</b> 0 0 1	Control Type  Lab Waler Contr	Coun 5 5	t Mean 0,907 0.881	0.886 0.864	0.928 0.898 0.94	0.863 0.813 0.797	1 0.918	0.010 0.008 0.015	0.0564 0.0451 0.0852	6.23% 5.11% 9.39%	0.0% 2.79% -0.12%
Conc-% 0 0 1 10	Control Type  Lab Waler Contr	<b>Coun</b> 5 5 5	t Mean 0,907 0,881 0,908 0,938	0.886 0.864 0.876 0.912	0.928 0.898 0.94 0.965	0,863 0.813 0,797 0.835	1 0.918 0.995 1	0.010 0,006 0.015 0,013	03 0.0564 023 0.0451 06 0.0852 0.0712	6.23% 5.11% 9.39% 7.58%	0.0% 2.79% -0.12% -3.52%
Conc-% 0 0	Control Type  Lab Waler Contr	5 5 5 5	t Mean 0.907 0.881 0.908	0.886 0.864 0.876	0.928 0.898 0.94	0.863 0.813 0.797	1 0.918 0.995	0.010 0.008 0.015	03 0.0564 023 0.0451 06 0.0852 0.0712	6.23% 5.11% 9.39%	0.0% 2.79% -0.12%

21 Jul-10 12:42 (p 2 of 2) 06-8490-2457/39442

						1031 0000.	00 0100 2101703442
val Survival and De	velopme	nt Test				_	Pacific EcoRisk
nt Rate Detail							
Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Lab Water Contr	0.988	0.952	0.964	0.982	0.987		
Site Water	1	0.988	0.994	0.98	1		
	0.973	0.994	0.988	0.969	0.989		
	0.989	0.978	0.982	0.994	0.968		
	0.981	1	0.99	0.975	0.981		
	0	0	0	0	0		
	0	0	0	0	0		
ite Detail							
Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Lab Water Contr	0.885	0.868	1	0.918	0.863		
Site Water	0.907	0.918	0.912	0.813	0.857		
	0.797	0.989	0.901	0,857	0.995		
	1	0.995	0.896	0.967	0.835		
	0.841	0.945	1	0.868	0.852		
	0	0	0	0	0		
	0	0	0	0	0		
	Control Type Lab Water Control Site Water  ate Detail Control Type Lab Water Control	Control Type Rep 1  Lab Water Control 0.988 Site Water 1 0.973 0.989 0.981 0 0 0  ate Detail Control Type Rep 1  Lab Water Control O.885 Site Water 0.907 0.797 1 0.841 0	Control Type         Rep 1         Rep 2           Lab Water Contr         0.988         0.952           Site Water         1         0.988           0.973         0.994           0.989         0.978           0.981         1           0         0           0         0           0         0           0         0           0         0           1         0.885           0.868         0.868           Site Water         0.907         0.918           0.797         0.989           0.841         0.945           0         0	Control Type Rep 1 Rep 2 Rep 3  Lab Water Contr 0.988 0.952 0.964 Site Water 1 0.988 0.994 0.973 0.994 0.988 0.989 0.978 0.982 0.981 1 0.99 0 0 0 0 0 0 0 0 0 0  ate Detail  Control Type Rep 1 Rep 2 Rep 3  Lab Water Contr 0.885 0.868 1 Site Water 0.907 0.918 0.912 0.797 0.989 0.901 1 0.995 0.896 0.841 0.945 1 0 0 0	Control Type   Rep 1   Rep 2   Rep 3   Rep 4	Control Type   Rep 1   Rep 2   Rep 3   Rep 4   Rep 5	Control Type

Report Date:

21 Jul-10 12:40 (p 3 of 4)

**Test Code:** 06-8490-2457/39442 **Bivalve Larval Survival and Development Test** Pacific EcoRisk Analysis ID: 00-7563-4510 Endpoint: Development Rate **CETIS Version: CETISv1.7.0** Analyzed: 21 Jul-10 12:40 Analysis: Nonparametric-Control vs Treatments Official Results: Yes **Data Transform** Zeta **Monte Carlo** TU Alt Hyp NOEL LOEL **TOEL PMSD** Angular (Corrected) 0 C > T Not Run 25 50 35.4 4 1.82% Steel Many-One Rank Test

Control vs	Conc-%	Test Stat	Critical	Ties	P-Value	Decision(5%)
Lab Water Control	1	34	16	0	0.9954	Non-Significant Effect
	10	31	16	0	0.9676	Non-Significant Effect
	25	31	16	0	0.9676	Non-Significant Effect
	50*	15	16	0	0.0191	Significant Effect
	100*	15	16	0	0.0191	Significant Effect
ANOVA Table		-				

ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(5%)
Between	13.04121	2.608241	5	1900	<0.0001	Significant Effect
Error	0.03297758	0.001374066	24			-
Total	13.07418	2.609615	29			

ANOVA Assi	umptions										
Attribute	Test			Test Stat	Critical	P-Value	Decision	n( <b>1</b> %)			
Variances Distribution	Bartlett Eq Shapiro-W			36.8 0.974	15.1	<0.0001 0.6653	Unequal Variances Normal Distribution			-	
Developmen	Development Rate Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water Contr	5	0.975	0.968	0.981	0.952	0.988	0.00299	0.0161	1.65%	0.0%

Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water Contr	5	0.975	0.968	0.981	0.952	0.988	0.00299	0.0161	1.65%	0.0%
1		5	0.983	0.979	0.987	0.969	0.994	0.00205	0.011	1.12%	-0.83%
10		5	0.982	0.979	0.986	0.968	0.994	0.00188	0.0101	1.03%	-0.8%
25		5	0.985	0.982	0.989	0.975	1	0.00179	0.00966	0.98%	-1.1%
50		5	0	0	0	0	0	0	0		100.0%
100		5	0	0	0	0	0	0	0		100.0%

Angular (Corrected) Transformed Summary											
Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%	
Lab Water Cont	5	1.42	1.4	1.44	1.35	1,46	0.00927	0.0499	3.52%	0.0%	
	5	1.44	1.43	1.46	1.39	1.5	0.00803	0.0432	2.99%	-1.96%	
	5	1.44	1.43	1.46	1.39	1.5	0.00747	0.0403	2.79%	-1.83%	
	5	1.46	1.44	1.47	1.41	1.53	0.00882	0.0475	3.26%	-2.74%	
	5	0.0429	0.0419	0.0439	0.0404	0.0466	0.000476	0.00257	5.98%	97.0%	
	5	0.0403	0.0397	0.0409	0.038	0.042	0.000292	0.00157	3.91%	97.2%	
	Control Type	Control Type Count  Lab Water Cont 5 5 5 5 5 5	Control Type         Count         Mean           Lab Water Cont         5         1.42           5         1.44           5         1.44           5         1.46           5         0.0429	Control Type         Count         Mean         95% LCL           Lab Water Cont         5         1.42         1.4           5         1.44         1.43           5         1.44         1.43           5         1.46         1.44           5         0.0429         0.0419	Control Type         Count         Mean         95% LCL         95% UCL           Lab Water Cont         5         1.42         1.4         1.44           5         1.44         1.43         1.46           5         1.44         1.43         1.46           5         1.46         1.44         1.47           5         0.0429         0.0419         0.0439	Control Type         Count         Mean         95% LCL         95% UCL         Min           Lab Water Cont         5         1.42         1.4         1.44         1.35           5         1.44         1.43         1.46         1.39           5         1.44         1.43         1.46         1.39           5         1.46         1.44         1.47         1.41           5         0.0429         0.0419         0.0439         0.0404	Control Type         Count         Mean         95% LCL         95% UCL         Min         Max           Lab Water Cont         5         1.42         1.4         1.44         1.35         1.46           5         1.44         1.43         1.46         1.39         1.5           5         1.44         1.43         1.46         1.39         1.5           5         1.46         1.44         1.47         1.41         1.53           5         0.0429         0.0419         0.0439         0.0404         0.0466	Control Type         Count         Mean         95% LCL         95% UCL         Min         Max         Std Err           Lab Water Cont         5         1.42         1.4         1.44         1.35         1.46         0.00927           5         1.44         1.43         1.46         1.39         1.5         0.00803           5         1.44         1.43         1.46         1.39         1.5         0.00747           5         1.46         1.44         1.47         1.41         1.53         0.00882           5         0.0429         0.0419         0.0439         0.0404         0.0466         0.000476	Control Type         Count         Mean         95% LCL         95% UCL         Min         Max         Std Err         Std Dev           Lab Water Cont         5         1.42         1.4         1.44         1.35         1.46         0.00927         0.0499           5         1.44         1.43         1.46         1.39         1.5         0.00803         0.0432           5         1.44         1.43         1.46         1.39         1.5         0.00747         0.0403           5         1.46         1.44         1.47         1.41         1.53         0.00882         0.0475           5         0.0429         0.0419         0.0439         0.0404         0.0466         0.000476         0.00257	Control Type         Count         Mean         95% LCL         95% UCL         Min         Max         Std Err         Std Dev         CV%           Lab Water Cont         5         1.42         1.4         1.44         1.35         1.46         0.00927         0.0499         3.52%           5         1.44         1.43         1.46         1.39         1.5         0.00803         0.0432         2.99%           5         1.44         1.43         1.46         1.39         1.5         0.00747         0.0403         2.79%           5         1.46         1.44         1.47         1.41         1.53         0.00882         0.0475         3.26%           5         0.0429         0.0419         0.0439         0.0404         0.0466         0.000476         0.00257         5.98%	

Report Date: Test Code: 21 Jul-10 12:40 (p 4 of 4) 06-8490-2457/39442

**Bivalve Larval Survival and Development Test** Pacific EcoRisk Analysis ID: 00-7563-4510 Endpoint: Development Rate CETIS Version: **CETISv1.7.0** 21 Jul-10 12:40 Analyzed: Analysis: Nonparametric-Control vs Treatments Official Results: Yes Graphics 09 B.Q 0.02 0.6 0.5 0.00 -0.02 -0.04 0.2 -0.05 0:1 0.0 -0.00

Report Date: Test Code: 21 Jul-10 12:40 (p 1 of 1)

06-8490-2457/39442

Bivalve Larval Survival and Development Te	est
--------------------------------------------	-----

10-2774-7116 21 Jul-10 12:40

Endpoint: Development Rate

Analysis:

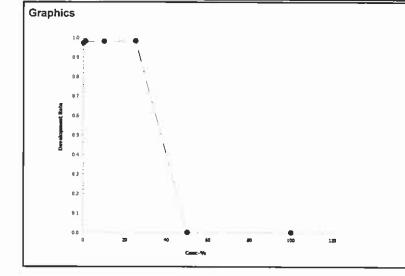
Linear Interpolation (ICPIN)

CETIS Version: CETISv1.7.0

Pacific EcoRisk

Official Results: Yes

Analysis ID:


Analyzed:

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	57951	200	Yes	Two-Point Interpolation

Point E	stimates					
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC5	26.3	26.1	26.3	3.81	3.81	3.84
EC10	27.5	27.3	27.5	3.64	3.64	3.66
EC15	28.8	28.6	28.8	3.48	3.48	3.5
EC20	30	29.9	30	3.33	3.33	3,35
EC25	31.3	31.1	31.3	3.2	3.2	3.21
EC40	35	34.9	35	2.86	2.86	2.87
EC50	37.5	37,4	37.5	2.67	2.67	2.67

Developm	ent Rate Summary	Calculated Variate(A/B)									
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	Α	В
0	Lab Water Contr	5	0.975	0.952	0.988	0.00294	0.0161	1.65%	0.0%	829	851
1		5	0.983	0.969	0.994	0.00201	0.011	1.12%	-0.83%	826	840
10		5	0.982	0.968	0.994	0.00185	0.0101	1.03%	-0.8%	859	874
25		5	0.985	0.975	1	0.00176	0.00966	0.98%	-1.1%	828	840
50		5	0	0	0	0	0		100.0%	0	686
100		5	0	0	0	0	0		100.0%	0	774

1	Developmer	Development Rate Detail										
	Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep <b>5</b>					
	0	Lab Water Control	0.988	0.952	0.964	0.982	0.987					
1	1		0.973	0.994	0.988	0.969	0.989					
1	10		0.989	0.978	0.982	0.994	0.968					
1	25		0.981	1	0.99	0.975	0.981					
1	50		0	0	0	0	0					
L	100		0	0	0	0	0					



21 Jul-10 12:40 (p 1 of 4) 06-8490-2457/39442

**Bivalve Larval Survival and Development Test** Pacific EcoRisk 02-5291-4165 **CETIS Version: CETISv1.7.0** Analysis ID: Endpoint: Survival Rate 21 Jul-10 12:40 Analysis: Parametric-Control vs Treatments Analyzed: Official Results: Yes **Data Transform** ΤŲ Zeta Alt Hyp Monte Carlo **NOEL** LOEL **TOEL PMSD** Angular (Corrected) 0 C > T Not Run 25 50 35.4 4 13.2% **Dunnett's Multiple Comparison Test** Control Conc-% **Test Stat** Critical Decision(5%) ٧S MSD P-Value Lab Water Control -0.174Non-Significant Effect 2.36 0.195 0.8795 10 -0.9342,36 0.195 0.9800 Non-Significant Effect 25 0.061 2.36 0.195 0.8147 Non-Significant Effect 50* Significant Effect 15.1 2.36 0.195 < 0.0001 100* 15.1 2.36 0.195 < 0.0001 Significant Effect ANOVA Table Source **Sum Squares** Mean Square DF F Stat P-Value Decision(5%) Between 10.77557 2.155115 5 127 <0.0001 Significant Effect 0.4084326 Error 0.01701803 24 Total 11.18401 2.172133 29 **ANOVA Assumptions Attribute** Test Test Stat Critical P-Value Decision(1%) 4.25 Variances Mod Levene Equality of Variance 2.9 0.0429 **Equal Variances** Distribution Shapiro-Wilk Normality 0.924 0.0345 Normal Distribution Survival Rate Summary Conc-% **Control Type** Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff% 0 Lab Water Contr 5 0,907 0.885 0.928 0.863 0.0105 0.0564 0.0% 1 6.23% 5 0.908 0.875 0.94 0.797 0.995 0.0158 0.0852 9.39% -0.12% 0.835 10 5 0.938 0.911 0.966 1 0.0132 0.0712 -3.52% 7.58% 25 5 0.901 0.875 0.927 0.841 1 0.0128 0.0687 7.63% 0.61% 50 5 0 n 0 0 0 0 0 100.0% 100 5 0 0 0 0 0 0 0 100.0% Angular (Corrected) Transformed Summary Control Type Conc-% Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff% Lab Water Cont 5 1.29 0 1.23 1.34 1.19 1.53 0.0265 0.143 11.1% 0.0% 5 1.3 1.23 1.37 1.1 1.5 0.0323 0.174 13.4% -1.11% 10 5 1.36 1.3 1.42 1.15 1.53 0.0303 0.163 12.0% -5.99% 25 5 1.28 1.22 1.34 1.16 0.0292 0.157 0.39% 1.53 12.3% 5 50 0.0371 0.0371 0.0371 0.0371 0.0371 0 0 0.0% 97.1% 5 100 0.0371 0.0371 0.0371 0.0371 0.0371 0 0 0.0% 97.1%

21 Jul-10 12:40 (p 2 of 4) 06-8490-2457/39442

**Bivalve Larval Survival and Development Test** Pacific EcoRisk 02-5291-4165 Analysis ID: Endpoint: Survival Rate **CETIS Version: CETISv1.7.0** Analyzed: 21 Jul-10 12:40 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 0.30 0.25 09 0.20 1.0 0.15 0.6-0.5 0 00 -0.05 0 15 81 --0.20 0.0 -0.25 -2.5

Report Date:

21 Jul-10 12:40 (p 1 of 1)

Test Code:

06-8490-2457/39442

Bivalve Larval Survival and Development Test

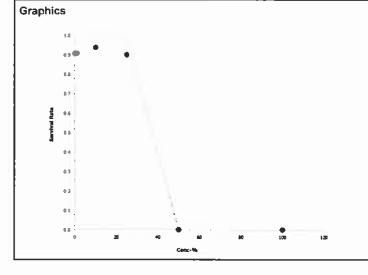
Pacific EcoRisk

Analysis ID: Analyzed: 02-2778-1281 21 Jul-10 12:40 Endpoint: Survival Rate

Analysis: Untrimmed Spearman-Kärber

CETIS Version: 0

**CETISv1.7.0** 


Official Results: Yes

Spearman-Kärber E	stimates
-------------------	----------

Threshold Option	Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL
Control Threshold	0.0934	0.00%	1.54	0.00154	34.8	34.6	35.1

Survival R	ate Summary	Calculated Variate(A/B)									
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	Α	В
0	Lab Water Contr	5	0.907	0.863	1	0.0103	0.0564	6.23%	0.0%	825	910
1		5	0.908	0.797	0.995	0.0156	0.0852	9.39%	-0.12%	826	910
10		5	0.938	0.835	1	0.013	0.0712	7.58%	-3.52%	854	910
25		5	0.901	0.841	1	0.0125	0.0687	7.63%	0.61%	820	910
50		5	0	0	0	0	0		100.0%	0	910
100		5	0	0	0	0	0		100.0%	0	910

Survival Rate Detail									
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep <b>5</b>			
0	Lab Water Control	0.885	0.868	1	0.918	0.863			
1		0.797	0.989	0.901	0.857	0.995			
10		1	0.995	0.896	0.967	0.835			
25		0.841	0.945	1	0.868	0.852			
50		0	0	0	0	0			
100		0	0	0	0	0			



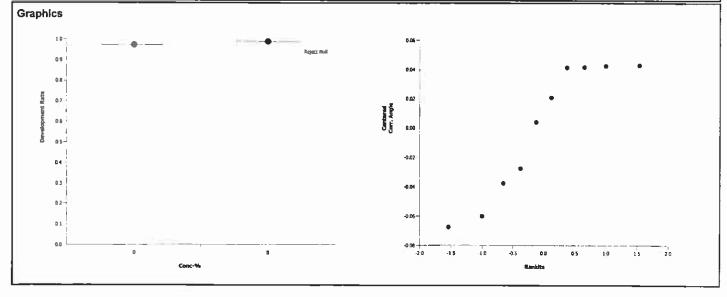
Report Date: Test Code: 20 Jul-10 16:01 (p 4 of 4) 18-6831-4622/39436

Bivalve Larval Survival and Development Test Pacific EcoRisk

Analysis ID: 06-7674-0949 Endpoint: Development Rate CETIS Version: CETISv1.7.0

Analyzed: 20 Jul-10 15:57 Analysis: Parametric-Two Sample Official Results: Yes

Data Transform	Zeta	Alt Hyp	Monte Carlo	NOEL	LOEL	TOEL	ΤU	PMSD	
Angular (Corrected)	0	C > T	Not Run	0	>0			1.83%	

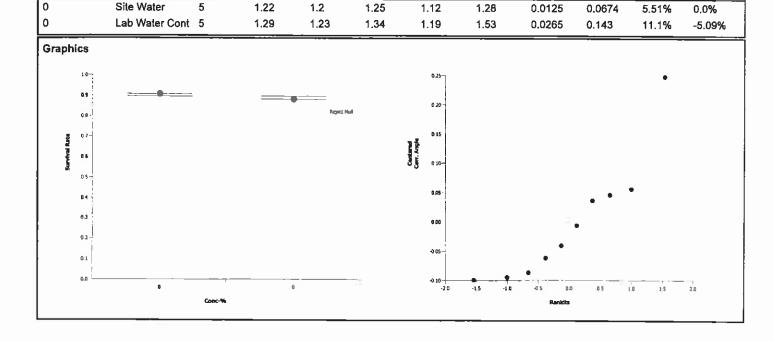

**Equal Variance t Two-Sample Test** Control VS Control Test Stat Critical MSD P-Value Decision(5%) Lab Water Control Site Water -2.43 1.86 0.0556 0.9793 Non-Significant Effect

ANOVA Table							
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(5%)	
Between	0.01315582	0.01315582	1	5,89	0.0413	Significant Effect	
Ептог	0.01785393	0.002231742	8				
Total	0.03100976	0.01538756	9				

ANOVA Assum	ptions				
Attribute	Test	Test Stat	Critical	P-Value	Decision(1%)
Variances	Variance Ratio F	1.26	23.2	0.8272	Equal Variances
Distribution	Shapiro-Wilk Normality	0.849		0.0569	Normal Distribution

Development Rate Summary											
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Site Water	5	0.992	0,989	0.996	0.98	1	0.00157	0.00846	0.85%	0.0%
0	Lab Water Contr	5	0.975	0.968	0.981	0.952	0.988	0.00299	0,0161	1.65%	1.8%

ĺ	Angular (Corrected) Transformed Summary											
	Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
ł	0	Sile Water	5	1,49	1.47	1.51	1,43	1.53	0.00825	0.0444	2.98%	0.0%
	0	Lab Water Cont	5	1.42	1.4	1.44	1.35	1.46	0.00927	0.0499	3.52%	4.87%




Report Date:

20 Jul-10 16:01 (p 2 of 4)

18-6831-4622/39436

_							Test	Code:		18-6831	-4622/39436
Bivalve Larv	al Survival and [	Developme	ent Test							Paci	fic EcoRisk
Analysis ID: Analyzed:	17-3724-4183 20 Jul-10 15:5		*	vival Rate ametric-Two	Sample			IS Version: cial Results		.7.0	
Data Transfo	orm	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Cor	rected)	0	C > T	Not Run		0	>0			7.77%	
Equal Variar	nce t Two-Sample	e Test					-				
Control	vs Control		Test Stat	Critical	MSD	P-Value	Decision	(5%)			
Lab Water Co	ontrol Site Wat	er	0.88	1.86	0.131	0.2022	Non-Sign	ificant Effec	t		
ANOVA Tab	le							-	<del></del> <u>-</u> -		
Source	Sum Squ	ares	Mean Squ	iare	DF	F Stat	P-Value	Decision	(5%)		
Between	0.009684	817	0.0096848	317	1	0.775	0.4043	Non-Sign	ificant Effect		
Error	0.099960	58	0.0124950	)7	8			-			
Total	0.109645	4	0.0221798	39	9						
ANOVA Ass	umptions							<del></del>			<u> </u>
Attribute	Test			Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Variance	Ratio F		4.49	23.2	0.1746	Equal Var	iances			
Distribution	Shapiro-	Wilk Norm	ality	0.847		0.0532	Normal D	istribution			
Survival Rat	e Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Site Water	5	0.881	0.864	0.898	0.813	0.918	0.00837	0.0451	5.11%	0.0%
0	Lab Water Con	lr 5	0.907	0.885	0.928	0.863	1	0.0105	0.0564	6.23%	-2.87%
Angular (Co	rrected) Transfor	med Sur	nmary						<del></del>		<del></del>
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Site Water	5	1.22	1.2	1.25	1.12	1.28	0.0125	0.0674	5.51%	0.0%
•											



# Mytilus sp. Development Toxicity Test Count Data

Client:	ACOE - San Rafael Channel	Test Start Date:	7.7.10	
Test Material:	SRC-2010-06	Test End Date:	7-9-10	
Test ID #:	39442	Enumeration Date:	7/21/10	
Project #:	16087	Investigator:	d'm	
_	adjusted with: Crystal Sea Solt S	Inoculation Count:	182	

Concentration	Replicate	Number of Normal Larvae	Number of Abnormal Larvae	Total Number Larvae	Percent Normal Development	Percent Survival
	Α	161	2	143	99	88
	В	158	8	166	95	87
Control	С	186	7	143	96	100
	D	147	3	170	98	92
	E	157	2	159	99	86
	A	145	4	149	97	80
	В	180		181	9.9	99
1.0%	С	164	2	166	29	90
	D	156	5	161	97	86
	E	181	2	183	99	99
	Α	187	2	189	99	100
	В	181	4	185	98	99
10%	С	163	3	166	9.8	20
	D	176		177	99	97
	E	1529Jm	চ	167	97	84
	Α	153	3	156	98	84
	В	172	O	172	100	95
25%	C	190	2	192	99	100
	D	168	4	162	18	87
	Е	156	3	188	28	85
	A	00	153	153	0	0
	В	0	129	129	0	٥
50%	C	0	138	138	6	0
	D	0	112	115	. 0	0
	Е	0	161	151	0	0
	Α	0	173	173	D	0
	B	0	146	145	0	
100%	C	0	166	155	0	0
	D_	0	142	159	0	0
	Е	0	142	142	0	0

### Mytilus sp. Development Toxicity Test Water Chemistry Data

Client:	ACOE - San Rafael Cl	nannel	Organism Log#:	5286 Age:	N/A
Test Material:	SRC-2010-06		Organism Supplier: _	Getold	
Test ID#:	39442 Project #: _	16087	Control/Diluent:	30ppt FSW	
Test Date:	7-フ・10 Randomizati	on:			
Sample Salinity	adjusted with : Crys tal Se	a Salts			

		Day 0			
Treatment	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	16.4	7.80	8.7	30.7	Test Solution Prep:
1%	10.4	7.96	8.0	31.0	New WQ.
10%	10.4	7.68	<i>8</i> .3	30.7	Inoculation Date.
25%	16.4	7.90	8.4	30.1	Inoculation Time
50%	16.4	7.92	8.2	29.2	Inoculation Signati
100%	16.4	7.96	7.7	27 5000	
Meter ID	23	Ph14	R003	EC.03	

		Day 1			
Treatment	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff'
Control	16.3				Date:7/8/10
1%	16.3				Signoff:
10%	16.3				
25%	10.3				
50%	16.3				
100%	163				
Meter ID	23				

		Day 2	-		
Treatment	Temperature (°C)	рН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	16.2	8-00	8.8	31.0	Termination Signoff
1%	16.2	7.99	8.8	31.2	Termination Date:
10%	16.2	8-04	7.6	30-0	Termination Time:
25%	16.2	8-2	7.5	29.9	Old WQ. NVS
50%	16.2	8-31	7.6	29.4	
100%	16.2	8-42	7.4	28.9	
Meter ID	23	pH 14	R.D.03	Ec 05	

### **CETIS Summary Report**

Report Date: Test Code:

21 Jul-10 12:49 (p 1 of 2) 01-7487-9027/39443

								Test Code:			01-7487	-9027/3944
Bivalve Larva	Survival and De	evelopr	nent Test						_		Paci	fic EcoRis
Batch ID:	18-8220-2847		Test Type:	Development-S	Survival			Analyst:	Jaso	n Walker		
Start Date:	07 Jul-10 15:10		Protocol:	ASTM E724-98	(Bivalve)			Diluent:	Dilut	ed Seawate	er	
Ending Date:	09 Jul-10 15:50		Species:	Mytilus gallopro	vincialis			Brine:	Crys	tal Sea		
Duration:	49h		Source:	Dave Gutoff				Age:	N/A			
Sample ID:	08-0994-4638		Code:	SRC-2010-07				Client:	ACC	)E		
Sample Date:	10 Jun-10 09:00	)	Material:	Elutriale				Project:	1608	37		
Receive Date:	10 Jun-10 17:00	)	Source:	San Rafael Cha	annel							
Sample Age:	27d 6h (0.6 °C)	)	Station:	SRC-2010-07								
Comparison S	Summary										·	
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Meti	hod			
07-4182-3272	Development R	ate	25	50	35.4	1.58%	4	Stee	l Man	y-One Rank	Test	
05-3315-9020	Survival Rate		25	50	35.4	14.5%	4	Dun	nett's l	Multiple Co	mparison T	est
Point Estimate	e Summary											
Analysis ID	Endpoint		Level		95% LCL	95% UCL	TU	Meti				
06-1661-2033	Development Ra	ate	EC5	26.3	26.1	26.3	3,81	Line	ar Inte	rpolation (l	CPIN)	
			EC10		27.3	27.5	3.64					
			EC15		28.6	28.8	3.48					
			EC20		29.8	30	3.33					
			EC25 EC40		31.1 34.9	31.3	3.2					
			EC50		37.4	35 37.5	2.86 2.67					
10-2015-9743	Survival Rate		EC50		35.1	35.4	2.84	Spea	arman	-Kärber		
Development	Rate Summary	-			-	-						
Conc-%	Control Type	Count	t Mean	95% LCL	95% UCL	Min	Max	Std	Еп	Std Dev	CV%	Diff%
0	Lab Water Contr	5	0.975	0.969	0.981	0.952	0.988	0.00	294	0.0161	1.65%	0.0%
0	Site Water	5	0.992	0.989	0.996	0.98	1	0.00	155	0.00846	0.85%	-1.83%
1		5	0.99	0.987	0.993	0.982	1	0.00	132	0.00723	0.73%	-1.56%
10		5	0.983	0.979	0.987	0.967	0.993	0.00	192	0.0105	1.07%	-0.89%
25		5	0.989	0.986	0.991	0.977	0.994	0.00	129	0.00706	0.71%	-1.43%
50		5	0	0	0	0	0	0		0		100.0%
100		5	0	0	0	0	0	0		0	_	100,0%
Survival Rate	Summary											
Conc-%	Control Type	Count	Mean Mean	95% LCL	95% UCL	Min	Max	Std	Err	Std Dev	CV%	Diff%
0	Lab Water Contr	5	0.907	0.886	0.928	0.863	1	0.01	03	0.0564	6.23%	0.0%
0	Site Waler	5	0.881	0.864	0.898	0.813	0.918	0.00	823	0.0451	5.11%	2.79%
1		5	0.889	0.85	0.929	0.709	0.989	0.01	93	0.106	11.9%	1.94%
10		5	0.93	0.697	0.963	0.791	1	0.01	61	0.0884	9.51%	-2.55%
25		5	0.904	0.86	0.949	0.698	0.984	0.02	18	0.119	13.2%	0.24%
50		5	0	0	0	0	0	0		0		100.0%
100		5	0	0	0	0	0	0		0		100.0%

21 Jul-10 12:49 (p 2 of 2) 01-7487-9027/39443

Pacific EcoRisk
5
5
3

Report Date: Test Code: 21 Jul-10 12:49 (p 3 of 4) 01-7487-9027/39443

Pacific EcoRisk **Bivalve Larval Survival and Development Test CETISv1.7.0** Analysis ID: 07-4182-3272 Endpoint: Development Rate **CETIS Version:** Nonparametric-Control vs Treatments Analyzed: 21 Jul-10 12:48 Analysis: Official Results: Yes TU **PMSD** LOEL **TOEL Data Transform** Zeta Alt Hyp Monte Carlo NOEL 25 50 35,4 4 1.58% Angular (Corrected) 0 C > T Not Run Steel Many-One Rank Test Control VS Conc-% Test Stat Critical Ties P-Value Decision(5%) Lab Water Control 35 16 0 0.9979 Non-Significant Effect 10 34 16 0 0.9954 Non-Significant Effect 25 37 0 0.9996 Non-Significant Effect 16 50* 15 16 0 0.0191 Significant Effect 0 0.0191 Significant Effect 1001 15 16 **ANOVA Table** DF Decision(5%) Source Sum Squares Mean Square F Stat P-Value 2430 < 0.0001 Significant Effect Between 13,29794 2.659589 5 24 Error 0.02631366 0.001096403 Total 13.32426 2.660685 29 **ANOVA Assumptions Attribute** Test **Test Stat** Critical P-Value Decision(1%) <0.0001 **Bartlett Equality of Variance** 43.9 15.1 **Unequal Variances** Variances Distribution Shapiro-Wilk Normalily 0.957 0.2631 Normal Distribution **Development Rate Summary** Diff% **Control Type** Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Conc-% 0 Lab Water Contr 5 0,975 0,968 0.981 0.952 0.988 0.00299 0.0161 1.65% 0.0% 5 0.99 0.987 0.993 0.982 1 0.00134 0.00724 0.73% -1.56% 10 5 0.983 0.979 0.987 0.967 0.993 0.00195 0.0105 1.07% -0.89% 25 5 0.989 0.986 0.991 0.977 0.994 0.00131 0.00706 0.71% -1.43% 5 50 0 0 0 Ω 0 0 0 100.0% 0 0 0 0 100.0% 100 5 0 0 0 Angular (Corrected) Transformed Summary Conc-% **Control Type** Count 95% UCL Min Max Std Err Std Dev CV% Diff% Mean 95% LCL 0 Lab Water Cont 5 1.42 1.4 1.44 1,35 1.46 0.00927 0.0499 3.52% 0.0% 5 1.44 1,53 0.00731 0.0394 2.67% -4.07% 1.47 1.46 1.49 10 5 1.45 1,43 1.46 1.39 1.49 0.00732 0.0394 2.73% -2.04% 25 5 0.00581 0.0313 2.13% -3.56% 1.42 1.5 1.47 1.46 1.48 50 5 0.038 0.0377 0.0383 0.0368 0.0387 0,000144 0.000778 2.05% 97.3%

0.0414

0.0389

0.0426

0.000317

0.00171

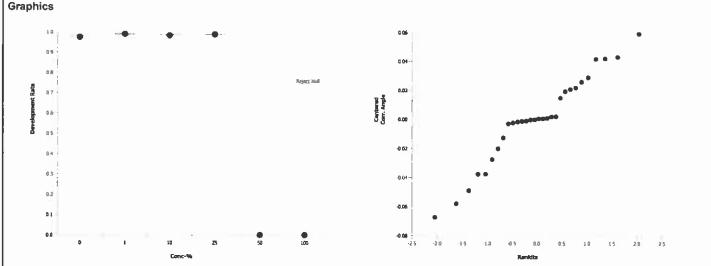
4.19%

97.1%

100

5

0.0407


0.0401

21 Jul-10 12:49 (p 4 of 4) 01-7487-9027/39443

Bivalve Larval Survival and Development Test

Analysis ID: 07-4182-3272 Endpoint: Development Rate CETIS Version: CETISv1.7.0 Analyzed: 21 Jul-10 12:48 Analysis: Nonparametric-Control vs Treatments Official Results: Yes

Graphics



Bivalve Larval Survival and Development Test

Report Date: **Test Code:** 

**CETIS Version:** 

21 Jul-10 12:49 (p 1 of 1)

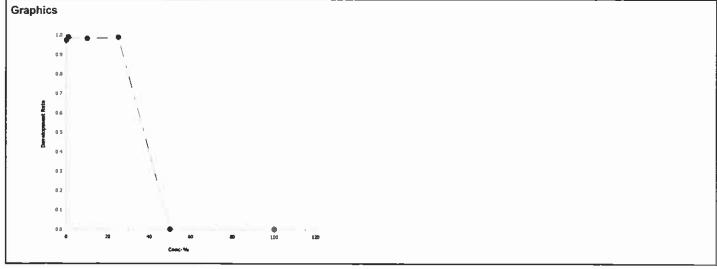
01-7487-9027/39443

CETISv1.7.0

Pacific EcoRlsk

06-1661-2033 Analysis ID: Endpoint: Development Rate

Analyzed: 21 Jul-10 12:48 Analysis: Linear Interpolation (ICPIN) Official Results: Yes


**Linear Interpolation Options** 

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	57951	200	Yes	Two-Point Interpolation

Point E	stimates	i				
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC5	26.3	26.1	26.3	3.81	3.81	3.84
EC10	27.5	27.3	27.5	3.64	3.64	3.66
EC15	28.8	28.6	28.8	3.48	3.48	3.5
EC20	30	29.8	30	3.33	3.33	3.35
EC25	31.3	31.1	31.3	3.2	3.2	3.21
EC40	35	34.9	35	2.86	2.86	2.87
EC50	37.5	37.4	37.5	2.67	2.67	2.67

Developme	ent Rate Summary				Calc	ulated Varia	te(A/B)				
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	Α	В
0	Lab Water Contr	5	0.975	0.952	0.988	0.00294	0.0161	1.65%	0.0%	829	851
1		5	0.99	0.982	1	0.00132	0.00724	0.73%	-1.56%	809	817
10		5	0.983	0.967	0.993	0.00192	0.0105	1.07%	-0.89%	855	870
25		5	0.989	0.977	0.994	0.00129	0.00706	0.71%	-1.43%	823	832
50		5	0	0	0	0	0		100.0%	0	869
100		5	0	0	0	0	0		100.0%	0	757

Developme	nt Rate Detail					
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep <b>5</b>
0	Lab Water Control	0.988	0.952	0.964	0.982	0.987
1		1	0.982	0.994	0.985	0.988
10		0.979	0.989	0.988	0.993	0.967
25		0.977	0.994	0.989	0.989	0.994
50		0	0	0	0	0
100		0	0	0	0	0



Report Date:

21 Jul-10 12:48 (p 1 of 4)

Test Code: 01-7487-9027/39443

Bivaive Larva	al Survival and De	evelopmen	t Test							Pacif	ic EcoRisk
Analysis ID: Analyzed:	05-3315-9020 21 Jul-10 12:48			vival Rate ametric-Con	itrol vs Trea	tments		S Version: ial Results:	CETISv1 Yes	.7.0	
Data Transfo	erm	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corr	ected)	0	C > T	Not Run		25	50	35.4	4	14.5%	
Dunnett's Mu	ultiple Compariso	n Test									
Control	vs Conc-%		Test Stat	Critical	MSD	P-Value	Decision(	5%)			
Lab Water Co	ontrol 1		0.297	2.36	0.209	0.7310	Non-Signi	ficant Effect			
	10		-0.792	2.36	0.209	0.9708	Non-Signi	ficant Effect			
	25		-0.0922	2.36	0.209	0.8591	Non-Signi	ficant Effect			
	50*		14.1	2.36	0.209	<0.0001	Significan	t Effect			
	100*		14.1	2.36	0.209	<0.0001	Significan	t Effect			
ANOVA Tabl	θ										
Source	Sum Squa	ires	Mean Squ	are	DF	F Stat	P-Value	Decision(	5%)		
Between	10.6344		2.12688		5	108	<0.0001	Significant	Effect		
Error	0.4712581		0.0196357	5	24						
Total	11,10566		2.146516		29						
ANOVA Assu	ımptions						<del></del>				
Attribute	Test	_		Test Stat	Critical	P-Value	Decision(	(1%)			
Variances	Mod Leve	ne Equality	of Variance	2.16	4.25	0.1049	Equal Var	iances			
Distribution	Shapiro-V	Vilk Normal	ity	0.906		0.0120	Normal Di	stribution			
Survival Rate	e Summary								-		<u> </u>
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water Contr	5	0.907	0.885	0.928	0.863	1	0.0105	0.0564	6.23%	0.0%
1		5	0.889	0.849	0.929	0.709	0.989	0.0196	0.106	11.9%	1.94%
10		5	0.93	0.896	0.963	0.791	1	0.0164	0.0884	9.51%	-2,55%
25		5	0.904	0.859	0.95	0,698	0.984	0.0221	0.119	13.2%	0.24%
50		5	0	0	0	0	0	0	0		100.0%
100		5	0	0	0	0	0	0	0		100.0%
Angular (Cor	rected) Transform	ned Sumn	nary								
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water Cont	5	1.29	1,23	1.34	1,19	1.53	0.0265	0.143	11.1%	0.0%
1		5	1.26	1.2	1.32	1	1.47	0.0309	0.166	13.2%	2.05%
10		5	1.36	1.28	1.43	1.1	1.53	0.0352	0.19	14.0%	-5.46%
25		5	1.29	1.22	1.36	0.989	1.44	0.0341	0.184	14.2%	-0.64%
50		5	0.0371	0.0371	0.0371	0.0371	0.0371	0	0	0.0%	97.1%
100		5	0.0371	0.0371	0.0371	0.0371	0.0371	0	0	0.0%	97.1%
. 50				3,001 1	3,0071	3,007 1	0.007 1	•	<u> </u>	0.070	O7.170

21 Jul-10 12:48 (p 2 of 4) 01-7487-9027/39443

Bivalve Larval Survival and Development Test Pacific EcoRisk Analysis ID: 05-3315-9020 Survival Rate **CETIS Version: CETISv1.7.0** Endpoint: Analyzed: 21 Jul-10 12:48 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 0.30 0.20 a.o 0.10 0.7 0.6 -0.10 0.3 0.2 0.0

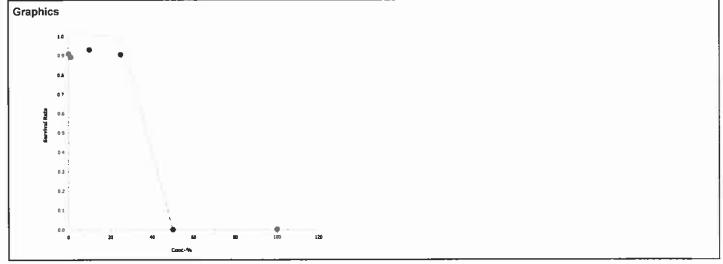
**Bivalve Larval Survival and Development Test** 

Report Date: **Test Code:** 

21 Jul-10 12:49 (p 1 of 1) 01-7487-9027/39443

Pacific EcoRisk

**CETIS Version: CETISv1.7.0** 10-2015-9743 Endpoint: Survival Rate Analysis ID:

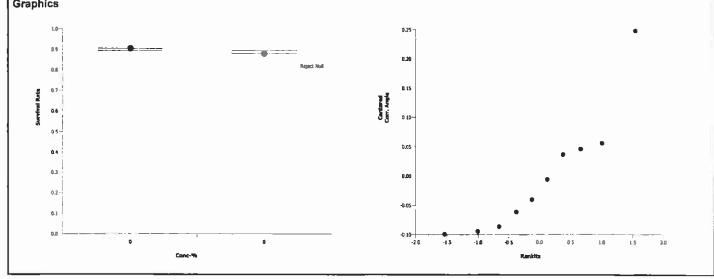

Untrimmed Spearman-Kärber 21 Jul-10 12:48 Analysis: Official Results: Yes Analyzed:

Spearman-Kärber Estimates

EC50 95% LCL 95% UCL **Threshold Option** Threshold Trim Mu Sigma 0.0934 0.00% 1.55 0.00077 35.2 35.1 35.4 Control Threshold

Survival R	ate Summary				Calc	ulated Varia	ite(A/B)				
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	Α	В
0	Lab Water Contr	5	0.907	0.863	1	0.0103	0.0564	6.23%	0.0%	825	910
1		5	0.889	0.709	0.989	0.0193	0.106	11.9%	1.94%	809	910
10		5	0.93	0.791	1	0.0161	0.0884	9.51%	-2.55%	846	910
25		5	0.904	0.698	0.984	0.0218	0.119	13.2%	0.24%	823	910
50		5	0	0	0	0	0		100.0%	0	910
100		5	0	0	0	0	0		100.0%	0	910

Survival Ra	ate Detail					
Сопс-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
0	Lab Water Control	0.885	0.868	1	0.918	0.863
1		0.989	0.907	0.923	0.709	0.918
10		1	1	0.896	0.791	0.962
25		0.698	0.984	0.962	0.973	0.907
50		0	0	0	0	0
100		0	0	0	0	0




Report Date:

20 Jul-10 16:01 (p 2 of 4)

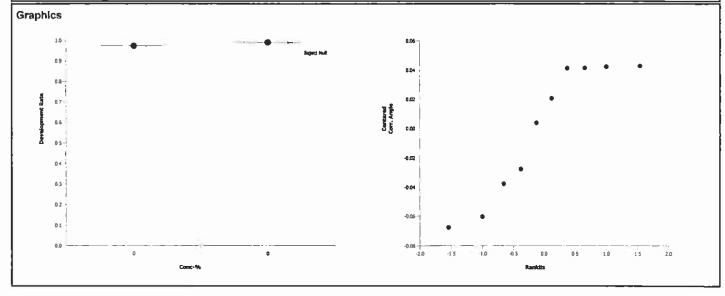
Test Code: 18-6831-4622/39436

17-3724-4183 20 Jul-10 15:59	End					_				
			vival Rate ametric-Two	Sample			S Version: ial Results:	CETISv1.	7.0	
m	Zeta	Alt Hyp	Monte Car	rlo	NOEL	LOEL	TOEL	TU	PMSD	
ected)	0	C > T	Not Run		0	>0			7.77%	ï
e t Two-Sample	Test	· <u></u> -								
vs Control		Test Stat	Critical	MSD	P-Value	Decision(	5%)			
ntrol Site Wate	r	0.88	1.86	0.131	0.2022	Non-Signi	ficant Effect			
)										- · ·
Sum Squa	ires	Mean Squ	are	DF	F Stat	P-Value	Decision	5%)		
0.0096848	17	0.0096848	117	1	0.775	0.4043	Non-Signi	ficant Effect		
0.0999605	8	0.0124950	17	В						
0.1096454		0.0221798	19	9						
mptions										
Test			Test Stat	Critical	P-Value	Decision(	1%)			
Variance	Ratio F		4.49	23,2	0.1746	Equal Var	iances			
Shapiro-V	Vilk Norma	lity	0.847		0.0532	Normal Di	stribution			
Summary						-	_			
Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Site Water	5	0.881	0.864	0.898	0.813	0.918	0.00837	0.0451	5.11%	0.0%
Lab Water Contr	5	0.907	0.885	0.928	0.863	1	0.0105	0.0564	6.23%	-2.87%
rected) Transforr	ned Sumi	mary								
Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Sile Water	5	1.22	1.2	1.25	1.12	1,28	0.0125	0.0674	5.51%	0.0%
Lab Water Cont	5	1.29	1.23	1.34	1.19	1.53	0.0265	0.143	11.1%	-5.09%
					0.25				•	
									_	
	vs Control Introl Site Water  Sum Squa 0.0096848 0.0999605 0.1096454  Imptions  Test Variance Shapiro-V  Summary  Control Type Site Water Lab Water Control Trected) Transforr  Control Type Site Water	ce t Two-Sample Test vs Control introl Site Water  Sum Squares 0.009684817 0.09996058 0.1096454  mptions Test Variance Ratio F Shapiro-Wilk Norma  Summary Control Type Count Site Water 5 Lab Water Control 5  rected) Transformed Summary Control Type Count	Sum Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean Squares   Mean	Sum Squares   Mean Square	Sum Squares   Mean Square   DF	No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.	Sum Squares   Mean Square   DF   F Stat   P-Value   Decision(	Test Stat   Two-Sample Test   Test Stat   Critical   MSD   P-Value   Decision(5%)	Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test	Non-Significant Effect   Non-Significant Effect   Non-Significant Effect



Report Date:

20 Jul-10 16:01 (p 4 of 4)


Test Code:	18-6831-4622/3943
-	

Bivalve Larval	Surv	ival and Develop	ment Test							Pacific Eco	oRisk
Analysis ID: Analyzed:		674-0949 ul-10 15:57	•	relopment R ametric-Two				IS Version: ial Results:	CETIS:	v1.7.0	
Data Transform	n	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	ΤU	PMSD	
Angular (Correc	cted)	0	C > T	Not Run		0	>0			1.83%	
Equal Variance	t Tw	vo-Sample Test									
Control	VS	Control	Test Stat	Critical	MSD	P-Value	Decision	(5%)			
Lab Water Conl	lrol	Site Water	-2.43	1.86	0.0556	0.9793	Non-Sign	ificant Effect		,	
ANOVA Table											
Source		Sum Squares	Mean Squ	are	DF	F Stat	P-Value	Decision(	5%)		
Between		0.01315582	0.0131558	32	1	5.89	0.0413	Significan	t Effect		
Ептог		0.01785393	0.0022317	42	В						
Total		0.03100976	0.0153875	i6	9						

ANOVA Assumption	NOVA Assumptions								
Attribute	Test	Test Stat	Critical	P-Value	Decision(1%)				
Variances	Variance Ratio F	1.26	23.2	0.8272	Equal Variances				
Distribution	Shapiro-Wilk Normality	0.849		0.0569	Normal Distribution				

Development	velopment Rate Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Site Water	5	0.992	0,989	0.996	0.98	1	0.00157	0.00846	0.85%	0.0%
0	Lab Water Contr	5	0.975	0.968	0.981	0.952	0.988	0.00299	0.0161	1.65%	1.8%

Angular (Corr	orrected) Transformed Summary											
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%	
0	Site Water	5	1.49	1.47	1.51	1.43	1.53	0.00825	0.0444	2.98%	0.0%	
0	Lab Water Cont	5	1.42	1.4	1.44	1.35	1.46	0.00927	0.0499	3.52%	4.87%	



# Mytilus sp. Development Toxicity Test Count Data

Client:	ACOE - San Rafael Channel	Test Start Date: _	7.7.10
Test Material:	SRC-2010-07	Test End Date:	7-9-10
Test ID #:	39443	Enumeration Date:	2/21/10
Project #:	16087	Investigator:	8m
Sample Salinity	adjusted with: Crystal Sea Salts	Inoculation Count:	182

Concentration	Replicate	Number of Normal Larvae	Number of Abnormal Larvae	Total Number Larvae	Percent Normal Development	Percent Survival
	А	) [e]	2	143	99	88
	В	158	8	164	95	87
Control	С	186	7	193	96	100
	D	167	3	170	98	92
	Е	157	2	159	99	84
	Α	180	0	180	(00	99
	В	165	3	168	98	9)
1.0%	С	iv8	ł_	169	99	92
	D	129	2	131	98	7)
	Е	167	2	169	99	92
	A	187	4	191	98	100
	В	194	2	188	99	100
10%	С	163	2	165	99	90
	D	144	(	145	99	19
	E	175	(0	181	97	96
	Α	127	3	130	98	70
	В	179	Ĩ	180	99	98
25%	С	175	2	177	99	96
	D	177	Q	179	99	97
	E	165	1	166	99	91
	Α	0	170	170	0	0
	В	0	107	167	0	0
50%	С	0	177	177	0	0
	D	0	185	185	0	0
	Е	0	120	170	0	0
	_ A	0	165	165	0	0
	_ B	D	153	153	0	0
100%	C	5	162	162	0	0
	D	٥	139	139	0	0
	E	0	158	138	0	0

### Mytilus sp. Development Toxicity Test Water Chemistry Data

Client: _	ACOE - San Rafael	Channel	Organism Log#:	5286 Age:	N/A
Test Material:	SRC-2010-0	7	Organism Supplier: _	Cotoff	
Test ID#:	39443 Project #:	16087	Control/Diluent:	30ppt FSW	
Test Date:	7-7-70 Randomiza	ation:			
Sample Salinity	adjusted with : Crystal.	Ser Salts			

	Day 0									
Treatment	Temperature (°C)	рН	D.O. (mg/L)	Salinity (ppt)	Signoff					
Control	2/6.4	7.80	8.7	30.7	Test Solution Prep					
1%	16.4	7.91	8.1	30.9	New WQ:					
10%	10-4	7.89	8.3	30.7	Inoculation Date.					
25%	16.4	7.92	8.3	30.2	Inoculation Time:					
50%	16.4	7.98	8.1	29.6	Inoculation Signoff					
100%	16.4	8.03	7.7	26.2						
Meter ID	23	Ph14	P.003	EC03						

		Day 1			
Treatment	Temperature ("C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	16.3				Date 7/8/10
1%	16.3	William I.			Signoti 2
10%	16.3				
25%	16.3				
50%	16.3				
100%	16.3				
Meter ID	27				

	Day 2									
Treatment	Temperature (°C)	рН	D.O. (mg/L)	Salinity (ppt)	Signoff					
Control	16.2	8-05	7.5	30-6	Termination Signoff:					
1%	16.2	8.08	7.4	31.2	Termination Date					
10%	14.2	8-14	7.5	30-9	Termination Time:					
25%	16.2	8 - 24	7.6	30-5	Old WQ: NVS					
50%	16.2	8-33	7.7	29.8						
100%	16.2	8-45	7.6	28-3						
Meter ID	23	PH12	RD02	Ec03						

#### **CETIS Summary Report**

Report Date: Test Code: 21 Jul-10 13:48 (p 1 of 2) 16-3870-4796/39444

**Bivalve Larval Survival and Development Test** Pacific EcoRisk Jason Walker Batch ID: 18-8220-2847 Test Type: Development-Survival Analyst: Start Date: 07 Jul-10 15:10 Protocol: ASTM E724-98 (Bivalve) Diluent: Diluted Seawater Ending Date: 09 Jul-10 15:50 Species: Mytilus galloprovincialis Brine: Crystal Sea **Duration:** 49h Source: **Dave Gutoff** N/A Age: 08-9351-2460 SRC-2010-08 Sample ID: Code: ACOE Client: Sample Date: 10 Jun-10 11:55 Elutriate 16087 Material: Project: Receive Date: 10 Jun-10 17:00 Source: San Rafael Channel SRC-2010-08 Sample Age: 27d 3h (1.4 °C) Station: **Comparison Summary** Analysis ID **Endpoint** NOEL LOEL TOEL Method **PMSD** TU 04-3063-4737 **Development Rate** 25 50 35.4 4 1.32% Steel Many-One Rank Test 03-2070-2854 Survival Rate 25 50 35.4 10.5% 4 Steel Many-One Rank Test **Point Estimate Summary** Analysis ID **Endpoint** % 95% LCL 95% UCL TU Level Method 16-1956-6211 Development Rate EC5 25,9 26.3 3.86 Linear Interpolation (ICPIN) 25.6 EC10 27.2 27.5 26.9 3.68 **EC15** 28.4 28.8 28.2 3.52 EC20 29.7 29.5 30 3.37 EC25 31 30.7 31.3 3.23 EC40 34.8 34.6 35 2.88 EC50 37.3 37.2 37.5 2.68 06-5533-4642 Survival Rate **EC50** 32.5 32 33.1 3.07 Spearman-Kärber **Development Rate Summary** Conc-% **Control Type** Count Mean 95% LCL 95% UCL Min Std Err Max Std Dev CV% Diff% Lab Water Contr 5 0 0.975 0.969 0.981 0.952 0.988 0.00294 0.0161 1.65% 0.0% 0 Site Water 5 0.992 0.989 0,996 0.98 1 0.00155 0.00846 0.85% -1.83% 1 5 0.986 0.983 0.989 0.971 0.994 0.00157 0.0086 0.87% -1.14% 10 5 0.986 0.984 0.988 0.982 0.994 0.000936 0.00513 0.52% -1.16% 25 5 0.967 0.964 0.97 0.962 0.982 0.00156 0.00855 0.89% 0.77% 50 5 0 0 0 0 0 0 0 100.0% 100 5 0 0 0 0 0 0 0 100.0% **Survival Rate Summary** Conc-% **Control Type** Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff% Lab Water Contr 5 0 0.907 0.886 0.928 0.863 0.0103 0.0564 6,23% 0.0% 0 Site Water 5 0.881 0.864 0.898 0.813 0.918 0.00823 0.0451 5.11% 2.79%

1

10

25

50

100

5

5

5

5

5

0.902

0.921

0.815

0

0

0.891

0.902

0.771

0

0

0.913

0.94

0.86

0

0

0.852

0.874

0.703

0

0

0.923

0.973

1

0

0

0.00542

0.00926

0.0218

0

0

0.0297

0.0507

0.119

0

0

3.29%

5.51%

14.6%

0.49%

-1.58%

10.1%

100.0%

100.0%

Report Date: Test Code: 21 Jul-10 13:48 (p 2 of 2) 16-3870-4796/39444

							165t Code.	10-3010-1130/33-4-1
Bivalve Lar	val Survival and De	velopme	nt Test					Pacific EcoRisk
Developme	nt Rate Detail						-	
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Water Contr	0.988	0.952	0.964	0.982	0.987		
0	Site Water	1	0.988	0.994	0.98	1		
1		0.987	0.971	0.988	0.994	0.988		
10		0.982	0.982	0.988	0.994	0.984		
25		0.962	0.964	0.982	0.965	0.962		
50		0	0	0	0	0		
100		0	0	0	0	0		
Survival Ra	ite Detail				-			· · · · · · · · · · · · · · · · · · ·
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Waler Contr	0.885	0.868	1	0.918	0.863		
0	Site Water	0.907	0.918	0.912	0.813	0.857		
1		0.852	0.923	0.912	0.901	0.923		
10		0.923	0.879	0.874	0.929	1		
25		0.703	0.736	0.912	0.753	0.973		
50		0	0	0	0	0		
100		0	0	0	0	0		

Report Date: Test Code: 21 Jul-10 13:48 (p 3 of 4) 16-3870-4796/39444

Analysis ID: Analyzed:	04-3063-4737 21 Jul-10 13:46			elopment Ra parametric-0		reatments		S Version: ial Results:	CETISv1. Yes	7.0	
Data Transfor	m	Zeta	Alt Hyp	Monte Car	lo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre	cted)	0	C > T	Not Run		25	50	35.4	4	1 32%	
Steel Many-Or	ne Rank Test				<del>.</del>						
Control	vs Conc-%		Test Stat	Critical	Ties	P-Value	Decision(	5%)			
Lab Water Cor	ntrol 1		35	16	0	0.9979	Non-Signi	icant Effect			
	10		32	16	0	0.9821	Non-Signi	icant Effect			
	25		23	16	0	0.4415	Non-Signi	icant Effect			
	50*		15	16	0	0.0191	Significant	Effect			
	100*		15	16	0	0.0191	Significant	Effect			
ANOVA Table							<u> </u>				
Source	Sum Squa	res	Mean Squ	are	DF	F Stat	P-Value	Decision(	5%)		
Between	12,84129		2.568257		5	3120	<0.0001	Significant	Effect		
Error	0.0197486	7	0.0008228	612	24						
Total	12.86104		2.56908		29						
ANOVA Assu	mptions										
Attribute	Test			Test Stat	Critical	P-Value	Decision(	1%)			
Variances	Bartlett Ed	uality of Va	ariance	42.1	15.1	<0.0001	Unequal \	/ariances			
Distribution	Shapiro-W	/ilk Normal	ity	0.912		0.0167	Normal Di	stribution			
Development	Rate Summary				_						
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
GUIIC-70			0.975	0,968	0.981	0,952	0.988	0.00299	0.0161	1.65%	0.0%
0	Lab Water Contr	5	0.070								
	Lab Water Contr	5	0.986	0.982	0.989	0.971	0.994	0.0016	0.0086	0.87%	-1.14%
0	Lab Water Contr			0.982 0.984	0.989 0.988	0.971 0.982	0.994 0.994	0.0016 0.000953	0,0086 0,00513	0.87% 0.52%	-1.1 <b>4%</b> -1.16%
0	Lab Water Contr	5	0.986		0.988						
0 1 10 25	Lab Water Contr	5 5	0.986 0.986	0.984		0.982	0.994	0.000953	0.00513	0.52%	-1.16% 0.77%
0 1 10	Lab Water Contr	5 5 5	0.986 0.986 0.967	0.984 0.964	0.988 0.97	0.982 0.962	0.994 0.982	0.000953 0.00159	0.00513 0.00856	0.52%	-1.16%
0 1 10 25 50 100	Lab Water Contr	5 5 5 5	0.986 0.986 0.967 0	0.984 0.964 0	0.988 0.97 0	0.982 0.962 0	0.994 0.982 0	0.000953 0.00159 0	0.00513 0.00856 0	0.52%	-1.16% 0.77% 100.0%
0 1 10 25 50 100		5 5 5 5	0.986 0.986 0.967 0	0.984 0.964 0	0.988 0.97 0	0.982 0.962 0	0.994 0.982 0	0.000953 0.00159 0	0.00513 0.00856 0	0.52%	-1.16% 0.77% 100.0%
0 1 10 25 50 100 Angular (Corr	rected) Transform Control Type	5 5 5 5 5 5 Count	0.986 0.986 0.967 0 0	0.984 0.964 0	0.988 0.97 0	0.982 0.962 0 0	0.994 0.982 0	0.000953 0.00159 0	0.00513 0.00856 0	0.52% 0.89%	-1.16% 0.77% 100.0% 100.0%
0 1 10 25 50 100 Angular (Corr Conc-%	ected) Transform	5 5 5 5 5 5 Count	0.986 0.986 0.967 0 0 mary	0.984 0.964 0 0	0.988 0.97 0 0 95% UCL	0.982 0.962 0 0	0.994 0.982 0 0	0.000953 0.00159 0 0	0.00513 0.00856 0 0	0.52% 0.89%	-1.16% 0.77% 100.0% 100.0% Diff%
0 1 10 25 50 100 Angular (Corr Conc-%	rected) Transform Control Type	5 5 5 5 5 5 Count 5	0.986 0.986 0.967 0 0 mary Mean 1.42	0.984 0.964 0 0 0 95% LCL	0.988 0.97 0 0 95% UCL	0.982 0.962 0 0 Min 1.35	0.994 0.982 0 0 	0.000953 0.00159 0 0 Std Err 0.00927	0.00513 0.00856 0 0 Std Dev 0.0499	0.52% 0.89% CV% 3.52%	-1.16% 0.77% 100.0% 100.0% Diff%
0 1 10 25 50 100 Angular (Corr Conc-% 0 1	rected) Transform Control Type	5 5 5 5 5 5 Count 5 5	0.986 0.986 0.967 0 0 <b>Mean</b> 1.42 1.45	0.984 0.964 0 0 95% LCL 1.4 1.44	0.988 0.97 0 0 95% UCL 1.44 1.47	0.982 0.962 0 0 Min 1.35 1.4 1.43	0.994 0.982 0 0 <b>Max</b> 1.46 1.49	0.000953 0.00159 0 0 Std Err 0.00927 0.00627 0.00453	0.00513 0.00856 0 0 Std Dev 0.0499 0.0338 0.0244	0.52% 0.89% CV% 3.52% 2.32%	-1.16% 0.77% 100.0% 100.0% Diff% 0.0% -2.68%
0 1 10 25 50 100 Angular (Corr Conc-%	rected) Transform Control Type	5 5 5 5 5 5 Count 5	0.986 0.986 0.967 0 0 Mean 1.42 1.45	0.984 0.964 0 0 0 95% LCL 1.4 1.44	0.988 0.97 0 0 95% UCL 1.44 1.47	0.982 0.962 0 0 Min 1.35 1.4	0.994 0.982 0 0 Max 1.46 1.49	0.000953 0.00159 0 0 Std Err 0.00927 0.00627	0.00513 0.00856 0 0 <b>Std Dev</b> 0.0499 0.0338	0.52% 0.89% CV% 3.52% 2.32% 1.68%	-1.16% 0.77% 100.0% 100.0% Diff% 0.0% -2.68% -2.6%

Report Date: **Test Code:** 

21 Jul-10 13:48 (p 4 of 4) 16-3870-4796/39444

**Bivalve Larval Survival and Development Test** Pacific EcoRisk Analysis ID: 04-3063-4737 Endpoint: Development Rate **CETIS Version: CETISv1.7.0** Analyzed: 21 Jul-10 13:46 Analysis: Nonparametric-Control vs Treatments Official Results: Yes Graphics 0.06 0.9 0.04 0.6 -0.02 -0.2 0.1

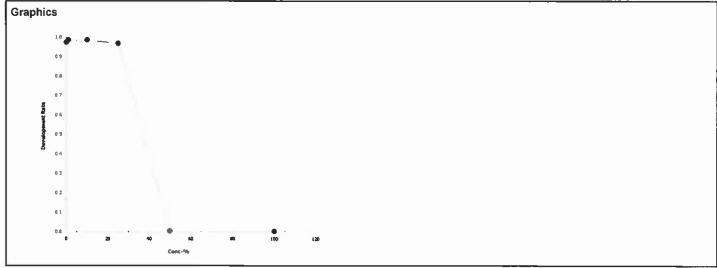
Report Date: Test Code: 21 Jul-10 13:48 (p 1 of 1)

16-3870-4796/39444

Bivalve Larval Survival and Development Test Pacific EcoRisk

Analysis ID: 16-1956-6211 Endpoint: Development Rate CETIS Version: CETISv1.7.0

Analyzed: 21 Jul-10 13:47 Analysis: Linear Interpolation (ICPIN) Official Results: Yes


Linear Interpolation Options

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	57951	200	Yes	Two-Point Interpolation

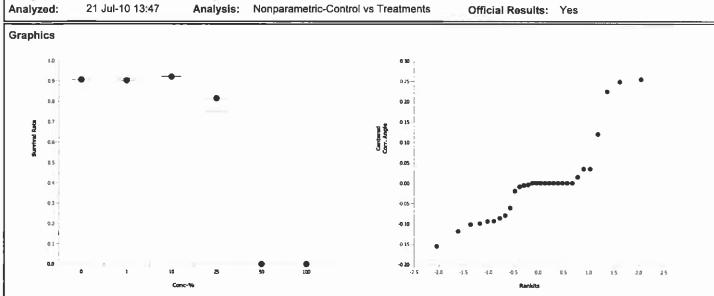
Point E	stimates					
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC5	25.9	25.6	26.3	3.86	3.81	3.9
EC10	27.2	26.9	27.5	3.68	3.63	3.72
EC15	28.4	28.2	28.8	3.52	3.48	3.55
EC20	29.7	29.5	30	3.37	3.33	3.39
EC25	31	30.7	31.3	3.23	3.2	3.25
EC40	34.8	34.6	35	2.88	2.86	2.89
EC50	37.3	37.2	37.5	2.68	2.67	2.69

Developm	ent Rate Summary				Calc	ulated Variat	te(A/B)				
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	A	В
0	Lab Waler Contr	5	0.975	0.952	0.988	0.00294	0.0161	1.65%	0.0%	829	851
1		5	0.986	0.971	0.994	0.00157	0.0086	0.87%	-1.14%	821	833
10		5	0.986	0.982	0.994	0.000937	0.00513	0.52%	-1.16%	838	850
25		5	0.967	0.962	0.982	0.00156	0.00856	0.89%	0.77%	742	767
50		5	0	0	0	0	0		100.0%	0	713
100		5	0	0	0	0	0		100.0%	0	725

Developm	ent Rate Detail						
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep <b>5</b>	
0	Lab Water Control	0.988	0.952	0.964	0.982	0.987	
1		0.987	0.971	0.988	0.994	0.988	
10		0.982	0.982	0.988	0.994	0.984	
25		0.962	0.964	0.982	0.965	0.962	
50		0	0	0	0	0	
100		0	0	0	0	0	
	*						



Report Date: Test Code: 21 Jul-10 13:48 (p 1 of 4) 16-3870-4796/39444


Bivalve Larva	al Survival and (	)evelopme	nt Test							Pacif	ic EcoRisk
Analysis ID: Analyzed:	03-2070-2854 21 Jul-10 13:4			vival Rate iparametric-	Control vs T	reatments		S Version: ial Results:	CETISv1 Yes	.7.0	
Data Transfo	orm .	Zeta	Alt Hyp	Monte Car	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corr	ected)	0	C > T	Not Run		25	50	35.4	4	10.5%	
Steel Many-C	One Rank Test										
Control	vs Conc-%		Test Stat	Critical	Ties	P-Value	Decision(	5%)			
Lab Water Co	ontrol 1		29	16	0	0.9103	Non-Signi	ficant Effect			
	10		31.5	16	1	0.9757	Non-Signi	ficant Effect			
	25		22	16	0	0.3476	_	ficant Effect			
	50*		15	16	0	0.0191	Significant				
	100*		15	16	0	0.0191	Significani	t Effect			
ANOVA Table	e										
Source	Sum Squ	ares	Mean Squ	are	DF	F Stat	P-Value	Decision(	5%)		
Between	9.88263		1.976526		5	165	<0.0001	SignIfican	t Effect		
Error	0.287813	3	0.0119922	2	24						
Total	10.17044		1.988518		29						
ANOVA Assu	umptions										
Attribute	Test			Test Stat	Critical	P-Value	Decision(	1%)			
Variances	Mod Lev	ene Equal	ity of Variance	1.92	4.25	0.1402	Equal Var	iances			
Distribution	Shapiro-	Wiik Norm	ality	0,831		0.0003	Non-norm	ai Distributio	on		
Survival Rate	e Summary										
Conc-%	Control Type	Count		95% LCL							
0			Mean	33 /8 ECE	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
•	Lab Water Con	tr 5	0.907	0.885	95% UCL 0.928	MIn 0.863	Max 1	<b>Std Err</b> 0.0105	<b>Std Dev</b> 0.0564	CV% 6.23%	Diff% 0.0%
1	Lab Water Con	tr 5 5									
	Lab Water Con		0.907	0.885	0.928	0.863	1	0.0105	0.0564	6.23%	0.0%
1	Lab Water Con	5	0,907 0.902	0.885 0.891	0.928 0.913	0.863 0.852	1 0.923	0.0105 0.00551	0.0564 0.0297	6.23% 3.29%	0.0% 0.49%
1 10	Lab Water Con	5 5	0.907 0.902 0.921	0.885 0.891 0.902	0.928 0.913 0.94	0.863 0.852 0.874	1 0.923 1	0.0105 0.00551 0.00942	0.0564 0.0297 0.0507	6.23% 3.29% 5.51%	0.0% 0.49% -1.58%
1 10 25	Lab Water Con	5 5 5	0.907 0.902 0.921 0.815	0.885 0.891 0.902 0.77	0.928 0.913 0.94 0.861	0.863 0.852 0.874 0.703	1 0.923 1 0.973	0.0105 0.00551 0.00942 0.0221	0.0564 0.0297 0.0507 0.119	6.23% 3.29% 5.51%	0.0% 0.49% -1.58% 10.1%
1 10 25 50 100	Lab Water Con	5 5 5 5 5	0.907 0.902 0.921 0.815 0	0.885 0.891 0.902 0.77	0.928 0.913 0.94 0.861	0.863 0.852 0.874 0.703	1 0.923 1 0.973	0.0105 0.00551 0.00942 0.0221	0.0564 0.0297 0.0507 0.119	6.23% 3.29% 5.51%	0.0% 0.49% -1.58% 10.1% 100.0%
1 10 25 50 100		5 5 5 5 5	0.907 0.902 0.921 0.815 0	0.885 0.891 0.902 0.77	0.928 0.913 0.94 0.861	0.863 0.852 0.874 0.703	1 0.923 1 0.973	0.0105 0.00551 0.00942 0.0221	0.0564 0.0297 0.0507 0.119	6.23% 3.29% 5.51%	0.0% 0.49% -1.58% 10.1% 100.0%
1 10 25 50 100 Angular (Cor	rrected) Transfo	5 5 5 5 5 5 Count	0.907 0.902 0.921 0.815 0 0	0.885 0.891 0.902 0.77 0	0.928 0.913 0.94 0.861 0	0.863 0.852 0.874 0.703 0	1 0.923 1 0.973 0	0.0105 0.00551 0.00942 0.0221 0	0.0564 0.0297 0.0507 0.119 0	6.23% 3.29% 5.51% 14.6%	0.0% 0.49% -1.58% 10.1% 100.0%
1 10 25 50 100 Angular (Cor Conc-%	rrected) Transfo Control Type	5 5 5 5 5 5 Count	0.907 0.902 0.921 0.815 0 0 mary	0.885 0.891 0.902 0.77 0 0	0.928 0.913 0.94 0.861 0 0	0.863 0.852 0.874 0.703 0	1 0.923 1 0.973 0 0	0.0105 0.00551 0.00942 0.0221 0	0.0564 0.0297 0.0507 0.119 0 0	6.23% 3.29% 5.51% 14.6%	0.0% 0.49% -1.58% 10.1% 100.0% 100.0%
1 10 25 50 100 Angular (Cor Conc-%	rrected) Transfo Control Type	5 5 5 5 5 7med Sum Count	0.907 0.902 0.921 0.815 0 0 mary Mean 1.29	0.885 0.891 0.902 0.77 0 0 95% LCL	0.928 0.913 0.94 0.861 0 0 95% UCL	0.863 0.852 0.874 0.703 0 0	1 0.923 1 0.973 0 0 Max 1.53	0.0105 0.00551 0.00942 0.0221 0 0 Std Err	0.0564 0.0297 0.0507 0.119 0 0 Std Dev 0.143	6.23% 3.29% 5.51% 14.6% CV% 11.1%	0.0% 0.49% -1.58% 10.1% 100.0% 100.0%
1 10 25 50 100 Angular (Cor Conc-%	rrected) Transfo Control Type	5 5 5 5 5 med Sum Count t 5	0.907 0.902 0.921 0.815 0 0 <b>Mean</b> 1.29 1.26	0.885 0.891 0.902 0.77 0 0 95% LCL 1.23 1.24	0.928 0.913 0.94 0.861 0 0 95% UCL 1.34 1.27	0.863 0.852 0.874 0.703 0 0 Min 1.19 1.18	1 0.923 1 0.973 0 0 0 <b>Max</b> 1.53 1,29	0.0105 0.00551 0.00942 0.0221 0 0 Std Err 0.0265 0.0088	0.0564 0.0297 0.0507 0.119 0 0 <b>Std Dev</b> 0.143 0.0474	6.23% 3.29% 5.51% 14.6% CV% 11.1% 3.78% 10.1%	0.0% 0.49% -1.58% 10.1% 100.0% 100.0% Diff% 0.0% 2.37% -1.85%
1 10 25 50 100 Angular (Cor Conc-% 0 1	rrected) Transfo Control Type	5 5 5 5 Tmed Sum  Count t 5 5 5 5	0.907 0.902 0.921 0.815 0 0 mary Mean 1.29 1.26 1.31	0.885 0.891 0.902 0.77 0 0 95% LCL 1.23 1.24 1.26	0.928 0.913 0.94 0.861 0 0 95% UCL 1.34 1.27 1.36	0.863 0.852 0.874 0.703 0 0 Min 1.19 1.18 1.21	1 0.923 1 0.973 0 0 0 <b>Max</b> 1.53 1.29 1.53	0.0105 0.00551 0.00942 0.0221 0 0 Std Err 0.0265 0.0088 0.0246	0.0564 0.0297 0.0507 0.119 0 0 Std Dev 0.143 0.0474 0.132	6.23% 3.29% 5.51% 14.6% CV% 11.1% 3.78%	0.0% 0.49% -1.58% 10.1% 100.0% 100.0% Diff% 0.0% 2.37%

Report Date: Test Code: 21 Jul-10 13:48 (p 2 of 4) 16-3870-4796/39444

Bivalve Larval Survival and Development Test

Analysis ID: 03-2070-2854 Endpoint: Survival Rale CETIS Version: CETISv1.7.0

Analysis ID: 03-2070-2854 Endpoint: Survival Rale CETIS Version: CETISv1.7.0



Report Date: Test Code:

21 Jul-10 13:48 (p 1 of 1)

16-3870-4796/39444

**Bivalve Larval Survival and Development Test** 

06-5533-4642 Analysis ID:

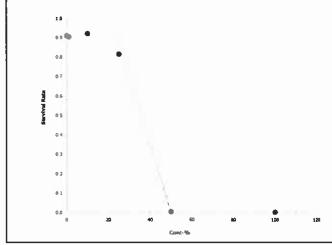
Pacific EcoRisk

Endpoint: Survival Rate

**CETIS Version:** CETISv1.7.0

Untrimmed Spearman-Kärber Analyzed: 21 Jul-10 13:47 Analysis:

Official Results: Yes


Threshold Option	Inresnoid	Trim	Mn	Sigma	EC50	95% LC		Ļ
Control Threshold	0.0934	0.00%	1.51	0.00353	32.5	32	33.1	

Survival R	tate Summary				Calc	ulated Varia	te(A/B)				
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	Α	В
0	Lab Water Contr	5	0.907	0.863	1	0.0103	0.0564	6.23%	0.0%	825	910
1		5	0.902	0.852	0.923	0.00542	0.0297	3.29%	0.49%	821	910
10		5	0.921	0.874	1	0.00926	0.0507	5.51%	-1.58%	838	910
25		5	0.815	0.703	0.973	0.0218	0.119	14.6%	10.1%	742	910
50		5	0	0	0	0	0		100.0%	0	910
100		5	0	0	0	0	0		100.0%	0	910

Survi	ival	Rate	Detai	11
-------	------	------	-------	----

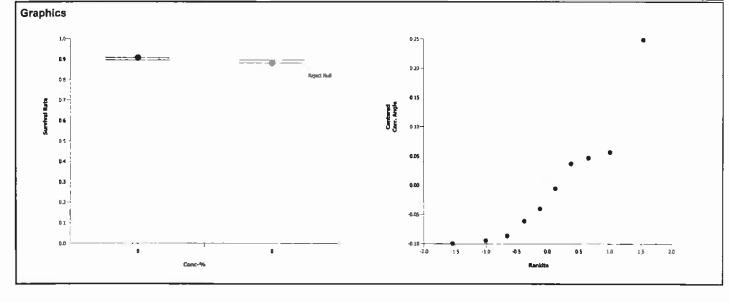
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
0	Lab Water Control	0.885	0.868	1	0.918	0.863
1		0.852	0.923	0.912	0.901	0.923
10		0.923	0.879	0.874	0.929	1
25		0.703	0.736	0.912	0.753	0.973
50		0	0	0	0	0
100		0	0	0	0	0

#### Graphics



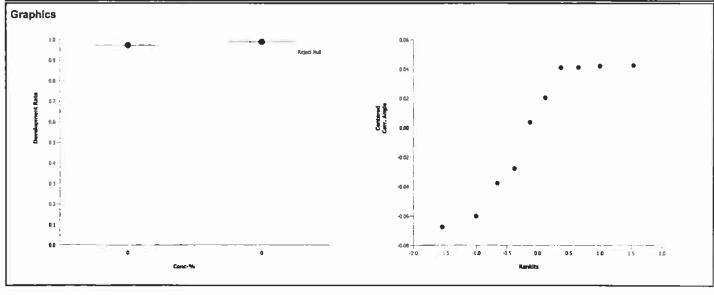
Report Date: Test Code:

20 Jul-10 16:01 (p 2 of 4)


18-6831-4622/39436

Bivalve Larva	Survival and Develo	opment Test				_			Pacific EcoRisk
Analysis ID: Analyzed:	17-3724-4183 20 Jul-10 15:59		rvival Rate rametric-Tw	o Sample			IS Version: ial Results		Sv1.7.0
Data Transfor	rm Zei	a Alt Hyp	Monte Ca	arlo	NOEL	LOEL	TOEL	TU	PMSD
Angular (Corre	ected) 0	C > T	Not Run		0	>0			7.77%
Equal Variance	e t Two-Sample Tes	t							
Control	vs Control	Test Stat	Critical	MSD	P-Value	Decision	(5%)		
Lab Water Cor	ntrol Site Water	0.88	1.86	0.131	0.2022	Non-Sign	ficant Effect	ι	
ANOVA Table				-					
Source	Sum Squares	Mean Sq	uare	DF	F Stat	P-Value	Decision	(5%)	
Between	0.009684817	0.009684	817	1	0.775	0,4043	Non-Sign	ificant Eff	fect
Error	0.09996058	0.012495	07	8					
Total	0.1096454	0.022179	89	9					

ANOVA Assumpt	ANOVA Assumptions						
Attribute	Test	Test Stat	Critical	P-Value	Decision(1%)		
Variances	Variance Ratio F	4.49	23.2	0.1746	Equal Variances		
Distribution	Shapiro-Wilk Normality	0.847		0.0532	Normal Distribution		


Survival Ra	te Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Site Water	5	0.881	0.864	0.898	0.813	0.918	0.00837	0.0451	5.11%	0.0%
0	Lab Water Contr	5	0.907	0.885	0.928	0.863	1	0.0105	0.0564	6.23%	-2.87%

Angular (Cor	ngular (Corrected) Transformed Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	DIff%
0	Site Water	5	1.22	1.2	1.25	1.12	1.28	0.0125	0.0674	5.51%	0.0%
0	Lab Water Cont	5	1.29	1.23	1.34	1.19	1.53	0.0265	0.143	11.1%	-5.09%



Report Date: Test Code: 20 Jul-10 16:01 (p 4 of 4) 18-6831-4622/39436

Pacific EcoRisk Bivalve Larval Survival and Development Test 06-7674-0949 Development Rate **CETIS Version:** CETISv1.7.0 Analysis ID: Endpoint: 20 Jul-10 15:57 Parametric-Two Sample Analyzed: Analysis: Official Results: Yes NOEL LOEL TOEL TU **PMSD Data Transform** Zeta Alt Hyp **Monte Carlo** Angular (Corrected) 0 C > T Not Run 0 >0 1.83% **Equal Variance t Two-Sample Test** Control Control **Test Stat** Critical MSD P-Value Decision(5%) Site Water -2.431.86 Non-Significant Effect Lab Water Control 0.0556 0.9793 **ANOVA Table** Source DF Sum Squares Mean Square F Stat P-Value Decision(5%) Between 0.01315582 0.01315582 5.89 0.0413 Significant Effect 1 Error 0.01785393 0.002231742 8 Total 0.03100976 0.01538756 9 **ANOVA Assumptions Attribute** Test Stat Critical P-Value Decision(1%) Variance Ralio F Variances 1.26 23.2 0.8272 **Equal Variances** Distribution Shapiro-Wilk Normality 0.849 0.0569 Normal Distribution **Development Rate Summary** Conc-% **Control Type** Count 95% LCL 95% UCL Min Max Std Err **Std Dev** CV% Diff% Mean Site Water 5 0.992 0.989 0.996 0.98 0.00157 0.00846 0.85% 0.0% 0 Lab Water Contr 5 0.975 0.968 0.981 0.952 0.988 0.00299 0.0161 1.65% 1.8% Angular (Corrected) Transformed Summary Conc-% **Control Type** Count Mean 95% LCL 95% UCL Max Std Err Std Dev CV% Diff% 0 5 Site Water 1.49 1.47 1.51 1.43 1.53 0.00825 0.0444 2.98% 0.0% 0 Lab Water Cont 5 1.42 1.4 1.44 1,35 1.46 0.00927 0.0499 3.52% 4.87%



# Mytilus sp. Development Toxicity Test Count Data

Client:	ACOE - San Rafael Channel	Test Start Date:	7.7-10	
Test Material:	SRC-2010-08	Test End Date:	7-9-10	
Test ID #:	39444	Enumeration Date:	7/24/10	_
Project #:	16087	Investigator:	Jm_	
	adjusted with: Crystal Seu Salts	Inoculation Count:	182	

Concentration	Replicate	Number of Normal Larvae	Number of Abnormal Larvae	Total Number Larvae	Percent Normal Development	Percent Survival
	Α	141	2	163	99	88
	В	158	8	164	95	87
Control	С	186	7	193	96	שטן
	D	147	3	170	98	92
ļ	E	157	2	159	97	86
	A	168	2	167	99	85
	В	168	6	173	97	92
1.0%	C	166	2	168	99	91
	D	164	1	165	99	90
	Е	168	2	170	19_	92
	Α	168	3	171	98	92
	В	160	3	163	98	88
10%	С	169	2	161	99	87
	D	169		170	99	93
	Е	182	`3	185	98	100
	А	128	5	133	96	70
	В	134	5	139	96	74
25%	С	166	3	169	98	91
	D	137	5	142_	96	J.2
	E	177	7	184	96	97
	_ A	0	138	138	0	0
	В	0	188	155	0	0
50%	С	0	152	152	0	0
	D	0	144	144	0	0
	Е	0	127	127	0	0
	A	0	147	146		0
	В	0	150	150	0	0
100%	C	0	162	162	0	0
	D	8	131	139	0	0
	E	8	138	138	0	0

# Mytilus sp. Development Toxicity Test Water Chemistry Data

Client:	ACOE -	San Rafael C	hannel
Test Material:		SRC-2010-08	
Test ID#:	39444	Project #:	16087
Test Date:	7.7-10	Randomizati	ion:
Sample Salinity	adjusted wit	h: Crystal Se	27/1020

Organism Log#: 5286 Age: N/A
Organism Supplier: 230ppt FSW

-		Day 0			
Treatment	Temperature (°C)	рН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	16.4	7.80	8.7	30.7	Test Solution Prep.
1%	16.4	8.00	8.0	31.0	New WQ:
10%	16.9	7.89	8.4	30.9	Inoculation Date:
25%	16.4	7.92	8.4	30.4	Inoculation Time:
50%	16.4	7.95	8.2	29.9	Inoculation Signoff
100%	16.4	8.00	7.6	28.6	
Meter ID	23	Ph 14	RDO3	5003	

		Day 1			
Treatment	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	16,79				Date 7/8/10
1%	16.3				Signoff
10%	14.3				
25%	16.3				
50%	14.3				
100%	14.3				
Meter ID	23				

		Day 2			
Treatment	Temperature (°C)	рН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	16.2	8-06	1.5	31.3	Termination Signoff
1%	14.2	8-07	7.4	31.2	Termination Date:
10%	16-2	8.14	7.7	31.0	Termination Time
25%	16.2	8-25	7.5	30.6	Old WQ: NVS
50%	16.2	8-36	7.5	30.1	
100%	16.2	8.47	7.7	28-7	
Meter ID	23	PH 12	RD02	Ec 03	

# Appendix K

# **SET Elutriate Suitability Concentration Determination Calculations**

Table K-1. Calculation of the Elutriate Suitability Concentration (ESC)

Site: SRC-2010-01
Species: Mytilus sp.
Disposal Site: SF-10

Mixing Zone Estimation	SRC-2010-01
Depth of disposal site (m)=	15
Pi=	3.14159
Width of vessel (m)=	10
Length of vessel(m)=	25
Speed of vessel (m/sec)=	0.5
Time of discharge (sec)=	30
Depth of vessel (m)=	4
Mixing Zone Volume(cu.m)=	627239

Volume of Liquid Phase	
Bulk density (constant) =	1.3
Particle density (constant) =	2.6
Density of liquid phase (constant) =	1
Vol of disposal vessel (cu.m)=	1000
Liquid phase volume (cu.m)=	813

Concentration of suspended phase	
Percent Silt=	31.5
Percent Clay=	36.1
Volume of Suspended Phase (cu.m)=	127

Projected Concentration (percent SP) =	0.0202
Lowest LC50 or EC50 from bioassay=	48.6
Factor LC50 or EC 50 X 0.01=	0.486

Table K-2. Calculation of the Elutriate Suitability Concentration (ESC)

Site: SRC-2010-02
Species: Mytilus sp.
Disposal Site: SF-10

Mixing Zone Estimation	SRC-2010-02
Depth of disposal site (m)=	15
Pi=	3.14159
Width of vessel (m)=	10
Length of vessel(m)=	25
Speed of vessel (m/sec)=	0.5
Time of discharge (sec)=	30
Depth of vessel (m)=	4
Mixing Zone Volume(cu.m)=	627239

Volume of Liquid Phase	
Bulk density (constant) =	1.3
Particle density (constant) =	2.6
Density of liquid phase (constant) =	1
Vol of disposal vessel (cu.m)=	1000
Liquid phase volume (cu.m)=	813

Concentration of suspended phase	
Percent Silt=	19.5
Percent Clay=	18.5
Volume of Suspended Phase (cu.m)=	71

Projected Concentration (percent SP) =	0.0114
Lowest LC50 or EC50 from bioassay=	35.4
Factor LC50 or EC 50 X 0.01=	0.354

Table K-3. Calculation of the Elutriate Suitability Concentration (ESC)

Site: Species: SRC-2010-03 *Mytilus sp.* 

SF-10

Disposal Site:

SRC-2010-03 Mixing Zone Estimation 15 Depth of disposal site (m)= 3.14159 Pi= Width of vessel (m)= 10 25 Length of vessel(m)= 0.5 Speed of vessel (m/sec)= 30 Time of discharge (sec)= 4 Depth of vessel (m)= 627239 Mixing Zone Volume(cu.m)=

Volume of Liquid Phase	
Bulk density (constant) =	1.3
Particle density (constant) =	2.6
Density of liquid phase (constant) =	1
Vol of disposal vessel (cu.m)=	1000
Liquid phase volume ( <b>cu.m</b> )=	813

Concentration of suspended phase	
Percent Silt=	30.8
Percent Clay=	30
Volume of Suspended Phase (cu.m)=	114

Projected Concentration (percent SP) =	0.0182
Lowest LC50 or EC50 from bioassay=	39.2
Factor LC50 or EC 50 X 0.01=	0.392

Table K-4. Calculation of the Elutriate Suitability Concentration (ESC)

Site: SRC-2010-04
Species: Mytilus sp.
Disposal Site: SF-10

Mixing Zone Estimation	SRC-2010-04
Depth of disposal site (m)=	15
Pi=	3.14159
Width of vessel (m)=	10
Length of vessel(m)=	25
Speed of vessel (m/sec)=	0.5
Time of discharge (sec)=	30
Depth of vessel (m)=	4
Mixing Zone Volume(cu.m)=	627239

Volume of Liquid Phase	
Bulk density (constant) =	1.3
Particle density (constant) =	2.6
Density of liquid phase (constant) =	1
Vol of disposal vessel (cu,m)=	1000
Liquid phase volume (cu.m)=	813

Concentration of suspended phase	
Percent Silt=	19.3
Percent Clay=	21.8
Volume of Suspended Phase (cu.m)=	77

Projected Concentration (percent SP) =	0.0123
Lowest LC50 or EC50 from bioassay=	35.0
Factor LC50 or EC 50 X 0.01=	0.350

Table K-5. Calculation of the Elutriate Suitability Concentration (ESC)

Site:SRC-2010-05Species:Mytilus sp.Disposal Site:SF-10

Mixing Zone Estimation	SRC-2010-05
Depth of disposal site (m)=	15
Pi=	3.14159
Width of vessel (m)=	10
Length of vessel(m)=	25
Speed of vessel (m/sec)=	0.5
Time of discharge (sec)=	30
Depth of vessel (m)=	4
Mixing Zone Volume(cu.m)=	627239

Volume of Liquid Phase	
Bulk density (constant) =	1.3
Particle density (constant) =	2.6
Density of liquid phase (constant) =	1
Vol of disposal vessel (cu.m)=	1000
Liquid phase volume (cu.m)=	813

Concentration of suspended phase	
Percent Silt=	25.6
Percent Clay=	26.9
Volume of Suspended Phase (cu.m)=	98

Projected Concentration (percent SP) =	0.0157
Lowest LC50 or EC50 from bioassay=	35.1
Factor LC50 or EC 50 <b>X</b> 0.01=	0.351

Table K-6. Calculation of the Elutriate Suitability Concentration (ESC)

Site: SRC-2010-06
Species: Mytilus sp.
Disposal Site: SF-10

Mixing Zone Estimation	SRC-2010-06
	15
Depth of disposal site (m)=	
Pi=	3.14159
Width of vessel (m)=	10
Length of vessel(m)=	25
Speed of vessel (m/sec)=	0.5
Time of discharge (sec)=	30
Depth of vessel (m)=	4
Mixing Zone Volume(cu.m)=	627239

Volume of Liquid Phase	
Bulk density (constant) =	1.3
Particle density (constant) =	2.6
Density of liquid phase (constant) =	1
Vol of disposal vessel (cu.m)=	1000
Liquid phase volume (cu.m)=	813

Concentration of suspended phase	
Percent Silt=	24.5
Percent Clay=	41.8
Volume of Suspended Phase (cu.m)=	124

Projected Concentration (percent SP) =	0.0198
Lowest LC50 or EC50 from bioassay=	34.8
Factor LC50 or EC 50 X 0.01=	0.348

Table K-7. Calculation of the Elutriate Suitability Concentration (ESC)

Site: Species: SRC-2010-07 Mytilus sp. SF-10

Disposal Site:

Mixing Zone Estimation	SRC-2010-07
Depth of disposal site (m)=	15
Pi=	3.14159
Width of vessel (m)=	10
Length of vessel(m)=	25
Speed of vessel (m/sec)=	0.5
Time of discharge (sec)=	30
Depth of vessel (m)=	4
Mixing Zone Volume(cu.m)=	627239

Volume of Liquid Phase	
Bulk density (constant) =	1.3
Particle density (constant) =	2.6
Density of liquid phase (constant) =	1
Vol of disposal vessel (cu.m)=	1000
Liquid phase volume (cu.m)=	813

Concentration of suspended phase	
Percent Silt=	10.4
Percent Clay=	41.9
Volume of Suspended Phase (cu.m)=	98

Projected Concentration (percent SP) =	0.0156
Lowest LC50 or EC50 from bioassay=	35.2
Factor LC50 or EC 50 X 0.01=	0.352

Table K-8. Calculation of the Elutriate Suitability Concentration (ESC)

Site:
Species:

SRC-2010-08 Mytilus sp.

Disposal Site:

SF-10

Mixing Zone Estimation	SRC-2010-08
	15
Depth of disposal site (m)=	
Pi=	3.14159
Width of vessel (m)=	10
Length of vessel(m)=	25
Speed of vessel (m/sec)=	0.5
Time of discharge (sec)=	30
Depth of vessel (m)=	4
Mixing Zone Volume(cu.m)=	627239

Volume of Liquid Phase	
Bulk density (constant) =	1.3
Particle density (constant) =	2.6
Density of liquid phase (constant) =	1
Vol of disposal vessel (cu.m)=	1000
Liquid phase volume (cu.m)=	813

Concentration of suspended phase							
Percent Silt=	14.4						
Percent Clay=	8.5						
Volume of Suspended Phase (cu.m)=	43						

Projected Concentration (percent SP) =	0.0068
Lowest LC50 or EC50 from bioassay=	32.5
Factor LC50 or EC 50 X 0.01=	0.325

# **Appendix** L

Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the *Mytilus galloprovincialis* Embryos

# **CETIS Summary Report**

Report Date:

21 Jul-10 15:40 (p 1 of 1)

Test Code:

13-0749-0991/39294

Bivalve Larva	l Survival and De	velopme	ent Test								Pacit	fic EcoRis
Batch ID:	18-8220-2847			Development-				Analyst:		on Walker		
Start Date:	07 Jul-10 15:10		rotocol:	ASTM E724-9				Diluent:		led Seawale	er	
Ending Date:	09 Jul-10 15:50 49h		pecies:	Mytilus gallopr	ovincialis			Brine:	-	ilal Sea		
Duration:	49n	- 5	ource:	Dave Gutoff				Age:	N/A			
Sample ID:	10-1790-5333		ode:	KCI				Client:	Refe	erence Toxic	canl	
Sample Date:	07 Jul-10 15:10	М	laterial:	Potassium chlo	oride			Project:	1709	90		
Receive Date:	: 07 Jul-10 15:10	S	ource:	Reference Tox	icant							
Sample Age:	N/A (17.6 °C)	S	tation:	In House								
Comparison S	Summary	<del></del>								<u> </u>	<u></u>	
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Meti	hod			
03-4067-8690	Development R	ate	1	2	1.41	1.01%		Dun	nett's	Multiple Co	mparison T	est
Point Estimat	e Summary									_		<del></del>
Analysis ID	Endpoint		Level	_∞ g/L	95% LCL	95% UCL	TU	Meti	hođ			
04-1953-3457	Development R	ate	EC5	1,78	1.52	2.15		Line	ar inte	rpolation (I	CPIN)	
			EC10	2.04	2.02	2.07					•	
			EC15	2.09	2.07	2.12						
			EC20		2.13	2.17						
			EC25		2.18	2.22						
			EC40		2.35	2.38						
<del> </del>			EC50	2.47	2.45	2.48			_			
Development	Rate Summary			_								
Conc-g/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std	Err	Std Dev	CV%	Diff%
0	Lab Water Contr	4	0.989	0.987	0.99	0.982	0.99	4 0.00	0848	0.00464	0.47%	0.0%
0.5		4	0.977	0.975	0.98	0.968	0.98	3 0.00	122	0.00667	0.68%	1.14%
1		4	0.984	0.981	0.987	0.974	0.99	4 0.00	15	0.00824	0.84%	0.43%
2		4	0.926	0.919	0.933	0.913	0.95	3 0.00	337	0.0184	1.99%	6.32%
3		4	0	0	0	0	0	0		0		100.0%
4		4	0	0	0	0	0	0		0		100.0%
Development	Rate Detail											
Conc-g/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4							
0	Lab Water Contr	0.989	0.994	0.989	0.982							
0.5		0.981	0.978	0.983	0.968							
1		0.974	0.982	0.994	0.987							
2		0.953	0.918	0.92	0.913							
3		0	0	0	0							
4		0	0	0	0							

# Mytilus sp. Development Toxicity Test Count Data

Client:	Reference Toxicant	Test Start Date:	7/7/10	
Test Material:	Potassium Chloride	Test End Date:	7/9/10	
Test ID #:	39294	Enumeration Date:	This	
Project #:	17090	Investigator:	Jn-	

Concentration	) Replicate	Number of Normal Larvae	Number of Abnormal Larvae	Total Number Larvae	Percent Normal Development
	А	188	2	190	98.5
Comtool	В	155	1	156	99.4
Control	С	176	2	178	98.9
	D	167	3	170	98.2
	Α	154	2 3 3	157	98'.1
0.5	В	177		181	97.8
	С	170	3	173	983
	D	150	5	155	26.8
ļ	Α	150	4	-150-150	97.4
1	В	167	3	170	98.2
	C	154		155	99.4
	D	153	2	157	98.7
	Α	143	7	150	95.3
2	В	112	0	122	91.8
	С	150	13	163	92.0
	D	115	1)	166126	91.3
	Α	0	77	77	0
3	В	0	130	130	0
	С	0	120	120	0
	D	0	٥٥٥	100	0
	Α	0	102	102	0
4	В	0	58	28	0
<b>-</b>	Ç	0	69	69	0
	D	0	79	79	0

# Mytilus sp. Development Toxicity Test Water Chemistry Data

Client:	Reference Toxicant	Organism Log#: <u>528C</u> Age: <u>N/A</u>
Test Material:	Potassium Chloride	Organism Supplier:
Test ID#: _	39294 Project #:17090	Control/Diluent: fow & Boport 17
Test Date:	7/7/10	

		Day 0	)		
Treatment (g/L)	Temperature (°C)	рН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	17.6	7.73	9.1	30.7	Ref Tox Stock #
0.5	17.6	7.70	7:7	31.2	Test Solution Prep
1	17.6	7.78	8.4	31.8	New WQ:
2	17.6	7.80	8.7	37.9	Innoculation Date:
3	17.0	7.91	8.0\	33.9	Innoculation Time:
4	17.0	7.81	9.8	35.0	Innoculation Signoff:
Meter ID	45	RIM	PPOZ	Eco3	

	Day 1							
Treatment	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff			
Control	17.0				WOW			
0.5	17.0							
1	17.0							
2	17.0							
3	17.0							
4	17.0							
Meter ID	45							

	Day 2								
Treatment	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff				
Control	17.5	7.99	8-7	31.0	Termination Pale				
0.5	17.5	8.01	9.2	31.9	Termination Time				
1	17.5	8-03	9.1	32.2	Termination Signoff				
2	17.5	8.03	8.9	33.4	Old WQ NVS				
3	17.5	8-04	9.0	34.2	2,00				
4	17.5	8.04	8.9	35-3					
Meter ID	45	PH 14	RD03	Ec 05					

# **CETIS Summary Report**

Report Date:

21 Jul-10 15:40 (p 1 of 1)

Test Code:

13-0749-0991/39294

Bivalve Larva	l Survival and De	velopme	ent Test								Pacit	fic EcoRis
Batch ID:	18-8220-2847			Development-				Analyst:		on Walker		
Start Date:	07 Jul-10 15:10		rotocol:	ASTM E724-9				Diluent:		led Seawale	er	
Ending Date:	09 Jul-10 15:50 49h		pecies:	Mytilus gallopr	ovincialis			Brine:	-	ilal Sea		
Duration:	49n	- 5	ource:	Dave Gutoff				Age:	N/A			
Sample ID:	10-1790-5333		ode:	KCI				Client:	Refe	erence Toxic	canl	
Sample Date:	07 Jul-10 15:10	М	laterial:	Potassium chlo	oride			Project:	1709	90		
Receive Date:	: 07 Jul-10 15:10	S	ource:	Reference Tox	icant							
Sample Age:	N/A (17.6 °C)	S	tation:	In House								
Comparison S	Summary	<del></del>								<u> </u>	<u></u>	
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Meti	hod			
03-4067-8690	Development R	ate	1	2	1.41	1.01%		Dun	nett's	Multiple Co	mparison T	est
Point Estimat	e Summary									_		<del></del>
Analysis ID	Endpoint		Level	_∞ g/L	95% LCL	95% UCL	TU	Meti	hođ			
04-1953-3457	Development R	ate	EC5	1,78	1.52	2.15		Line	ar inte	rpolation (I	CPIN)	
			EC10	2.04	2.02	2.07					•	
			EC15	2.09	2.07	2.12						
			EC20		2.13	2.17						
			EC25		2.18	2.22						
			EC40		2.35	2.38						
<del> </del>			EC50	2.47	2.45	2.48			_			
Development	Rate Summary			_								
Conc-g/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std	Err	Std Dev	CV%	Diff%
0	Lab Water Contr	4	0.989	0.987	0.99	0.982	0.99	4 0.00	0848	0.00464	0.47%	0.0%
0.5		4	0.977	0.975	0.98	0.968	0.98	3 0.00	122	0.00667	0.68%	1.14%
1		4	0.984	0.981	0.987	0.974	0.99	4 0.00	15	0.00824	0.84%	0.43%
2		4	0.926	0.919	0.933	0.913	0.95	3 0.00	337	0.0184	1.99%	6.32%
3		4	0	0	0	0	0	0		0		100.0%
4		4	0	0	0	0	0	0		0		100.0%
Development	Rate Detail											
Conc-g/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4							
0	Lab Water Contr	0.989	0.994	0.989	0.982							
0.5		0.981	0.978	0.983	0.968							
1		0.974	0.982	0.994	0.987							
2		0.953	0.918	0.92	0.913							
3		0	0	0	0							
4		0	0	0	0							

# Mytilus sp. Development Toxicity Test Count Data

Client:	Reference Toxicant	Test Start Date:	7/7/10	
Test Material:	Potassium Chloride	Test End Date:	7/9/10	
Test ID #:	39294	Enumeration Date:	This	
Project #:	17090	Investigator:	Jn-	

Concentration	) Replicate	Number of Normal Larvae	Number of Abnormal Larvae	Total Number Larvae	Percent Normal Development
	А	188	2	190	98.5
Comtool	В	155	1	156	99.4
Control	С	176	2	178	98.9
	D	167	3	170	98.2
	Α	154	2 3 3	157	98'.1
0.5	В	177		181	97.8
	С	170	3	173	983
	D	150	5	155	26.8
ļ	Α	150	4	-150-150	97.4
1	В	167	3	170	98.2
	C	154		155	99.4
	D	153	2	157	98.7
	Α	143	7	150	95.3
2	В	112	0	122	91.8
	С	150	13	163	92.0
	D	115	1)	166126	91.3
	Α	0	77	77	0
3	В	0	130	130	0
	С	0	120	120	0
	D	0	٥٥٥	100	0
	Α	0	102	102	0
4	В	0	58	28	0
<b>-</b>	Ç	0	69	69	0
	D	0	79	79	0

# Mytilus sp. Development Toxicity Test Water Chemistry Data

Client:	Reference Toxicant	Organism Log#: <u>528C</u> Age: <u>N/A</u>
Test Material:	Potassium Chloride	Organism Supplier:
Test ID#: _	39294 Project #:17090	Control/Diluent: fow & Boport 17
Test Date:	7/7/10	

		Day 0	)		
Treatment (g/L)	Temperature (°C)	рН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	17.6	7.73	9.1	30.7	Ref Tox Stock #
0.5	17.6	7.70	7:7	31.2	Test Solution Prep
1	17.6	7.78	8.4	31.8	New WQ:
2	17.6	7.80	8.7	37.9	Innoculation Date:
3	17.0	7.91	8.0\	33.9	Innoculation Time:
4	17.0	7.81	9.8	35.0	Innoculation Signoff:
Meter ID	45	RIM	PPOZ	Eco3	

	Day 1											
Treatment	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff							
Control	17.0				WOW							
0.5	17.0											
1	17.0											
2	17.0											
3	17.0											
4	17.0											
Meter ID	45											

		Day 2			
Treatment	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	17.5	7.99	8-7	31.0	Termination Pale
0.5	17.5	8.01	9.2	31.9	Termination Time
1	17.5	8-03	9.1	32.2	Termination Signoff
2	17.5	8.03	8.9	33.4	Old WQ NVS
3	17.5	8-04	9.0	34.2	2,00
4	17.5	8.04	8.9	35-3	
Meter ID	45	PH 14	RD03	Ec 05	

# **Appendix M**

Test Data and Summary of Statistics for the Evaluation of the Toxicity of the San Rafael Channel Modified Elutriate Test (MET) Sediment Elutriates to Mysids (Americamysis bahia)

# **CETIS Summary Report**

Report Date: Test Code: 20 Jul-10 11:15 (p 1 of 1) 08-5029-1491/39407-11

							1001 0040.	•		7020 I 11	01/0040/ /
Acute Mysld S	urvival Test									Pacif	îc EcoRisi
Batch ID:	00-4837-8514		: Survival (96h)				Analyst:	Jason Wall			<del>- · · · · · · · · · · · · · · · · · · ·</del>
Start Date:	07 Jul-10 15:00	Protocol:			)		Diluent:	Not Applica			
	11 Jul-10 14:15	Species:	Americamysis				Brine:	Crystal Sea	3		
Duration:	95h	Source:	Aquatic Biosy	slems, CO			Age:	4			
Sample Code	Sample ID	Sample Dat	Receive I	Date Sa	ımple Age	Clie	nt Name		Projec	t	
Lab Control 1	01-9805-7660	07 Jul-10 15	:00 07 Jul-10	15:00 N/	A (20.7 °C)	ACO	E		16087		
Site Water	10-5440-7198	11 Jun-10 10	):40 11 Jun-10	17:00 26	id 4h (0,2 °0	0					
SRC-2010-01	17-0782-1094	08 Jun-10 09	9:20 08 Jun-10	19:00 29	d 6h (2.4 °C	0					
SRC-2010-02	21-4363-5601	09 Jun-10 08	3:00 09 Jun-10	19:00 28	d 7h (1,6 °C	5					
SRC-2010-03	15-3808-8719	09 Jun-10 11	:05 09 Jun-10	19:00 28	d 4h (1.6 °C	2					
SRC-2010-04	03-3478-6159	11 Jun-10 08	3:40 11 Jun-10	17:00 26	id 6h (0,2 °C						
Sample Code	Material Type	San	ple Source		Station Lo	ocatio	n	Latitud	e	Lonç	jitude
Lab Control 1	Lab Waler	San	Rafael Channel		Lab Contr	ol					
Site Water	Site Water Con	trol San	Rafael Channel		SRC-2010	)-SW					
SRC-2010-01	Elutriate	San	Rafael Channel		SRC-2010	)-01					
SRC-2010-02	Elutriate	San	Rafael Channel		SRC-2010	)-02					
SRC-2010-03	Elutriate	San	Rafael Channel		SRC-2010	0-03					
SRC-2010-04	Elutriate	San	Rafael Channel		SRC-2010	)-04					
96h Survival R	ate Summary				<u> </u>			<del></del> -			
Sample Code	C	ount Mea	n 95% LCL	. 95% UCL	. Min	Max	Std	Err Std D	Dev C	:V%	DIff%
Lab Control 1	5	0.96	0.94	0.98	0.9	1	0.01	0.054	8 5	.71%	0.0%
Site Water	5	0.96	0.94	0.98	0.9	1	0.01	0.054	18 5	.71%	0.0%
SRC-2010-01	5	0.98	0.963	0.997	0.9	1	0.00	816 0.044	17 4	.56%	-2.08%
SRC-2010-02	5	0.96	0.94	0.98	0.9	1	0.01	0.054	18 5	.71%	0.0%
SRC-2010-03	5	0,98	0.963	0.997	0.9	1	0.00	816 0.044	17 4	.56%	-2.08%
SRC-2010-04	5	0.98	0,963	0.997	0.9	1	0.00	816 0.044	<u>17</u> 4	.56%	-2.08%
96h Survival R	ate Detail										
Sample Code	Re	ep1 Rep	2 Rep 3	Rep 4	Rep <b>5</b>						
Lab Control 1	1	0.9	0.9	1	1						
	_										

Analyst: M QA: EM

Site Water

SRC-2010-01

SRC-2010-02

SRC-2010-03

SRC-2010-04

0.9

1

1

1

0.9

1

0.9

0.9

1

0.9

1

1

1

1

1

1

1

1

0.9

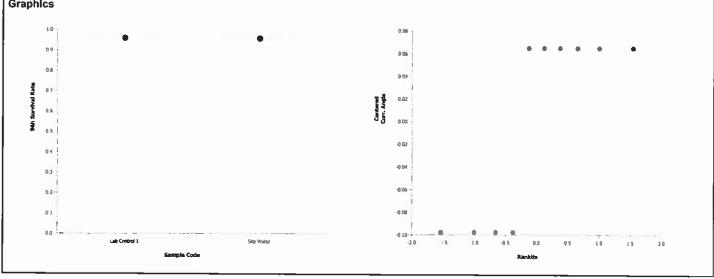
0.9

1

1

1

1


Report Date:

20 Jul-10 11:15 (p 5 of 5)

Test Code:

08-5029-1491/39407-11

							lest	Code:	(	08-5029-14	91/39407-
Acute Mysid S	Surviv	/al Test								Paci	fic EcoRis
Analysis ID: Analyzed:		3041-4609 Jul-10 11:14	Endpoint: Analysis:	96h Survival Ra Nonparametric		e		IS Version		.7.0	
Data Transfor	m	Zeta	Alt H	yp Monte Ca	rlo	NOEL	LOEL	TOEL	ΤU	PMSD	_
Angular (Corre	cted)	0	C > T	Not Run					N/A	6.7%	
Wilcoxon Ran	k Su	m Two-Sample T	est					<del></del>			
Sample Code	vs	Sample Code	Test	Stat Critical	Ties	P-Value	Decision	(5%)			
Lab Control 1		Sile Water	27.5		2	0.5000	Non-Signi	ificant Effec	ıl.		
ANOVA Table											<del></del>
Source		Sum Squares	Mean	Square	DF	F Stat	P-Value	Decision	(5%)		
Between		0	0		1	0	1.0000	Non-Sign	ificant Effect		
Error		0.0637424	0.007	9678	8						
Total		0.0637424	0.007	9678	9						
ANOVA Assun	nptio	ns							<u> </u>	-	
Attribute		Test		Test Stat	Critical	P-Value	Decision	(1%)			
Variances		Variance Ratio	F	1	23.2	1.0000	Equal Var	iances		_	
Distribution		Shapiro-Wilk No	ormality	0.64		0.0002	Non-norm	al Distributi	ion		
96h Survival R	Rate S	Summary						-			
Sample Code		Cou	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control 1		5	0.96	0.939	0.981	0.9	1	0.0102	0.0548	5.71%	0.0%
Site Water		5	0.96	0,939	0.981	0.9	1	0.0102	0.0548	5.71%	0.0%
Angular (Corre	ected	) Transformed S	Summary				<del></del>				_
Sample Code		Cou	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control 1		5	1.35	1.31	1.38	1,25	1.41	0.0166	0.0893	6.63%	0.0%
Site Water		5	1.35	1,31	1.38	1.25	1.41	0.0166	0.0893	6.63%	0.0%
Graphics						_					
1.0		•				0.06					
9		•		•		0.06		•		•	
0.8						U-5.00					



ANOVA Assumptions

Report Date: Test Code: 20 Jul-10 11:15 (p 4 of 5) 08-5029-1491/39407-11

Acute Mysid Survival Test

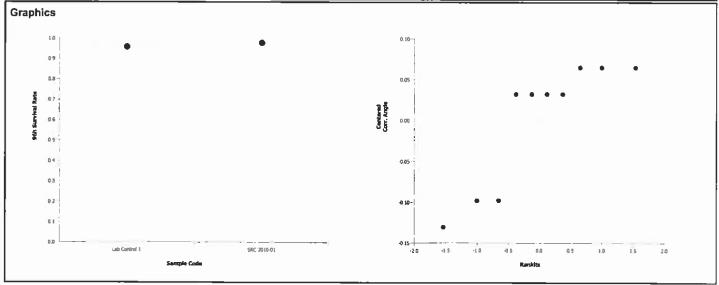
Analysis ID: 04-7446-8581 Endpoint: 96h Survival Rate

CETIS Version: CETISv1.7.0

Analyzed: 20 Jul-10 11:14 Analysis: Nonparametric-Two Sample

Official Results: Yes

Data Transform	Zeta	Alt Hyp	Monte Carlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corrected)	0	C > T	Not Run				N/A	6.13%	


Wilcoxon Rank	c Sur	n Two-Sample Test						
Sample Code	vs	Sample Code	Test Stat	Critical	Ties	P-Value	Decision(5%)	
Lab Control 1	·	SRC-2010-01	30		2	0,6548	Non-Significant Effect	
ANOVA Table								

ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(5%)
Between	0.002655933	0.002655933	1	0.4	0.5447	Non-Significant Effect
Ептог	0.05311866	0.006639833	8			
Total	0.0557746	0.009295766	9			

Attribute	Test			Test Stat	Critical	P-Value	Decisio	n(1%)			
Variances	Variance	Ratio F		1.5	23.2	0.7040	Equal Va	ariances			
Distribution	Shapiro-V	Vilk Norma	ılity	0.759		0.0045	Non-nor	mal Distributio	on		
96h Survival Ra	ate Summary						-				
Sample Code		Count	Moan	95% LCI	05% HCL	Min	May	Ctd Em	Ctd Day	CV9/	D:60/

Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control 1	5	0.96	0.939	0.981	0.9	1	0.0102	0.0548	5.71%	0.0%
SRC-2010-01	5	0.98	0.963	0.997	0,9	1	0.0083	0.0447	4.56%	-2.08%

Angular (Corrected) Transfor	med Summ	nary								
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control 1	5	1.35	1.31	1.38	1.25	1.41	0.0166	0.0893	6.63%	0.0%
SRC-2010-01	5	1.38	1.35	1.41	1.25	1.41	0.0135	0.0729	5.28%	-2.42%



# 96 Hour Acute Americamysis bahia Water Column Toxicity Test

Client:	ACOE - San Rafael Channel	Organism Log #: _	5113	Age: 4 days	
Test Material:	Site Water	Organism Supplier:		ABS	
Test ID#:3940*	7-14 Project # 16087	Control/Diluent:	25	ppt Lab Water	
Test Date: 7-7-10	Randomization: 6.5.1	Control Water Batch:		768	

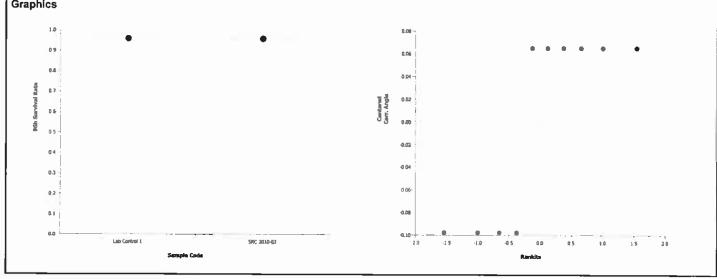
Treatment	Temp (°C)	р	Н	D.O. (	mg/L)	Salini	ty (ppt)		# Li	ve Organ	isms		SIGN-OFF
(% Elutriate)	remp ( C)	new	old	new	old	new	old	Rep A	Rep B	Rep C	Rep D	Rep E	
Control	20.7	8.09		81		24.8		10	10	10	70	10	Test Solution Prep
Site Water	20.7	7.41		9.1		24.0		10	10	10	10	10	New WQ:
E THE													Initiation Date:
													Initiation Time.
													Immation Signoff:
Meter ID	ЗЧА	phy		RNS)		ELOY	95						
Control	20.65		7.96		7.4	[a. 14	24.5	10	10	9	10	10	TOWN Date:
Site Water	20.5		7.97		7.4		24.2	9	10	10	0)	9	2250
N BY						Ł							Count Signoit
K-III													old work
Meter ID	34A		8403		2003		ELDY						
Control	20.8		794		1.2	A.	47	lo	10	9	10	10	7/9/10
Site Water	20.9		7.92		7.2		27.0	9	10	10	10	q	Count Time: 0 9/5 Count Signoff
													37
													ON WO
Meter ID	344		1414		2003		ECOS						
Control	20.9		7.91		7.1		24.6	10	9	9	10	10	Count Date: 7/10/10 Count Time:
Site Water	2019		7.88		7.1		24.2	9	10	10	10	9	Count Time: 0900
													Count Signoff:
													Old WQ:
Meter ID	344	TI.	PhIZ	10.10	2003		7c03						
Control	20.8		7.81	3	0,95		25.5	10	٩	9	10	10	Termination Date:
Site Water	20.8		7.77		6.9		24.4	a		10	ΙÞ	٩	Termination Time
								ANI				SEE	Termination Signoff;
													Old Wash
Meter ID	24 A		PHOS		P103	NOT THE	EUS			HAILE			

# 96 Hour Acute $Americamysis\ bahia$ Water Column Toxicity Test

Client:	ACOE - San Rafael Channel	Organism Log #:_	5293 Age: 4 days
Test Material:	SRC-2010-01	Organism Supplier: _	A35
Test ID#:	39407 Project # 16087	Control/Diluent:	ppt Lab Water
Test Date:	7-7-10 Randomization: 6.5.	Control Water Batch:	768

Treatment	Temp (°C)	p	н	D.O. (1	mg/L)	Salinit	y (ppt)		# Li	ve Organi	isms		SIGN-OFF
% Elutriate)	remp ( e.g.	new	old	new	old	new	old	Rep A	Rep B	Rep C	Rep D	Rep E	
Control	20.7	8.07		95		24.8		10	lo	10	10	10	Test Solution Prep
100%	20.7	1.88		19		242		10	10	10	10	lo	New WO
													Initiation Date 7-7 (C) Initiation Time: 1500 Initiation Signoff:
Meter ID	AYE	phy		2003		004							
Control	20.60		7.96		7.4		24.5	10	10	9	60	10	Count Date: 子。る・レン
100%	20.6		8.12		73		247	10	10	(0	10	10	Count Time OQSS Count Signoff
													Old WO:
Meter ID	34A		Ph 03		[2:002		ELOY						
Control	20.8		7.96		7.2		74.7	lo	60	7	40	10	7/9/10
100%	2018		#8.18		7.3		25.0	w	20	10	10	20	Count Time:  09/5 Count Signoff:
													Old WQ DT
Meter ID	34A		PHY		2007		Ecos						
Control	20.9		7.91		7.1		241.6	10	9	9	10	10	Count Date:
100%	2019		8.19		7.3		24.8	10	9	10	10	10	Count Time: 6 900 Count SignedI:
							210.5				- 18		old WO: pro
Meter ID	344		por		81203		Fc03	311112					
Control	20.8		7.81		6.9		25.5	10	9	a	10	10	Termination Date:
100%	20.8		8.0%		6.7		25.0	10	9	10	10	10	Termination Time: 1415 Termination Signed
													Old WO
Meter ID	34A		PHOS		PD03		EUS						

Report Date:


20 Jul-10 11:15 (p 3 of 5)

Test Code:

08-5029-1491/39407-11

							Test	Code:	(	)8-5029-14	91/39407-1
Acute Mysid Si	urviv	al Test						_		Pacl	fic EcoRisi
Analysis ID: Analyzed:		501-9266 ul-10 11:14	Endpoint: Analysis:	96h Surviva Nonparamet	Rate ric-Two Sampl	e		IS Version		.7.0	
Data Transform	n	Zeta	Alt H	yp Monte	Carlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Correc	ted)	0	C > T		n				N/A	6.7%	
Wilcoxon Rank	Sun	n Two-Sample To	est					<del></del>			
Sample Code	vs	Sample Code	Test	Stat Critica	l Ties	P-Value	Decision	(5%)			
Lab Control 1		SRC-2010-02	27.5		2	0.5000	Non-Sign	ificant Effec	;t		
ANOVA Table											
Source		Sum Squares	Mean	Square	DF	F Stat	P-Value	Decision	1(5%)		
Between		0	0		1	0	1.0000	Non-Significant Effec		}	
Error		0.0637424	0.007	9678	8			•			
Total		0.0637424	0.007	9678	9						
ANOVA Assum	ption	15						<u></u>	-		
Attribute		Test		Test St	at Critical	P-Value	Decision	(1%)			
Variances		Variance Ratio F		1	23.2	1.0000	Equal Var	iances			
Distribution		Shapiro-Wilk No	rmality	0.64		0.0002	Non-norm	nal Distributi	ion		
96h Survival Ra	ate S	ummary				<u> </u>					
Sample Code		Cour	nt Mean	95% LC	L 95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control 1		5	0,96	0.939	0.981	0.9	1	0.0102	0.0548	5.71%	0.0%
SRC-2010-02		5	0.96	0.939	0.981	0.9	1	0.0102	0.0548	5.71%	0.0%
Angular (Corre	cted)	Transformed S	ummary	100							
Sample Code		Cour	ıt Mean	95% LC	L 95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control 1		5	1.35	1.31	1.38	1 25	1.41	0.0166	0.0893	6.63%	0.0%

Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control 1	5	1.35	1.31	1.38	1.25	1.41	0.0166	0.0893	6.63%	0.0%
SRC-2010-02	5	1.35	1.31	1.38	1.25	1.41	0.0166	0.0893	6.63%	0.0%

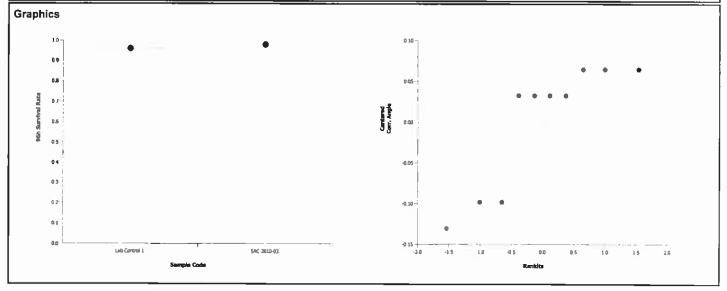


# 96 Hour Acute Americamysis bahiaWater Column Toxicity Test

Client: _	ACOE - San Rafael Channel	Organism Log #:	5293 Age: 4 day
Test Material:	SRC-2010-02	Organism Supplier:	A-12> S
Test ID#:	39408 Project # 16087	Control/Diluent:	25 ppt Lab Water
Test Date:	7.7-10 Randomization: 6.5.1	Control Water Batch:	768

Treatment	Temp (°C)	p	н	D.O. (	mg/L)	Salini	ty (ppt)		#Li	ve Organ	isms		SIGN-OFF
(% Elutriate)	remp ( C)	new	old	new	old	new	old	Rep A	Rep B	Rep C	Rep D	Rep E	
Control	20.7	4.01		8.1		24.8		lo	10	10	10	10	Test Solution Prep
100%	<b>20.7</b>	7.91		1.9		24.0		(0	10	10	(0	10	New WQ: 01 Imitation Date: 7-7-10
													Institution Time.  1500 Institution Signosti:
Meter ID	34A	PHYS		F003		Eco4							ELLE
Control	23.5		7.96		7.4		24.5	to	10	9	10	(0	J-18.10
100%	20.6		8.24		7.1		24.3	פו	9	10	9	10	Count Time O 9.85 Count Specific Old WQ
Meter ID	34A		1403		2003		Ec021						- u
Control	20.8		7.96		7.2		21.7	10	lo	9	10	Lo	Count Date: 7/9/10
100%	20/8		8.23		7.1		27.0	lo	9	10	9	10	Count Time:  0 7 /5
													Old WQ:
Meter ID	344		PHY		b 003		1505	E IIII					Count Date:
Control	20,9		7.91		7.1	V=	24.6	10	9	9	lo	10	7/10/10
100%	2019		8.24		7.1		24.6	10	9	0	9	10	Count Time: 0 900  Count SignoII:
				6									Old WQ:
Meter ID	34A		PLIL		2003		E03						
Control	20.8		7.81	4172	6.9		255	10	9	9	10	10	Termination Date:
100%	20.8		8.12		6.7		24.5	D	9	lo	G	10	Termination Time: 14)5 Termination Signoff:
Meter ID	الماد		MB		POB	227	E05						ON WED

Report Date:


20 Jul-10 11:15 (p 2 of 5)

Test Code: 08-5029-1491/39407-11

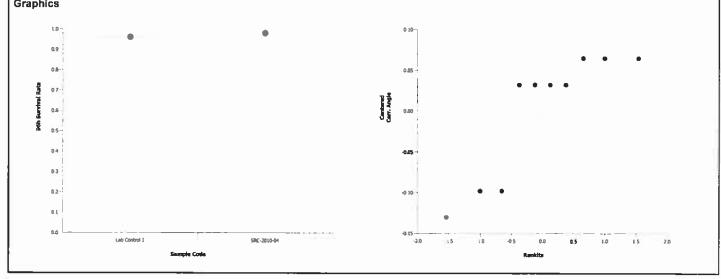
						9000.	_	00 0020 140 1/0040111
Acute Mysid S	Survival Test							Pacific EcoRisk
Analysis ID: Analyzed:	19-4968-7753 20 Jul-10 11:14	Endpoint: 96h Survival R Analysis: Nonparametric		ıple		IS Version ial Result		v1.7.0
Data Transfori	m Zeta	Alt Hyp Monte Ca	arlo	NOEL	LOEL	TOEL	TU	PMSD
Angular (Corre	cted) 0	C > T Not Run		_			N/A	6.13%
Wilcoxon Ran	k Sum Two-Sample 1	est Test Stat Critical	Ties	P-Value	Decision	(5%)		
Lab Control 1	SRC-2010-03	30	2	0.6548	Non-Sign	ficant Effec	ct	
ANOVA Table		-						·
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision	1(5%)	
Between	0.002655933	0.002655933	1	0.4	0.5447	Non-Sigr	nificant Effe	ect
Error	0.05311866	0.006639833	8					
	0.0557746	0.009295766	9					

ANOVA Assump	otions								_	
Attribute	Test	Test Stat	23.2	P-Value 0.7040	Decision(1%)					
Variances	Variance Ratio F	1.5			Equal Variances Non-normal Distribution					
Distribution	Shapiro-Wilk Nor	0.759		0.0045						
96h Survival Ra	te Summary									-
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
						4	0.0400	0.0540	5.71%	0.0%
Lab Control 1	5	0.96	0.939	0.981	0.9		0.0102	0.0548	3.7 176	0.070

Angular (Corrected) Transformed Summary											
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%	
Lab Control 1	5	1.35	1.31	1.38	1.25	1.41	0.0166	0.0893	6.63%	0.0%	
SRC-2010-03	5	1.38	1.35	1.41	1.25	1.41	0.0135	0.0729	5.28%	-2.42%	



Client: _	ACOE - San Rafael Channel	Organism Log #:_	5193	Age:	l days
Test Material:	SRC-2010-03	Organism Supplier: _		ABS	
Test ID#:	39409 Project# 16087	Control/Diluent:	25	ppt Lab Water	
Test Date:	7.7-10 Randomization: 6.5.1	Control Water Batch:		768	


Treatment	Temp (℃)	p	н	D.O. (	mg/L)	Salinit	y (ppl)		#1.	ve Organi	sms		SIGN-OFF
(% Elutriate)	Temp ( C)	new	old	new	old	new	old	Rep A	Rep B	Rep C	Rep D	Rep E	
Control	26.7	8.01		8.1		24.8		lo	10	lo	(0	16	Test Solution Prep.
100%	10.7	1.97		7.7		24.2		10	ło	10	10	10	New WQ:
													7-7-10
													1500 Intuite Signoff:
Meter ID	2	PILIO		an 10.		Ecol						-	äxx
Control	34A	Alled	- 61	mas	7.4	L co of	-15	10		9	,	10	Count Date:
	1000	=1-111	7.96			-	24,5	10	10	-	10	10	7.8000
100%	20%		8.19		7.1		24.5	10	10	10	10	10	Count Surgott:
													PA OIL
Meter ID	54A		Ph03		ep03		BLOY						
Control	20.8		7.96	7.110.0	7.2		24.7	10	10	9	(9	60	7/9/10
100%	20.8	V. 137	8.19		7.2		44	ω	lo	10	lo	19	Count Trate:
													Could Signoff,
													OIL WQ
Meter ID	34A		PHIL		2.903		ELOS						
Control	20.9		7.91	HE	7.1		24.6	10	9	20	10	10	7/10/10
100%	20,9		8.17		7.0		25.3	9	10	lo	Ю	W	Count Time:
		ER SELLING	21891										Count Signoff
													ad wa Mo
Meter ID	34/4		Pur		12003		F 103						
Control	20.8		7.81		6.9		255	10	9	189	10	10	Termination Date 7/1) Termination Time 1415
100%	20.8		8.09		6.7		24.9	9	10	jo	10	10	1415
													Termination Signoli
Meter ID	34 A		H103		PD03		EU5			100			

Report Date:

20 Jul-10 11:14 (p 1 of 5)

08-5029-1491/39407-11

							Test	Code:	0	8-5029-149	91/39407-1 ⁻
Acute Mysid Surv	vival Test					· <del>-</del>			•	Pacif	ic EcoRisk
•	6-8703-9771 ) Jul-10 11:14	Endpoin Analysis		Survival Ra	te Two Sample	1		S Version: ial Results:	CETISv1. Yes	7.0	
Data Transform		Zeta Alt	Нур	Monte Car	1o	NOEL	LOEL	TOEL	TU	PMSD	•
Angular (Corrected	d) (	) C>	· T	Not Run					N/A	6.13%	
Wilcoxon Rank S	um Two-Samp	le Test				_					
Sample Code v	s Sample Co	de Tes	st Stat	Critical	Ties	P-Value	Decision(	5%)			
Lab Control 1	SRC-2010-0	04 30		_	2	0.6548	Non-Signi	ficant Effect			
ANOVA Table											
Source	Sum Square	s Me	an Squa	are	DF	F Stat	P-Value	Decision(	5%)		
Between	0.002655933	3 0.0	0265593	33	1	0.4	0.5447	Non-Signif	icant Effect		
Error	0.05311866	0.0	0663983	33	8						
Total	0.0557746	0.0	0929576	66	9						
ANOVA Assumpt	ions										
Attribute	Test			Test Stat	Critical	P-Value	Decision(	1%)			
Variances	Variance Ra	atio F		1.5	23.2	0.7040	Equal Var	iances			
Distribution	Shapiro-Wil	k Normality		0.759		0.0045	Non-norm	al Distributio	n		
96h Survival Rate	Summary							-			
Sample Code	(	Count Me	an	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control 1	Ę	0.9	6	0.939	0.981	0.9	1	0.0102	0.0548	5.71%	0.0%
SRC-2010-04		0.9	8	0.963	0.997	0.9	1	0.0083	0.0447	4.56%	-2.08%
Angular (Correcte	ed) Transforme	d Summary							-		
Sample Code	(	Count Me	an	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control 1		1.3	5	1.31	1.38	1.25	1.41	0.0166	0.0893	6.63%	0.0%
SRC-2010-04	5	5 1.3	8	1.35	1.41	1.25	1.41	0.0135	0.0729	5.28%	-2.42%
Graphics											<del>`</del>
1.0 -						0 10-					



Client:	ACOE - San Rafael Channel	Organism Log #:	5113	Age: <b>--</b>	bayes
Test Material:	SRC-2010-04	Organism Supplier.		A135	
Test ID#:	39410 Project # 16087	Control/Diluent:	25	ppt Lab Water	
Test Date:	7.7.10 Randomization: 6.5.1	Control Water Batch:		768	

Treatment	Temp (°C)	_ p	н	D.O. (	mg/L)	Salini	ty (ppt)		# Li	ve Organ	ants		SIGN-OFF
% Elutriate)	remp ( C.)	new	old	new	old	new	old	Rep A	Rep B	Rep.C	Rep D	Rep E	
Control	T.o.¢	8.01		8.1		24.8		lo	10	10	10	10	Test Solution Prepr
100%	20.7	7.86		7.9		24.0		10	10	16	10	10	DY DY Institute of Date 7.7-10
													Institution Time: 1500 Institution Segment
Meter ID	asawa.	art vik		8-062		ELiA							бин
	34A	6414	- 44		7.1	5204	-116			_			Count Date:
Control	206		7.46		7.4		24.5	10		9	10	10	79-10
100%	20 65		8.18		7-1		24.2	10	9	10	10	01	Count Segration
		_											OU WO. PAT
Meter ID	34A		9403		2003		Ecoy						
Control	20.8	IDIL	7.96		7.7		21.7	10	10	9	10	10	7/9/10
100%	20.8		8.19		7.2		71.2	10	9	10	ш	lo	Count Time, 09/5 Chant Signoff.
													CIM MÓ:
Meter ID	344		PHIY		Kas		ECOX						
Control	20.9		7.91	1,1	7.1		24.6	10	9	9.	lo	10	7/10/1
100%	20.9		8.21		6.9		24.4	10	9	lo	10	10	Count Time: 0900 Count Superell:
										N.			an we
Meter ID	34A		Ph		R003		Ec03						
Control	20.8		7.81		6.9		25.5	10	9	9	10	ID	Termination Date:
100%	20-8		8.10		6.8		25.0	İt		10	ال	170	Termination Time. 1415 Termination Signoff
				,				,				1	CHI WATE
Meter ID	14/4		pHB		PUB		ELOS						

## **CETIS Summary Report**

Report Date: Test Code: 20 Jul-10 11:20 (p 1 of 1) 10-7365-4865/39411-14

								est Code:		10-73	003-460	5/39411-1
Acute Mysid S	Jurvival Test										Pacifi	c EcoRisk
Batch ID: Start Date: Ending Date: Duration:	21-3643-2395 07 Jul-10 15:00 11 Jul-10 14:30 95h	Test Ty Protoc Specie Source	ol: EP	rvival (96h) A-821-R-02- ericamysis b ualic Biosyst	ahia	,	1	Analyst: Diluent: Brine: Age:	Jason Walk Not Applica Crystal Sea 4	ble		
Sample Code	Sample ID	Sample D	Date	Receive Da	ite S	Sample Age	Client	Name		Project		
Lab Control 2	17-0967-8032	07 Jul-10	15:00	07 Jul-10 1	5:00 1	V/A (20.7 °C	) ACOE			16087		
SRC-2010-05	02-1820-9844	08 Jun-10	14:45	08 Jun-10 1	9:00 2	29d Oh (2.4	°C					
SRC-2010-06	15-6585-2712	09 Jun-10	15:30	09 Jun-10 1	9:00 2	27d 23h (3.1	7°					
SRC-2010-07	08-0994-4638	10 Jun-10	09:00	10 Jun-10 1	7:00 2	27d 6h (0.6	°C					
SRC-2010-08	08-9351-2460	10 Jun-10	11:55	10 Jun-10 1	17:00 2	27d 3h (1.4	°C					
Sample Code	Material Type		Sample S	ource		Station	Location		Latitude	)	Longi	itude
Lab Control 2	Lab Water		an Rafa	el Channel		Lab Con	itrol					
SRC-2010-05	Elutriate	8	an Rafa	el Channel		SRC-20	10-05					
SRC-2010-06	Elutriate	5	San Rafa	el Channel		SRC-20	10-06					
SRC-2010-07	Elutriate	S	an Rafa	el Channel		SRC-20	10-07					
SRC-2010-08	Elutriate	5	an Rafa	el Channel		SRC-20	10-08					
96h Survival F	Rate Summary								·			<del> </del>
Sample Code	c	Count N	lean	95% LCL	95% U	CL Min	Max	Std I	Err Std D	ev C\	/%	DIff%
Lab Control 2	5	5 0	.98	0.963	0.997	0.9	1	0.008	316 0.044	7 4.5	56%	0.0%
SRC-2010-05	5	i 0	.98	0.963	0.997	0.9	1	0.008	316 0.044	7 4.5	56%	0.0%
SRC-2010-06	5	5 1		1	1	1	1	0	0	0.0	0%	-2.04%
SRC-2010-07	5	5 0	.98	0.963	0.997	0.9	1	0.00	316 0.044	7 4.5	56%	0.0%
SRC-2010-08	5	. 0	.96	0.94	0.98	0.9	1	0.01	0.054	8 5.7	71%	2.04%
96h Survival R	Rate Detail											
Sample Code	F	Rep 1 F	Rep <b>2</b>	Rep 3	Rep 4	Rep <b>5</b>						
Lab Control 2	0	).9 1	-	1	1	1			·			
SRC-2010-05	0	).9 1		1	1	1						
SRC-2010-06	1	1		1	1	1						
SRC-2010-07	0	).9 1		1	1	1						
SRC-2010-08	0	).9 1		1	1	0.9						

Report Date:

20 Jul-10 11:20 (p 4 of 4)

Test Code: 10-7365-4865/39411-14

								1621	Code.	,	0-1303-40	00/08411-1
Acute Mysid S	urviv	ral Test			•						Paci	fic EcoRisI
Analysis ID: Analyzed:		/501-7883 Jul-10 11:19	Endpoint: Analysis:		Survival Ra		•		IS Version: ial Results:	CETISv1. Yes	7.0	
Data Transfori		Zeta	Alt	Нур	Monte Car	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre		0	C >		Not Run					N/A	5.6%	
Wilcoxon Ran	k Sur	n Two-Sample Te	est					· -			<del>-</del>	
Sample Code	vs.	Sample Code		t Stat	Critical	Ties	P-Value	Decision	(5%)			
ab Control 2		SRC-2010-05	27.5			2	0.5000		ficant Effect			
ANOVA Table										<del>:</del>		
Source		Sum Squares	Mea	ın Squ	ıare	DF	F Stat	P-Value	Decision(	5%)		
Between		0	0	<del>.</del>		1	0	1.0000	Non-Signit	icant Effect		
≣rror		0.04249493	0.00	53118	366	8						
Tolal		0.04249493	0.00	53118	366	9						
ANOVA Assum	nptio	ns										
Attribute		Test			Test Stat	Critical	P-Value	Decision	(1%)			
/ariances		Variance Ratio I	=		1	23.2	1.0000	Equal Var	iances			-
Distribution		Shapiro-Wilk No	rmality		0.509		<0.0001	Non-norm	al Distributio	n		
96h Survival R	Rate S	Summary			<u> </u>							
Sample Code		Cour	nt Mea	ın	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control 2		5	0.98	}	0.963	0.997	0.9	1	0.0083	0.0447	4.56%	0.0%
SRC-2010-05		5	0.98	3	0.963	0.997	0.9	1	0.0083	0.0447	4.56%	0.0%
Angular (Corre	ected	) Transformed \$	ummary									
Sample Code		Cour	nt Mea	ın	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
ab Control 2		5	1.38	}	1.35	1.41	1.25	1.41	0.0135	0.0729	5.28%	0.0%
SRC-2010-05		5	1.38	3	1.35	1.41	1.25	1.41	0.0135	0.0729	5.28%	0.0%
Graphics												
1.0 -		•					0.05					
1		•		•								
0.9 -												
9.0							0.00					
07						10						
0.7 - 0.6 -						į	Cerr. Angle					
<b>á</b> )						ð	-0.05					
D.5 -							-0.05					
04												
0.3												

10 15

0.1

0.0

Lab Control 2

Sample Code

5AC-2010-05

Client:	ACOE - San Rafael Channel	Organism Log #: _	5113 Age: 4 days
- Fest Material:	SRC-2010-05	Organism Supplier:	AB S
Test ID#:	39411 Project # 16087	Control/Diluent:	25 ppt Lab Water
Test Date:	7-7-10 Randomization: 5.5.1	Control Water Batch:	768

Treatment	Temp (°C)	_ р	Н	D.O. (	mg/L)	Salini	ty (ppt)		#13	ve Organ	isms		SIGN-OFF
% Elutriate)	SSSIIP SSSI	new	old	new	old	new	old	Rep A	Rep B	Rep C	Rep D	Rep E	
Control	Jo.7	10.8	NI N	8.1		24.8		lo	ιο	10	lD.	10	Test Solution Prep
100%	20.7	1.86		8.0		24.		lo	10	10	lo	10	New WQ OT
													Initiation Date:
													Initiation Time.
3.5													Initiation Signoil:
Meter ID	34A	PHY		P107		Ë :04			ráhi				
Control	20.6		798		7.5		24.8	10	10	10	10	10	T'8' (C
100%	20/0		8.00		7.3		24.6	9	18	10	10	10	Count Time
													Cours spring
			3										Old WQ:
Meter ID	34A		PHO3		2003		GCOY					HI TO	
Control	20.8		7.91		13		21.4	W	10	Lo	40	60	Count Date: 7/9/10 Count Time:
100%	20.8		8.4		7.0		4.2	9	Lo	10	40	ь	0945
										000			Count Signoff.
													ON MO
Meter ID	34.4		PARY		pros		ECOS					5007	
Control	20.9		7.91		7.1		25.0	9	lo	10	10	10	7/10/10
100%	20.9		8.29		7.1		24.9	9	10	10	10	10	Count Time 1930
													Count Signoil:
													Old WQ:
Meter ID	344	100 112	ph03		2002		Ec 0 4						
Control	20.8		7.81		6.7		24:8	9	10	10	10	10	Termination Date
100%	28		8.28		6.7		24.4	9	10	10	)==	סו	Termination Time:
All the same			<b>弄</b>		8/1=5)				100	l ha		1	Termination Signoil
					mb m								01479
Meter ID	3411		рноз		PD03	1 30	E 05		ME LE				

Report Date: Test Code:

20 Jul-10 11:19 (p 3 of 4)

10-7365-4865/39411-14

						Test	Code:	1	0-7365-48	65/39411-1
Acute Mysid S	urvival Test								Paci	fic EcoRis
Analysis ID: Analyzed:		Endpoint: 96 Analysis: No	h Survival Ra		e		IS Version: cial Results:	CETISv1 Yes	.7.0	_
Data Transform	m Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Correc		C>T	Not Run		_			N/A	4.3%	
Wilcoxon Ran	k Sum Two-Sample Tes	st					•	,		
Sample Code	vs Sample Code	Test Stat	Critical	Ties	P-Value	Decision	(5%)			
Lab Control 2	SRC-2010-06	30		1	0.6548	Non-Sign	ificant Effect			
ANOVA Table		-								
Source	Sum Squares	Mean Sq	uare	DF	F Stat	P-Value	Decision(	5%)		
Between	0.002655933	0.002655	933	1	1	0.3466	Non-Signif	icant Effect		
Error	0.02124747	0.002655	933	8						
Total	0.0239034	0.005311	866	9						
ANOVA Assun	nptions				•					
Attribute	Test		Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Mod Levene Equa	ality of Variance	e 1	13.7	0.3559	Equal Val	riances			
Distribution	Shapiro-Wilk Non	mality	0,625		0.0001	Non-norm	nal Distributio	n		
96h Survival R	tate Summary									
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control 2	5	0.98	0.963	0.997	0.9	1	0.0083	0.0447	4.56%	0.0%
SRC-2010-06	5	1	1	1	1	1	0	0	0.0%	-2.04%
Angular (Corre	ected) Transformed Su	ımmary			-					
Sample Code	Count	Mean	95% LCL	95% UCL	Min _	Max	Std Err	Std Dev	CV%	Diff%
Lab Control 2	5	1.38	1.35	1.41	1.25	1.41	0.0135	0.0729	5 28%	0.0%
SRC-2010-06	5	1.41	1.41	1.41	1.41	1.41	0	0	0.0%	-2.36%
Graphics		<del></del>					<del></del>			
10	•	•			0.05					
0.9								• • •	•	
0.0										
					0.00	•				
¥ 07:				1	1					
os .				3	Corr. Angle					
0.5					-0.05					
04 :										
0.3					-0.10					
0.2 -										
01-						•				
					0.75					
0.0	1357	500.201	0.00		0.15			·	7	***

Sample Code

Client:	ACOE - San Rafael Channel	Organism Log #: _	5113	_ Age: 4 days
Test Material:	SRC-2010-06	Organism Supplier:		ABS
Test ID#:	39412 Project # 16087	Control/Diluent:	25	ppt Lab Water
Test Date:	7-7-10 Randomization: 5.5.1	Control Water Batch:		769

Treatment	Temp (°C)		рH	D.O.	(mg/L)	Salini	ty (ppt)		#1,1	ve Organ	isnis		SIGN-OFF
% Elutriate)	romp ( c)	new	old	new	old	nev.	old	Rep A	Rep B	Rep C	Rep D	Rep E	
Control 1	20.7	800		8.1		24.8		lo	10	lo	10	10	Tex Solution Prep.
100%	T.as	181		15	10.14	24.2		10	10	(o	10	10	New WQ
													1500 Introduce Signali Introduce Signali SMC
Meter ID	43A	144	BIEZO	9.063	FIFE	204							
Control	20.50		7.94		7.5		14.8	10	10	10	10	10	7 18 10
100%	2014		8.73		6.7		718	10	(10)	(0	10	6)	Count Tiese 1025 Count Suppris
Meter ID	34A		PHOS		2003		Z. atl						DT DT
Control	-						ECOY	10000	100	100		-	Chunt Date:
100%	lay		7,91	450	1.3		24.4	4	10	10	10	10	7/9/10 Chum Time
100%	248		4.35		7.1		24.8	W	10	10	10	10	O 9 4/5 Cruin Signori Old WQ:
Meter ID	344		phy		2003		1,05						
Control	2019		7.91		7.1		25.0	9	10	10	10	70	7/10/10
100%	209		8.29		6.9		25.5	10	lo	lo	10	10	Count Time: 093 ₀ Count Signal Ti
													OW WQ:
Meter ID	344		Ph03		POOL		ELOY						
Control	20.4		7.81		6.7		248	9	10	טנ	10	70	7/11/16
100%	20.8		8.30		6.8		25.0	10	/D	100	در(	10	Termination Time:  14 35 Termination Signot
													lel
Meter ID	14/13		PH03		PD03		Ecos	Lad	3.16				UNAN LINES

Report Date: Test Code: 20 Jul-10 11:19 (p 2 of 4) 10-7365-4865/39411-14

Acute Mysid Survival Test

Analysis ID: 19-3976-2848 Endpoint: 96h Survival Rate

Analyzed: 20 Jul-10 11:19 Analysis: Nonparametric-Two Sample

Data Transform

Zeta Alt Hyp Monte Carlo NOEL LOEL TOEL TU PMSD

Angular (Corrected) 0 C > T Not Run N/A 5.6%	1	Data Transform	Zeta	Alt Hyp	Monte Carlo	NOEL	LOEL	TOEL	TU	PMSD
	1	Angular (Corrected)	0	C > T	Not Run				N/A	5.6%

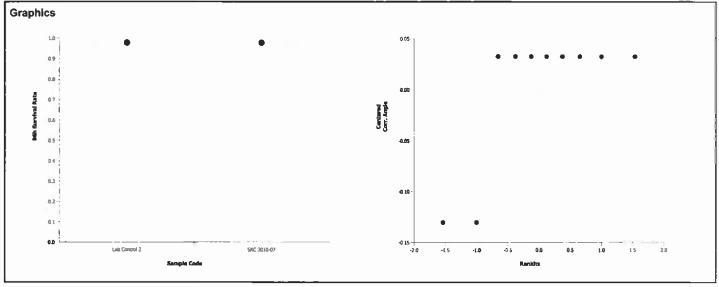
## Wilcoxon Rank Sum Two-Sample Test

Sample Code Vs	Sample Code	Test Stat Critical	1105	P-value	Decision(5%)
Lab Control 2	SRC-2010-07	27.5	2	0.5000	Non-Significant Effect

#### ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(5%)
Between	0	0	1	0	1.0000	Non-Significant Effect
Error	0.04249493	0.005311866	8			
Tolal	0.04249493	0.005311866	9			

#### **ANOVA Assumptions**


Attribute	Test	Test Stat	Critical	P-Value	Decision(1%)
Variances	Variance Ratio F	1	23.2	1.0000	Equal Variances
Distribution	Shapiro-Wilk Normality	0.509		<0.0001	Non-normal Distribution

#### 96h Survival Rate Summary

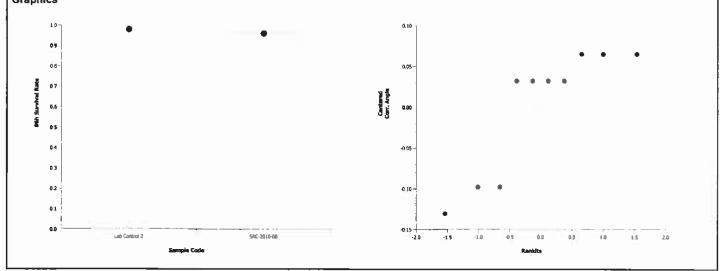
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control 2	5	0.98	0.963	0.997	0.9	1	0.0083	0.0447	4.56%	0.0%
SRC-2010-07	5	0.98	0.963	0,997	0.9	1	0.0083	0.0447	4.56%	0.0%

#### Angular (Corrected) Transformed Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Lab Control 2	5	1.38	1.35	1.41	1,25	1.41	0.0135	0.0729	5.28%	0.0%
SRC-2010-07	5	1.38	1.35	1.41	1.25	1.41	0.0135	0.0729	5.28%	0.0%



Client:	ACOE - San Rafael Channel	Organism Log #: _	5193	Age: 4 days
Test Material:	SRC-2010-07	Organism Supplier:		A-B S
Test ID#:	39413 Project #16087	Control/Diluent:	25	ppt Lab Water
Test Date:	)-7-10 Randomization: 5.5.1	Control Water Batch:		768


Treatment	Temp (°C)		Н	D.O.	(mg/L)	Salini	ty (ppt)		# l.i	ve Organ	isms		SIGN-OFF
% Elutriate)	,, ,	new	old	new	old	new	old	Rep A	Rep B	Rep C	Rep D	Rep E	
Control	20.7	4,01		4.1		24.8		łο	lo	10	6)	10	Test Solution Prep
100%	10.7	8.00		1.9		24.0		lo	10	10	10	10	New WQ:  OS  Initiation Date.
													7-7-13
													Initiation Time: (500
													Initiation Signoif:
Meter ID	34A	BHIN		2005		FLOY							
Control	2060		198		15		248	10	10	10	16	(0	7.8.10
100%	206		9.29		7.2		25.3	10	10	(0	10	10	Count Time:
													Count Signoff:
											1115		Old WQ:
Meter ID	SYA		9403		2003	1.46	ECOY						
Control	10.8		791		1.3		24.4	10	10	10	24	10	Count Date: 7/9/10
100%	20.8		8.49		1.\		25.2	W	10	40	10	10	Count Time.  O 9 45  Count Signoif:
													1 77
													Old WG:
Meter ID	34A		644		4000		4165	W.					
Control	2019		7.91		7.1		25.0	9	10	20	10	10	Count Date:
100%	204		8.34		7.1		26.3	10	10	to	lo	10	Count Time:
												- N - S	Count Signoff:
													Old WQ:
Meter ID	344		phos		RDOZ		Ec04						
Control	20.8		7.81		4.7		24.8	9	10	10	)0	b	Termination Date.
100%	20.8		8.34	We lie	6.7		26.3	9	10	10	Jp	10	Termination Time:
													Termination Signor
													Old MO
Meter ID	3410	1115	PHOS		12003		EL05					MII	

Report Date:

20 Jul-10 11:19 (p 1 of 4)

Test Code: 10-7365-4865/39411-14

Acute Mysid Sur	vival Test									Pacif	fic EcoRi
Analysis ID: 1	3-5418-7932	Endpo	oint: 96h	Survival Ra	ite		CET	S Version:	CETISv1.	7.0	
Analyzed: 2	0 Jul-10 11:19	Analy	sis: Nor	parametric-	Two Sample	•	Offic	ial Results	: Yes		
Data Transform	Ze	ta .	Alt Hyp	Monte Car	rio	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Correcte	ed) 0		C > T	Not Run					N/A	6.15%	
Wilcoxon Rank S	Sum Two-Sample	Test									
Sample Code v	s Sample Cod	•	Test Stat	Critical	Ties	P-Value	Decision(	(5%)			
Lab Control 2	SRC-2010-08		25		2	0.3452	Non-Signi	ficant Effect			
ANOVA Table											
Source	Sum Squares		Mean Squ	are	DF	F Stat	P-Value	Decision(	(5%)		
	0.000055000		0.0026559	33	1	0.4	0.5447	Non-Signi	ficant Effect		
Between	0.002655933		0.0020338								
	0.002655933		0.0020338		8						
Between Error Total	· · · · · ·			33	8			<b>.</b>			
Error	0.05311866 0.0557746		0.0066398	33	-						<del></del>
Error Total	0.05311866 0.0557746		0.0066398	33	9	P-Value	Declsion(				<del>-:</del>
Error Total ANOVA Assump Attribute	0.05311866 0.0557746 tions		0.0066398	66	9		Decision( Equal Var	(1%)			<del>-:</del>
Error Total ANOVA Assump Attribute Variances	0.05311866 0.0557746 tions	o F	0.0066398 0.0092957	33 66 Test Stat	9 Critical	P-Value	Equal Var	(1%)			<del>-:</del>
Error Total ANOVA Assump Attribute Variances Distribution	0.05311866 0.0557746 tions Test Variance Rat Shapiro-Wilk	o F	0.0066398 0.0092957	133 66 Test Stat	9 Critical	P-Value 0.7040	Equal Var	(1%) fances			_
Error Total  ANOVA Assump Attribute Variances Distribution  96h Survival Rat	0.05311866 0.0557746 tions Test Variance Rat Shapiro-Wilk e Summary	o F Normality	0.0066398 0.0092957	133 66 Test Stat	9 Critical	P-Value 0.7040	Equal Var	(1%) fances		CV%	Diff%
Error Total  ANOVA Assump Attribute Variances Distribution  96h Survival Rat Sample Code	0.05311866 0.0557746 tions Test Variance Rat Shapiro-Wilk e Summary	o F Normality ount	0.0056398 0.0092957	33 66 Test Stat 1.5 0.759	9 Critical 23.2	P-Value 0.7040 0.0045	Equal Var Non-norm	(1%) iances al Distributio	on	CV% 4.56%	Diff% 0.0%
Error Total  ANOVA Assump Attribute Variances Distribution  96h Survival Rat Sample Code Lab Control 2	0.05311866 0.0557746  tions Test Variance Rat Shapiro-Wilk e Summary	o F Normality ount	0.0056398 0.0092957	1.5 0.759	9 Critical 23.2 95% UCL	P-Value 0.7040 0.0045	Equal Var Non-norm	(1%) iances al Distributio Std Err	on Std Dev		
Error Total  ANOVA Assump Attribute Variances Distribution  96h Survival Rat Sample Code Lab Control 2 SRC-2010-08	0.05311866 0.0557746  tions Test Variance Rat Shapiro-Wilk e Summary Co	o F Normality ount	0.0066398 0.0092957 Mean 0.98 0.96	1.5 0.759 95% LCL 0.963	9 Critical 23.2 95% UCL 0.997	P-Value 0.7040 0.0045 Min 0.9	Equal Var Non-norm Max	(1%) fiances al Distribution Std Err 0.0083	Std Dev 0.0447	4.56%	0.0%
Error Total  ANOVA Assump Attribute Variances Distribution  96h Survival Rat Sample Code Lab Control 2 SRC-2010-08	0.05311866 0.0557746  tions Test Variance Rat Shapiro-Wilk e Summary Co 5 5 ted) Transformed	o F Normality ount	0.0066398 0.0092957 Mean 0.98 0.96	1.5 0.759 95% LCL 0.963	9 Critical 23.2 95% UCL 0.997	P-Value 0.7040 0.0045 Min 0.9	Equal Var Non-norm Max	(1%) fiances al Distribution Std Err 0.0083	Std Dev 0.0447	4.56%	0.0%
Error Total  ANOVA Assump Attribute Variances Distribution  96h Survival Rat Sample Code Lab Control 2 SRC-2010-08  Angular (Correct	0.05311866 0.0557746  tions Test Variance Rat Shapiro-Wilk e Summary Co 5 5 ted) Transformed	o F Normality ount Summa	0.0056398 0.0092957 Mean 0.98 0.96	1.5 0.759 95% LCL 0.963 0.939	9 Critical 23.2 95% UCL 0.997 0.981	P-Value 0.7040 0.0045 Min 0.9 0.9	Equal Var Non-norm  Max  1	iances al Distributio Std Err 0.0083 0.0102	Std Dev 0.0447 0.0548	4.56% 5.71%	0.0% 2.04%



Client:	ACOE - San Rafael Channel	Organism Log #:_	5213 Age: 4 days
Test Material:	SRC-2010-08	Organism Supplier:	ABS
Test ID#:	39414 Project # 16087	Control/Diluent:	25 ppt Lab Water
Test Date:	7-7-10 Randomization: 5.5.1	Control Water Batch:	768

Treatment	Temp (°C)	р	н	D.O. (	(mg/L)	Salini	ty (ppl)		#1.5	ve Organ	iseris		SIGN-OFF
% Elutriate)	remp ( C)	new	old	new	old	new	old	Rep A	Rep B	Rep C	Rep D	Rep E	
Control	1.0\$	4.09		4.1		24.8		10	Įδ	10	[0	10	Test Sylution Prep
100%	20.7	1.89		1.7		24.3		10	10	10	10	10	New WQ
												13.3	7.7-10
				01 157				CER				100	Initiation Time: \$500
			-										Inepation Sygnetti
Meter ID	34A	bhirt		2003		ELOH							
Control	706		1.98		7.5		74.8	10	(0	1.0	9	10	7. 8. 20
100%	2010		8.30		7.3		25.1	10	10	co	CO	10	7.8.00
	R SI									-			Citain Signatur
													Cita WQ
Meter ID	34A		P163		2003		ECOY						
Control	208		7.71		7.3		24.4	10	10	10	10	10	7/9//o Count Time:
100%	20.8		4.39		12		24.7	10	Lo	10	9	10	0945
													Count Signoffi
													oia wo. <b>'</b> ∑∕
Meter ID	31/4		1449	( n	1203		Kicas						
Control	20.9		7.91		7.1		25.0	9	lo	lo	lo	10	7/10/10
100%	20.9		8.32		6.4		25.8	9	lo	lo	10	w	0930
		E7-21											Count Signalf
													Old WQ:
Meter ID	344		PLOS		RD02		E004					RQ.	
Control	20.8		7.81		6.7		24.8	9	10	10	10	10	Termination Date
100%	20.9		8.32		6.4	0 1	25.5	9	lo	10	10	9	Termoducin Times
4 180			TYE									1	Termination Signoff:
					77								OW COL
Meter ID	3AA		PHOS		ROOS		ECOS						

# Appendix N

Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Mysid, *Americamysis bahia* 

#### **CETIS Summary Report**

Report Date:

21 Jul-10 14:07 (p 1 of 1)

**Test Code:** 01-7903-4604/39406 **Acute Mysld Survival Test** Pacific EcoRlsk 01-3803-2496 Test Type: Survival (96h) Batch ID: Analyst: Jason Walker Start Date: 07 Jul-10 15:30 EPA-821-R-02-012 (2002) Protocol: Diluent: **Laboratory Water** Ending Date: 11 Jul-10 14:40 Species: Americamysis bahia Brine: Crystal Sea **Duration:** Source: Aquatic Biosystems, CO Age: 20-5463-2528 Code: KCI Sample ID: Cllent: Reference Toxicant Sample Date: 07 Jul-10 15:30 Material: Potassium chloride 17107 Project: Receive Date: 07 Jul-10 15:30 Source: Reference Toxicant Sample Age: N/A (20.7 °C) Station: In House **Comparison Summary** Analysis ID Endpoint NOEL LOEL TOEL **PMSD** TU Method 96h Survival Rate 17-1545-1965 0.25 0.5 0.354 17.5% Steel Many-One Rank Test **Point Estimate Summary** Analysis ID **Endpoint** g/L Level 95% LCL 95% UCL TU Method 04-7802-6139 96h Survival Rate **EC50** 0.394 0.352 0.442 Spearman-Kärber 96h Survival Rate Summary Conc-g/L **Control Type** Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% DIff% 0.95 0 Lab Water Contr 4 0.913 0.987 8.0 0.0183 1 0.1 10.5% 0.0% 0.125 4 0.9 0.857 0.943 0.8 1 0.0211 0.115 12.8% 5.26% 0.25 4 1 0 0.0% -5.26% 0.5 4 0.15 0.0785 0.222 0 0.035 0.4 0,191 128.0% 84.2% 1 0 0 0 0 0 0 0 100.0% 0 0 0 0 0 0 0 100.0% 96h Survival Rate Detail Conc-g/L **Control Type** Rep 1 Rep 2 Rep 3 Rep 4 Lab Water Contr 1 1 8.0 0.125 1 1 8.0 8.0 0.25 1 1 1 1 0.5 0 0.2 0 0.4 0 1 0 0 0

Analyst: M QA: MM

2

0

0

0

0

## 96 Hour Acute Americamysis bahia Reference Toxicant Test

Client:	Refe	rence Toxicant		Organism Log #: _	52 93	Age:	of days
Test Material:	Pota	assium chloride		Organism Supplier:			
Test ID#:	39406	Project #	17107	Control/Diluent:	D1 -	- Crystal Sea @ 2	25 ppt
Test Date:	7.7.10	Randomiz	ation: 6. 4.1	Control Water Batch: _		768	

Treatment	Temp	р	Н	D.O. (	(mg/L)	Salini	y (ppt)		# Live C	)rganisms	··· ·	SIGN OFF
(g/L KCl)	(°C)	new	old	new	old	new	old	Rep A	Rep B	Rep C	Rep D	SIGN-OFF
Control	10.7	8.11		7.8		24.5	A)	5	5	5	5	Test Solution Prep
0.125	20.7	8.12	1 sol	7.9	len in	24.3		5	5	5	5	New WQ:
0.25	45.7	8.12		8.1		24.5		5	5	5	5	Initiation Date: 7.7.(0
0.5	7.06	8.12		8.4		14.8		5	5	5	5	Initiation Time:
1	20.7	8.10		9.0	3 0 0	15,3	H.	5	5	5	5	Initiation Signoil:
2	16.7	2.07		10.1	i?	16.4		5	5	5	5	RT Batch #: 30
Meter ID	AYE	714		RDO3		6403						
Control	21.0		8.09		7.5	STATE !	25.0	5	5	2	5	Count Date:7/8/10
0.125	21.0		11.8		7.4		25,6	5		3	5	Count Time:/000
0.25	21.0		8.12		7.4		25.6	\$	5	S	5	Count Signoff;
0.5	21.0	1000	€.12		7.5		75.9	ے	5	3	5	Old WO: NO
1	21.0		8.12		7.5		26.4	0	C	0	0	, i
2	210		8.10		7.5	6	279	0	0	0	Ö	evanal-se-
Meter ID	34/		PLC3	£	2003		ELC4			a		
Control	20.8	8-14	8.02	7.4	7.4	24.0	25.0	5	5	5	5	Test Solution Prep:
0.125	20.8	8-15	8.02	7.7	7.4	24-4	250	5	5	5	4	New WQ: NVS
0.25	208	8-16	8.02	7.8	7.4	24.5	25.5	5	2	5	5	Renewal Pate 9-10
0.5	20.8	8-14	8.04	8-0	7.5	24.9	25.6	2	2	0	3	Renewal Time 250
1	_	_	-	_	_	_	_	~-		_	į	Renewal Signo
2		_	_			-	_	J	_	_	1	Old WQ:
Meter ID	414	PH 12	Phy	RA02	2003	Eco3	tros				OX X X X X X X X	RT Baich #:35
Control	203		7.96		87.15		24.1	5	S	9	S	Count Times
0.125	20.3		7.95		7.1	1	24.6	5	S	S	y	Count 7 mg
0.25	20.3		7.95		7.1		24.9	5	5	5	3	Count Signou:
0.5	2013		7.95		7.2		25.5	0	- (	-	Z	Old WQ:
1											_	Anna and an and an an
2			_	E 1071				-			-	
Meter ID	410		PA12		R 203		Ec03	VEVE			A EN	
Control	20.8		7.94	1000	0. رچ		25.0	5	5	4	5	Termination Date:
0.125	20.8		7.87		7.1		24.7	5	5	4	4	Termination Time
0.25	20.8		7.85		6.9		24.8	5	5	5	5	Termination Signoff:
0.5	70.4	Pall From	7.89		7.2		25.2			<b>~</b>	2	Old WO
1	_	DESTRUCTION OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE	_		_				_	1	_	
2		10,233	_	(Established)		400	, ==	_	_		-	
Meter ID	AIA		PH03		RDB		E105	SHPER.				South party

# **Appendix O**

# **Bioassay Standard Test Conditions**

Summary of Test Conditions and Acceptability Criteria for the Amphipod ( <i>Ampelisca abdita</i> ) 10-Day Sediment Toxicity Test				
1. Test type	Static non-renewal			
2. Test duration	10 d			
3. Temperature	20 ± 1°C			
4. Salinity	20 – 35 ppt			
5. Light quality	Ambient Laboratory			
6. Light intensity	50 – 100 ft c.			
7. Photoperiod	Continuous			
8. Test chamber size	1 L			
9. Seawater volume	800 mL			
10. Sediment depth	40 mm			
11. Renewal of seawater	None			
12. Age of test organisms	Wild population, immature juveniles			
13. # of organisms per test chamber	20			
14. # of replicate chambers/concentration	5			
15. # of organisms per sediment type	100			
16. Feeding regime	None			
17. Test chamber cleaning	Lab washing prior to test			
18. Test solution aeration	Low bubble (~100/minute)			
19. Overlying water	$0.45 \mu\text{m}$ -filtered seawater (at test salinity)			
20. Test materials	Test sites, reference and control			
21. Dilution series	None			
22. Endpoint	% Survival			
23. Sample holding requirements	< 8 weeks			
24. Sample volume required Test acceptability criteria 25. 26.	4 L ≥ 90% survival in the Control treatment			
Reference toxicant results	Within 2 SD of laboratory mean			

Sui	Summary of Test Conditions and Acceptability Criteria for the Marine Polychaete (Neanthes arenaceodentata) 10-Day Sediment Toxicity Test					
1.	Test type	Static-renewal				
2.	Test duration	10 d				
3.	Temperature	20 ± 1°C				
4.	Salinity	20 – 35 ppt				
5.	Light quality	Ambient Laboratory				
6.	Light intensity	50 – 100 ft c.				
7.	Photoperiod	12L/12D				
8.	Test chamber size	1 L glass beakers				
9.	Test solution volume	800 L				
10.	Sediment depth	25 mm (200 mL)				
11.	Renewal of seawater	None, unless needed. If needed, renew 80% of overlying water at 48 hour intervals				
12.	Age of test organisms	2-3 weeks				
13.	# of organisms per test chamber	5				
14.	# of replicate chambers/concentration	5				
15.	# of organisms per sediment type	25				
16.	Feeding regime	None				
17.	Test chamber cleaning	Lab washing prior to test				
18.	Test solution aeration	Low bubble (~100/minute)				
19.	Overlying water	$0.45 \mu$ m-filtered seawater, at test salinity				
20.	Test concentrations	Test sites, reference and Control				
21.	Dilution series	None				
22.	Endpoint	Survival				
23.	Sample holding requirements	< 8 weeks				
24.	Sample volume required	4 L				
25.	Test acceptability criteria	≥ 90% survival in the Control treatment				
26.	Reference toxicant results	Within 2 SD of laboratory mean				

Summary of Test Conditions and Acceptability Criteria for the Mussel ( <i>Mytilus sp.</i> )  Water Column Toxicity Test				
1. Test type	Static non-renewal			
2. Test duration	48 hours			
3. Salinity	28 – 32 ppt			
4. Temperature	16 ± 1°C (mussels)			
5. Light quality	Ambient Laboratory			
6. Light intensity	50 −100 ft c.			
7. Photoperiod	16L/8D			
8. Test chamber size	20 mL vials			
9. Test solution volume	10 mL			
10. Renewal of seawater	None			
11. Age of test organisms	Embryo ≤ 4h old			
12. # of organisms per test chamber	150 – 300			
13. # of replicate chambers per concentration	5			
14. # of organisms per concentration	750 – 1,500			
15. Feeding regime	None			
16. Test chamber cleaning	Lab washing prior to test			
17. Test chamber aeration	None			
18. Elutriate preparation water	Site water			
19. Test concentrations	Test sites, and Lab Control			
20. Dilution series	Four concentrations (1, 10, 50, 100%) and a Lab Control.			
21. Dilution water	Natural seawater			
22. Endpoints	%Survival and %normal development			
23. Sampling holding requirements	< 8 weeks			
24. Sample volume required	2L			
25. Test acceptability criteria	≥70% survival and normal development in the Lab Controls, <10% abnormal in Lab Control			

Summary of Test Conditions and Acceptability Criteria for the Mysid ( <i>Americamysis bahia</i> ) Water Column Toxicity Test				
1. Test type	Static non-renewal			
2. Test duration	96 hours			
3. Salinity	25-30 ppt ± 10 ppt			
4. Temperature	20 ± 1°C			
5. Light quality	Ambient Laboratory			
6. Light intensity	50 –100 ft c.			
7. Photoperiod	16L/8D			
8. Test chamber size	400 mL beaker			
9. Test solution volume	200 mL			
10. Renewal of seawater	None			
11. Age of test organisms	1-5 days; 24 hour range in age			
12. # of organisms per test chamber	10			
13. # of replicate chambers per concentration	5			
14. # of organisms per concentration	50			
15. Feeding regime	daily			
16. Test chamber cleaning	Lab washing prior to test			
17. Test chamber aeration	If needed to maintain >40% saturation			
18. Elutriate preparation water	Site water or Clean sea water			
19. Test concentrations	Test sites, and Lab Control			
20. Dilution series	Four concentrations (1, 10, 50, 100%) and a Lab Control.			
21. Dilution water	Natural seawater/artificial seawater			
22. Endpoints	% Survival			
23. Sampling holding requirements	< 8 weeks			
24. Sample volume required	2L			
25. Test acceptability criteria	≥90% survival in the Lab Controls			