

DEPARTMENT OF THE ARMY

SOUTH PACIFIC DIVISION, CORPS OF ENGINEERS 1455 MARKET STREET SAN FRANCISCO, CALIFORNIA 94103-1399

REPLY TO ATTENTION OF

CESPD-PDC

MEMORANDUM FOR Commander San Francisco District, US Army Corps of Engineers, ATTN: CESPN-PM-C (Mr. Arden Sansome)

Subject: Review Plan Approval for the San Francisco Bay to Port of Stockton General Reevaluation Report (GRR)

1. Reference. Deep Draft Navigation Planning Center of Expertise (DDNPCX) Memo Subject: Review Plan Approval, San Francisco Bay to Port of Stockton (Encl 1).

2. The DDNPCX has reviewed the review plan, finds it has been prepared in accordance with EC 1165-2-209 and recommends approval (reference above). The updated review plan has also been coordinated with the San Francisco District Support Team (Encl 2).

3. The Review Plan includes independent external peer review.

4. I hereby approve this Review Plan, which is subject to change as circumstances require, consistent with project development under the Project Management Business Process. Subsequent revisions to this Review Plan or its execution will require new written approval from this office.

5. For any additional information or assistance, contact Paul Devitt, District Support Team Lead, (415) 503-6558, Paul.A.Devitt@usace.army.mil

Building Strong All The Way From New Mexico To The Pacific!

MICHAEL C. WEHR Acting Car

18 Dec 2012

Encl

BG, USA Commanding

REVIEW PLAN

San Francisco Bay to Port of Stockton John F. Baldwin Ship Channel Phase III Navigation Improvement Project

General Reevaluation Report

Contra Costa County, California

SAN FRANCISCO DISTRICT U.S. Army Corps of Engineers

MSC Approval Date: 18 Dec 2012 Last Revision Date:

REVIEW PLAN

San Francisco Bay to Port of Stockton John F. Baldwin Ship Channel Phase III Navigation Improvement Project

Contra Costa County, CA

General Reevaluation Report

TABLE OF CONTENTS

- 1. PURPOSE AND REQUIREMENTS
- 2. REVIEW MANAGEMENT ORGANIZATION (RMO) COORDINATION
- 3. STUDY INFORMATION
- 4. DISTRICT QUALITY CONTROL (DQC)
- 5. AGENCY TECHNICAL REVIEW (ATR)
- 6. INDEPENDENT EXTERNAL PEER REVIEW (IEPR)
- 7. POLICY AND LEGAL COMPLIANCE REVIEW
- 8. COST ENGINEERING DIRECTORY OF EXPERTISE (DX) REVIEW AND CERTIFICATION
- 9. MODEL CERTIFICATION AND APPROVAL
- 10. REVIEW SCHEDULES AND COSTS
- 11. PUBLIC PARTICIPATION
- 12. REVIEW PLAN APPROVAL AND UPDATES
- 13. REVIEW PLAN POINTS OF CONTACT

ATTACHMENT 1: TEAM ROSTERS

ATTACHMENT 2: SAMPLE STATEMENT OF TECHNICAL REVIEW FOR DECSION DOCUMENTS

ATTACHMENT 3: REVIEW PLAN REVISIONS

ATTACHMENT 4: ACRONYMS AND ABBREVIATIONS

PURPOSE AND REQUIREMENTS

Purpose. This Review Plan defines the scope and level of peer review for the current General Reevaluation Report (GRR) for the San Francisco Bay to Port of Stockton, John F. Baldwin Ship Channel Phase III Navigation Improvement Project located in Contra Costa County, California.

References

Engineering Circular (EC) 1165-2-209, Civil Works Review Policy, 31 Jan 2010 EC 1105-2-40, Water Resources Policies and Authorities Review of Decision Documents, 22 Aug 2008 EC 1105-2-412, Assuring Quality of Planning Models, 31 Mar 2011 Engineering Regulation (ER) 1110-1-12, Quality Management, 30 Sep 2006 ER 1105-2-100, Planning Guidance Notebook, Appendix H, Policy Compliance Review and Approval of Decision Documents, Amendment #1, 20 Nov 2007

Requirements. This review plan was developed in accordance with EC 1165-2-209, which establishes an accountable, comprehensive, life-cycle review strategy for Civil Works products by providing a seamless process for review of all Civil Works projects from initial planning through design, construction, and operation, maintenance, repair, replacement and rehabilitation (OMRR&R). The EC outlines four general levels of review: District Quality Control/Quality Assurance (DQC), Agency Technical Review (ATR), Independent External Peer Review (IEPR), and Policy and Legal Compliance Review. In addition to these levels of review, decision documents are subject to cost engineering review and certification (per EC 1165-2-209) and planning model certification/approval (per EC 1105-2-412).

REVIEW MANAGEMENT ORGANIZATION (RMO) COORDINATION

The RMO is responsible for managing the overall peer review effort described in this Review Plan. The RMO for decision documents is typically either a Planning Center of Expertise (PCX) or the Risk Management Center (RMC), depending on the primary purpose of the decision document. The RMO for the peer review effort described in this Review Plan is the Deep Draft Navigation Planning Center of Expertise (DDNPCX) located at USACE's Mobile District in Alabama. The RMO will coordinate with the Cost Engineering Directory of Expertise (DX) to ensure the appropriate expertise is included on the review teams to assess the adequacy of cost estimates, construction schedules and contingencies.

STUDY INFORMATION

Decision Document. The authorized study name of this Review Plan's General Reevaluation Report is the San Francisco Bay to Port of Stockton, John F. Baldwin Ship Channel Phase III Navigation Improvement Project located in Contra Costa County, California. The purpose of the GRR is to document and present the analyses that will lead to a recommended plan as authorized by the River and Harbor Act of 1965, 89-298, Section 301, Pub. L. No. 79 Stat. 1073, 89th Congress, 29 October 1965 and subsequently the Energy and Water Development Appropriation Act of 1998, Pub L. No.105-62. The recommended plan will be based upon environmentally acceptable measures, sound engineering and construction, and

reasonably maximized net NED economic benefits. The broad goals of the recommended plan are to 1) ensure safety for both present and future waterborne vessels traversing the John F. Baldwin Ship Channel, 2) increase efficient operations of vessels by reducing tidal delays and lightering, and 3) provide savings in waterborne commerce transportation costs.

Due to the complexity and scope of the various analyses, this GRR will require approval by HQUSACE, Chief of Engineers. Also, the location of the proposed project through the San Joaquin River Delta will result in the need for a full Environmental Impact Statement as required by the National Environmental Policy Act, in conjunction with a full Environmental Impact Report as required by the California Environmental Quality Act

Study/Project Description.

Phase I of the John F. Baldwin Ship Channel project (JFB) resulted in the construction of the San Francisco Bar Channel in 1974. The project created the Pacific Ocean offshore approach channel to the San Francisco Bar Channel Entrance. This shipping channel (55 ft deep—mean lower low water (MLLW) and 2000 ft wide) serves as the exclusive deep water ocean entrance to the San Francisco Bay. Completed in 1986, Phase II of the project deepened the central San Francisco Bay channel to -45 ft MLLW. Phase IV consisted of deepening the Stockton Deep Water Channel to -35 ft MLLW in 1988.

Based upon a 1965 Congressional authorization, Phase III of the project called for deepening from -35 ft to -45 ft MLLW. However, the 1997 GRR resulted in a recommended plan of a crude oil pipeline, after consulting with South Pacific Division and HQUSACE and determining that the authorization language was flexible enough to recommend a pipeline alternative. This proposed pipeline project was ultimately never built.

The pipeline alternative was developed as a substitute for channel deepening. The 1997 GRR documents that as the result of an Issue Resolution Conference in April 1997, that SPN and SPD requested a Chief of Engineers concurrence that the Richmond Marine Link Pipeline System fell under the congressional authorization by meeting the following criteria: 1) the pipeline alternative would serve the same petroleum companies as would a channel deepening; 2) similar benefits (transportation cost savings) would be realized; 3) the pipeline alternative avoided negative impacts, including salinity intrusion, endangered species, and dredge material placement issues; 4) the pipeline alternative cost substantially less than channel deepening; and 5) there was no local support for a channel deepening alternative.

This is not the case currently. In addition to the petroleum companies along the federal channel seeking transportation efficiencies, the Port of Stockton has grown substantially since the mid-1990s (much due to its acquisition of Rough & Ready Island from the Department of Navy in 2000) and is now keenly interested in obtaining the maximum depth authorized.

The 1988 Congressional authorization once again addressed the Stockton Deep Water Channel by directing that investigations begin to determine the feasibility of deepening that section of the JFB project (Phase IV) to -40 ft MLLW.

Thus, the current GRR being conducted will be addressing a single purpose project of deep draft navigation for the original Phase III stretch of channel up to -45 ft MLLW and the Stockton Deep Water Channel up to -40 ft MLLW. These deepening alternatives will be conducted in 2 and 3 foot intervals. Moreover, the pipeline alternative will also again be evaluated as it would avoid many of the challenges caused by channel deepening (environmental effects due to salinity intrusion into the Delta still being a concern).

Figure 1: San Francisco Bay to Stockton Overview Map

Figure 2: SF Bay to Stockton with Reaches

Figure 3: Potential Levee Problem Areas

Notes: 1. Locations and areas of concerns were selected based on spatial constraints and existing conditions given a proposed template with 3H:1V slopes superimposed onto aerial photography (ESR)_Imagen_VMorid_2D;peg) and 2D12 bathymetry data. 2. Locations and areas of concerns related to placement site are not identified here.

Stockton Channel

December 2012

Factors Affecting the Scope and Level of Review.

There are likely to be several challenging issues as a result of the analyses conducted for this GRR. First and foremost will be environmental concerns, both state and federal. The proposed project would go through the ecologically sensitive San Joaquin River Delta. Additionally, channel deepening would allow saltwater to flow further upstream and thus potentially endanger several protected and/or endangered species and aquatic habitat. Thus, close and extensive coordination will have to be conducted between USACE environmental scientists, engineers, and a variety of resource agencies.

Another risk factor will be locating adequate placement sites for upwards of 20 million cubic yards of dredged material. Of course, the distance of placement sites from the channel will be a significant determinant of overall costs; and with scarcer federal and state funding to pay for a project that will in all likelihood run into the \$175 million to \$225 million range.

Much of the San Joaquin River Delta's farmland is kept dry by the levees that channel the river from Stockton to San Francisco Bay. Thus, any modifications to foundation loads along the channel banks whether on the surface (e.g., raising existing levees) or underwater (e.g., cutting channel slope toes) would have to be done carefully to prevent slope instability that might cause flooding to the adjacent crops, buildings, people and public infrastructure. Moreover, a breach could result in a change of the overall salinity concentration in the San Joaquin River Delta.

Though the Port of Stockton seems to have weathered the Great Recession rather well (as their recent annual reports show), the national economy is still fragile. Should demand for the products coming into Stockton fall or if the world economy stalls and no longer demands US exports, the transportation costs savings that lead to economic feasibility (i.e. that benefits exceed costs) might not be forecast to materialize.

In summary, the most pressing and apparent risks and uncertainties relate to minimizing adverse effects to ecological resources, finding engineering techniques to minimize salinity intrusion into Delta waters, maintaining levee safety and integrity during and after construction, using dredge material for beneficial use while also keeping project costs down, and demonstrating the current and future economic viability of the Port of Stockton as it pertains to national and world demand of products crossing its wharfs.

In-Kind Contributions.

Products and analyses provided by non-Federal sponsors as in-kind services are subject to DQC, ATR, and IEPR. The in-kind products and analyses to be provided by the non-Federal sponsor include: at the present time, no major study products or analyses are anticipated by the non-Federal Sponsor (Contra Costa County, CA). Should the Sponsor later identify any such analyses and/or products, this portion of the Review Plan will be revised to reflect that and discuss the USACE guidance documents provided for their proper development. Any such products will also be properly reviewed by USACE and or independent peer reviewers.

DISTRICT QUALITY CONTROL (DQC)

All decision documents (including supporting data, analyses, environmental compliance documents, etc.) shall undergo DQC. DQC is an internal review process of basic science and engineering work products focused on fulfilling the project quality requirements defined in the Project Management Plan (PMP) of which this RP is a component. The home district shall manage DQC. Documentation of DQC activities is required and will be in accordance with the Quality Management Plans (QMP) of the District and the home Major Subordinate Command (MSC).

Documentation of DQC.

DQC is the review of basic science and engineering work products focused on fulfilling the project quality requirements. It is managed in the San Francisco District and may be conducted by in-house staff as long as the reviewers are not doing the work involved in the study, including contracted work under review. Basic quality control tools include a QMP providing for seamless review, quality checks and reviews, supervisory reviews, Project Delivery Team (PDT) reviews, etc. Additionally, the PDT is responsible for a complete reading of the report to assure the overall integrity of the report, technical appendices and the recommendations before the approval by the District Commander. Non-PDT members and/or supervisory staff will conduct this review for major draft and final products, including products provided by the non-Federal sponsors as in-kind services, and products provided by contractors following review of those products by the PDT. Each PDT section chief shall, at a minimum, provide the ATR member with an email or memo that stipulates that minimum requirements for that technical appendix or report have been met. The MSC/District QMP will address the conduct and documentation of this fundamental level of review.

AGENCY TECHNICAL REVIEW (ATR)

ATR is mandatory for all decision documents (including supporting data, analyses, environmental compliance documents, etc.). The objective of ATR is to ensure consistency with established criteria, guidance, procedures, and policy. The ATR will assess whether the analyses presented are technically correct and comply with published USACE guidance, and that the document explains the analyses and results in a reasonably clear manner for the public and decision makers. ATR is managed within USACE by the designated RMO and is conducted by a qualified team from outside the home district that is not involved in the day-to-day production of the project/product. ATR teams will be comprised of senior USACE personnel, selected by the RMO, and may be supplemented by outside experts as appropriate. Candidates for the ATR team will not be nominated by the home district/MSC. The ATR team lead will be from outside the home MSC.

Products to Undergo ATR.

The Feasibility Scoping Meeting (in South Pacific Division called "an F3") package will be subject to ATR. This Milestone generally documents the Without Project (or Baseline) conditions that currently exist in the project study area and are expected to exist in the future without a Federal project in place. As such, several preliminary technical appendices will be subject to ATR, including the following study disciplines: hydrology and hydraulics engineering, civil design, geo-technical engineering, environmental resources, environmental science (potential Hazardous, Toxic, and Radioactive Waste issues), cultural resources, GIS, hydrosurvey, real estate, economics, and plan formulation.

The Alternative Review Conference (a SPD-specific Milestone referred to as "an F4") package will be subject to ATR. This Milestone deals with evaluation of final alternatives, coordination and consensus with South Pacific Division Planning and Policy team members, and anticipates Alternatives Formulation Briefing issues that would be discussed with HQUSACE. In addition to all of the sections listed above, at this point preliminary real estate acquisition plans and any preliminary environmental impacts analyses shall be subject to ATR

The Alternative Formulation Briefing (called the AFB or FA Milestone) will be subject to ATR. The purpose of the AFB is to confirm that the plan formulation and selection process, the tentatively selected plan, and the definition of Federal and non-Federal responsibilities are consistent with applicable laws, statutes, Executive Orders, regulations and current policy guidance. The goal is to identify and resolve any legal or policy concerns that would otherwise delay or preclude Washington-level approval of the draft report, and to allow the districts to release the draft report to the public concurrent with the Headquarters policy compliance review of the draft report. Accordingly, all draft technical section appendices will be ATR'ed. Moreover, the real estate Gross Appraisal Report and the Draft EIS/EIR will be reviewed. Finally, a detailed review of the plan formulation/main report will be conducted to ensure technical compliance with ER 1105-2-100, with particular emphasis that the main report matches the technical appendices.

Similar ATR reviews shall be conducted per the previous paragraphs for the Draft Report and Final Chief's Report. HQUSACE is responsible for establishing technical, policy, and legal compliance requirements for specific projects, and providing final compliance documentation for Washington-level decision makers, generally the Chief of Engineers, ASA(CW), OMB, and Congress. The HQUSACE team is responsible for confirming the policy and legal compliance planning products; supporting the resolution of issues requiring HQUSACE, ASA (CW) or OMB decisions; continuously evaluating the overall project development process, including the peer review and policy compliance processes (including responsibilities delegated to MSCs); and recommending appropriate changes when warranted.

Required ATR Team Expertise.

ATR Team Members/Disciplines	Expertise Required		
ATR Lead	The ATR lead should be a senior professional with		
	extensive experience in preparing Civil Works		
	decision documents and conducting ATR for Deep		
	Draft Navigation studies. The lead should also		
	have the necessary skills and experience to lead a		
	virtual team through the ATR process. The ATR		
	lead may also serve as a reviewer for a specific		
	discipline (such as planning, economics,		
	environmental resources, etc).		
Planning	The Planning reviewer should be a senior water		
	resources planner with experience in Deep Draft		
	Navigation studies. Accordingly, the Planner		
	should be someone currently in a coastal USACE		
	district or served previously as a senior Planner in		
	such district.		
Economics	The Economics reviewer should be a senior		
	regional economist with experience in conducting		
	Deep Draft Navigation Studies. In particular the		
	economist reviewer should be experienced in		
	assessing commodity forecasts and vessel fleet		
	forecasts, with additional knowledge of		
	navigation/maritime economics principles and		
	distribution areas for benefiting commodities		
Environmental Resources	The Environmental reviewer should be a senior		
	environmental scientist with particular skills to		
	communicate, negotiate, and coordinate with a		
	plethora of federal, state, regional and local		
	resource agencies.		
Cultural Resources	The Cultural Resources reviewer should be a		
	senior planner with particular experience in		
	dealing with the State Historical Preservation		
	Office and its particular laws and regulations.		
Water Resources/Coastal Engineering	The Water Resources engineer reviewer should		
	be a senior engineer with experience in Deep		
	Draft Navigation studies and particular		
	experience in salinity intrusion and hydrodynamic		
	engineering models.		

Geotechnical Engineering	The geotechnical engineer reviewer should be a
	licensed senior engineer with experience in Deep
	Draft Navigation studies, with particular
	experience in evaluating levee and bank
	performance and safety in a seismically active
	region.
Civil Engineering	The civil engineer reviewer should be a senior
	engineer with experience in designing and
	modifying deep draft channels, as well as with
	dredging practices to assist in identifying the
	required proper equipment and develop the
	construction schedule. The civil engineer review
	should also have experience evaluating ship
	simulation reports.
Cost Engineering	The cost engineer reviewer will be a member of
	the Cost DX located in Walla Walla District
Construction Engineer	The construction engineer reviewer should have
	experience in identifying issues
	(constraints/solutions) related to levee
	construction within a wet soil environment.
Real Estate	The real estate reviewer should be an
	experienced real estate team member with
	particular experience in dealing with the unique
	aspects of the real estate market.
Hazardous, Toxic and Radioactive Waste (HTRW)	The HTRW reviewer should have significant
	experience in identifying and assessing the
	impacts to the study should HTRW sites be found
	in the potential project area and familiarity with
	any particular laws pertaining to such
GIS (Geospatial Community of Practice	The GIS/Geospatial reviewer should have
	experience in the preparation of real estate maps
	and related spreadsheets (e.g., tract registers).
	The GIS reviewer should have an understanding
	of key environmental issues in the San Joaquin
	River Delta area, and how geospatial data can be
	used to assess potential environmental impacts.
	In addition, the GIS reviewer should be familiar
	with the SDSFIE standards for geospatial data.
	The GIS reviewer should also have expertise in
	vertical datums compliance.

Documentation of ATR. DrChecks review software will be used to document all ATR comments, responses and associated resolutions accomplished throughout the review process. Comments should be limited to those that are required to ensure adequacy of the product. The four key parts of a quality review comment will normally include:

The review concern – identify the product's information deficiency or incorrect application of policy, guidance, or procedures;

The basis for the concern – cite the appropriate law, policy, guidance, or procedure that has not be properly followed;

The significance of the concern – indicate the importance of the concern with regard to its potential impact on the plan selection, recommended plan components, efficiency (cost), effectiveness (function/outputs), implementation responsibilities, safety, Federal interest, or public acceptability; and The probable specific action needed to resolve the concern – identify the action(s) that the reporting officers must take to resolve the concern.

In some situations, especially addressing incomplete or unclear information, comments may seek clarification in order to then assess whether further specific concerns may exist.

The ATR documentation in DrChecks will include the text of each ATR concern, the PDT response, a brief summary of the pertinent points in any discussion, including any vertical team coordination (the vertical team includes the district, RMO, MSC, and HQUSACE), and the agreed upon resolution. If an ATR concern cannot be satisfactorily resolved between the ATR team and the PDT, it will be elevated to the vertical team for further resolution in accordance with the policy issue resolution process described in either ER 1110-1-12 or ER 1105-2-100, Appendix H, as appropriate. Unresolved concerns can be closed in DrChecks with a notation that the concern has been elevated to the vertical team for resolution.

At the conclusion of each ATR effort, the ATR Leader will prepare a Review Report summarizing the review. Review Reports will be considered an integral part of the ATR documentation and shall:

Identify the document(s) reviewed and the purpose of the review; Disclose the names of the reviewers, their organizational affiliations, and include a short paragraph on both the credentials and relevant experiences of each reviewer; Include the charge to the reviewers; Describe the nature of their review and their findings and conclusions; Identify and summarize each unresolved issue (if any); and Include a verbatim copy of each reviewer's comments (either with or without specific attributions), or represent the views of the group as a whole, including any disparate and dissenting views.

ATR may be certified when all ATR concerns are either resolved or referred to the vertical team for resolution and the ATR documentation is complete. The ATR Lead will prepare a Statement of Technical

Review certifying that the issues raised by the ATR team have been resolved (or elevated to the vertical team). A Statement of Technical Review should be completed, based on work reviewed to date, for the AFB, draft report, and final report. A sample Statement of Technical Review is included in Attachment 2.

INDEPENDENT EXTERNAL PEER REVIEW (IEPR)

IEPR may be required for decision documents under certain circumstances. IEPR is the most independent level of review, and is applied in cases that meet certain criteria where the risk and magnitude of the proposed project are such that a critical examination by a qualified team outside of USACE is warranted. A risk-informed decision, as described in EC 1165-2-209, is made as to whether IEPR is appropriate. IEPR panels will consist of independent, recognized experts from outside of the USACE in the appropriate disciplines, representing a balance of areas of expertise suitable for the review being conducted. There are two types of IEPR:

Type I IEPR. Type I IEPR reviews are managed outside the USACE and are conducted on project studies. Type I IEPR panels assess the adequacy and acceptability of the economic and environmental assumptions and projections, project evaluation data, economic analysis, environmental analyses, engineering analyses, formulation of alternative plans, methods for integrating risk and uncertainty, models used in the evaluation of environmental impacts of proposed projects, and biological opinions of the project study. Type I IEPR will cover the entire decision document or action and will address all underlying engineering, economics, plan formulation, real estate issues and environmental work, not just one aspect of the study. For decision documents where a Type II IEPR (Safety Assurance Review) is anticipated safety assurance shall be addressed during project implementation per EC 1165-2-209.

Type II IEPR. Type II IEPR, or Safety Assurance Review (SAR), are managed outside the USACE and are conducted on design and construction activities for hurricane, storm, and flood risk management projects or other projects where existing and potential hazards pose a significant threat to human life. Type II IEPR panels will conduct reviews of the design and construction activities prior to initiation of physical construction and, until construction activities are completed, periodically thereafter on a regular schedule. The reviews shall consider the adequacy, appropriateness, and acceptability of the design and construction activities in assuring public health safety and welfare.

Decision on IEPR.

Per the Engineering Circular 1165-2-209, this GRR project will exceed \$45 million in total project costs and thus will require a Type I IEPR. The public, including scientific or professional societies, will not be asked to nominate potential external peer reviewers Additionally, the study will require and EIS, several study aspects (see above) will be complex, and there is likely to be disagreement between various stakeholders during the study.

Products to Undergo Type I IEPR.

IEPR will be performed no later than for the Draft Report. However, if funding and schedule allow, IEPR will be performed as early as the Alternatives Review Conference on technical appendices largely or completely finished. In addition to reports and appendices, PDT members will provide the IEPR team with all raw data (not subject to confidentiality agreements), models, and documents used to conduct each individual analysis. The IEPR review team should be able to re-run, calibrate and verify the results of all models and have access to the resulting reports and appendices.

IEPR Panel Members/Disciplines	Expertise Required	
Economics: Navigation/Maritime specialist	The Economics Panel Member should be	
	experienced with all applicable USACE economics	
	and guidance. The member should have	
	experience with complex Microsoft Excel	
	spreadsheets as well as the IWR software named	
	HarborSym. The member should be experienced	
	in acquiring, analyzing, and reporting on large	
	and complex data sets pertaining to commodities	
	and vessel characteristics, as well as distribution	
	analysis and forecasting.	
Environmental	The Environmental Panel Team Member should	
	be a NEPA Compliance Expert with experience as	
	a Fisheries Biologist. The member should also	
	have experience in the laws and regulations	
	contained in CEQA.	
Engineering	The Engineering Team Members should include:	
	coastal (with significant experience in sediment	
	transport and salinity intrusion modeling), geo-	
	technical (with significant experience in channel	
	slope and levee performance evaluation in a	
	seismically active region), and civil (with	
	significant experience in dredging techniques,	
	navigation channel design, and ship simulation	
	modeling.	
Planner/Plan Formulator	The Planner should be experienced with all	
	applicable USACE guidance concerning the USACE	
	plan formulation (Six Step Planning Process and	
	SMART Planning) pertaining to deep draft	
	navigation projects to ensure that a sufficient	

Required Type I IEPR Panel Expertise.

	number of alternatives have been properly	
	evaluated.	
Real Estate Manager	The Real Estate reviewer should be experienced	
	with the laws and regulation covering Federal	
	processes of acquiring real estate interests.	
	Specifically, this reviewer should also have	
	knowledge of California real estate laws.	

Documentation of Type I IEPR. The IEPR panel will be selected and managed by an Outside Eligible Organization (OEO) per EC 1165-2-209, Appendix D. No candidates for the IEPR panel will be nominated by the Corps of Engineers. Panel comments will be compiled by the OEO and should address the adequacy and acceptability of the economic, engineering and environmental methods, models, and analyses used. IEPR comments should generally include the same four key parts as described for ATR comments in Section 4.d above. The OEO will prepare a final Review Report that will accompany the publication of the final decision document and shall:

Disclose the names of the reviewers, their organizational affiliations, and include a short paragraph on both the credentials and relevant experiences of each reviewer;

Include the charge to the reviewers;

Describe the nature of their review and their findings and conclusions; and Include a verbatim copy of each reviewer's comments (either with or without specific attributions), or represent the views of the group as a whole, including any disparate and dissenting views.

The final Review Report will be submitted by the OEO no later than 60 days following the close of the public comment period for the draft decision document. USACE shall consider all recommendations contained in the Review Report and prepare a written response for all recommendations adopted or not adopted. The final decision document will summarize the Review Report and USACE response. The Review Report and USACE response will be made available to the public, including the district and PCX websites, through electronic means on the internet.

POLICY AND LEGAL COMPLIANCE REVIEW

All decision documents will be reviewed throughout the study process for their compliance with law and policy. Guidance for policy and legal compliance reviews is addressed in Appendix H, ER 1105-2-100. These reviews culminate in determinations that the recommendations in the reports and the supporting analyses and coordination comply with law and policy, and warrant approval or further recommendation to higher authority by the home MSC Commander. DQC and ATR augment and complement the policy review processes by addressing compliance with pertinent published Army policies, particularly policies

on analytical methods and the presentation of findings in decision documents.

SAFETY ASSURANCE AND REVIEW (SAR).

In accordance with Section 2035 of Water Resources Development Act (WRDA) of 2007, EC 1105-2-410 requires that all projects undergo a safety assurance review of the design and construction activities prior to initiation of physical construction and periodically thereafter until construction activities are completed on a regular schedule sufficient to inform the Chief of Engineers on the adequacy, appropriateness, and acceptability of the design and construction activities for the purpose of assuring public health, safety, and welfare. The decision document phase is the initial design phase; therefore, EC 1105-2-410 requires that safety assurance factors be considered in all reviews for decision document phase studies. As part of the decision document phase a PMP covering the scope and schedule for PED and construction of any recommended plan will be developed along with an associated Review Plan for those phases of project development.

Provisions for the SAR will be incorporated into this PMP/Review Plan, and a SAR team will be established for the PED and construction phase. The project manager will coordinate with the Review Management Organization (RMO) to develop the review requirements and to include them in the Review Plan. The RMO for SAR's is the USACE Risk Management Center. The SAR team shall perform reviews and site visits in accordance with milestones identified in the Review Plan. Milestones to consider for an SAR are at the record of final design in the Design Documentation Report; at the completion of the plans, specifications, and cost estimate; at the midpoint of construction for a particular contract, prior to final inspection, or at any critical design or construction decision milestones. The SAR panel may recommend to the RMO additional or alternate milestones. The MSC should approve these recommendations when they are warranted and reasonable.

The Engineering Team Members to conduct this Safety Assurance Review should include: a hydrologist, a hydraulics engineer, and a coastal engineer, a geo-technical engineer and a civil engineer. The team should all be senior/experienced engineers with the same types of expertise in their field, as described in the IEPR team table. This type of review typically costs between \$100,000 and \$200,000. As the project gets closer to the PED and construction phase, the appropriate team members and cost estimate required will be refined.

COST ENGINEERING DIRECTORY OF EXPERTISE (DX) REVIEW AND CERTIFICATION

All decision documents shall be coordinated with the Cost Engineering DX, located in the Walla Walla District For development of construction schedules and contingencies for all documents requiring Congressional authorization? The DX will also provide the Cost Engineering DX certification. The RMO is responsible for coordination with the Cost Engineering DX.

MODEL CERTIFICATION AND APPROVAL

EC 1105-2-412 mandates the use of certified or approved models for all planning activities to ensure the models are technically and theoretically sound, compliant with USACE policy, computationally accurate, and based on reasonable assumptions. Planning models, for the purposes of the EC, are defined as any models and analytical tools that planners use to define water resources management problems and opportunities, to formulate potential alternatives to address the problems and take advantage of the opportunities, to evaluate potential effects of alternatives and to support decision making. The use of a certified/approved planning model does not constitute technical review of the planning product. The selection and application of the model and the input and output data is still the responsibility of the users and is subject to DQC, ATR, and IEPR (if required).

EC 1105-2-412 does not cover engineering models used in planning. The responsible use of well-known and proven USACE developed and commercial engineering software will continue and the professional practice of documenting the application of the software and modeling results will be followed. As part of the USACE Scientific and Engineering Technology (SET) Initiative, many engineering models have been identified as preferred or acceptable for use on Corps studies and these models should be used whenever appropriate. The selection and application of the model and the input and output data is still the responsibility of the users and is subject to DQC, ATR, and IEPR (if required). **Planning Models.** The following planning models are anticipated to be used in the development of the decision document:

Model Name and Version	Brief Description of the Model	Certification / Approval Status
	and How It Will Be Applied in	
	the Study	
HarborSym (Economics)	The Institute for Water	Certified
	Resources (IWR) program	
	provides the capability to	
	integrate commodity forecasts,	
	vessel characteristics, and port	
	capacities to evaluate various	
	channel improvement measures	
	that will reduce transportation	
	savings costs using risk-based	
	methods. The program will be	
	used to evaluate and compare	
	the future without- and with-	
	project plans along the JFB Ship	
	Channel to identify the NED	
	plan and compare to others	
	analyzed alternatives	
Regional Economic System	This regional economic impact	Certified
(RECONS) (Economics)	modeling provides accurate and	
	defendable estimates of	
	regional economic impacts	
	associated with Corps spending.	
	This modeling tool automates	
	calculations and generates	
	estimates of jobs and other	
	economic measures such as	
	income and sales associated	
	with USACE's annual Civil Work	
	program spending, as well as	
	stemming from effects of	
	additional economic activities	
	(for example, water	
	transportations, tourism	
	spending, etc) associated with	
	USACE's core programs	
IWR Planning Suite 2.0	Contains an "annualizer"	Certified

(Economics)	module that allows for easy	
(200	calculations of equivalent	
	annual average values, total net	
	values, annualizing non-	
	monetary benefits and	
	calculating various economic	
	costs (including interest during	
	construction)	
Continue 002 Annahusia Contificat	Construction)	Contified
Section 902 Analysis Certified	Section 902 of the Water	Certified
Tool (Economics)	Resources Development Act	
	(WRDA) of 1986 defines the	
	maximum amount that a project	
	may cost. This is often called the	
	902 Limit or Project Cost Cap. It	
	is, "The maximum project cost	
	limit imposed by Section 902 is	
	a numerical value specified by	
	law which must be computed in	
	a legal manner (ER 1105-2-100	
	Appendix G)." This tool assists	
	with this calculation.	
Habitat Equivalency Analysis	HEA was designed for impacts	In Review at the PCX-Ecosystem
(HEA)—developed by NOAA	and damage to coral reef	Restoration
(Environmental Resources)	environments; however, HEA	
	can be used for any community	
	type where data can be	
	gathered about the habitat - the	
	before impact. In these cases,	
	data gathered before and during	
	impact can be used to develop a	
	proposed mitigation and	
	calculate a time to recovery. It	
	has been applied around the	
	country in freshwater and	
	estuarine systems.	

HEC-EEM: Ecosystem Functions	The Ecosystem Functions Model	In Review at the PCX-Ecosystem
		In neview at the Fex Leosystem
Model (Environmental	(HEC-EFM) is designed to help	Restoration
Resources)	study teams determine	
	ecosystem responses to changes	
	in the flow regime of a river or	
	connected wetland. HEC-EFM	
	analyses involve: 1) statistical	
	analyses of relationships	
	between hydrology and ecology,	
	2) hydraulic modeling, and 3)	
	use of Geographic Information	
	Systems (GIS) to display results	
	and other relevant spatial data.	

Engineering Models. The following engineering models are anticipated to be used in the development of the decision document:

Model Name and Version	Brief Description of the Model	Approval Status
	and How It Will Be Applied in	
	the Study	

UnTRIM Bay-Delta Model	UnTRIM is one of the most	Allowed for Use
(Coastal Engineer)	updated three dimensional	
	hydrodynamic and salinity	
	models, and has been applied to	
	develop a San Franciso Bay and	
	Delta system model. The	
	UnTRIM model package,	
	including SWAN and SediMorph	
	models, has been approved for	
	use for the South San Franciso	
	Bay Shoreline Study and San	
	Francisco Bay Regional Dredged	
	Material Management Plan	
	(DMMP) related projects.	
	UnTRIM calculates 3-D flow	
	fields, salinity, and water surface	
	elevation. SWAN calculates wind	
	waves and SediMorph calculates	

	sediment transport pattern.	
GeoStudio 2007 or UTEXAS	2D model of a cross-section	Accepted by USACE
(Geotechnical Engineer)	with soil properties to be used	
	for seepage, and static and	
	seismic slope stability analyses	

REVIEW SCHEDULES AND COSTS

ATR Schedule and Cost.

At a minimum, each of the previously identified "F" milestones should be scheduled 3 weeks for review, reply, backcheck, and close-out. Using \$100/hr for a GS-12 or 13 reviewer seems appropriate. A good estimate would be \$5000 - \$10000 per discipline. Thus, the F3, F4, and F4a should be funded (for an 8-10 member ATR team) approximately \$40,000 - \$80,000 each for a study with the anticipated scope of this GRR.

Hopefully, by the Draft and Final Reports the team has corrected all issues or agreed upon other solutions. Thus, for these two Milestones, the estimate would expect to fall between \$15,000 - \$25,000 each

Value Engineering Schedule and Cost

Between the F3 (FSM) Milestone and the F4A (Alternatives Formulation Briefing) Milestone, the SPN Value Engineering Officer (currently Syed Burney) will be consulted in accordance with ER 11-1-321 Change 1. In civil works, engineering regulations require VE studies during feasibility and planning phases where multiple alternatives are under evaluation. Civil works projects must also be studied once the preferred alternative is selected and entered into planning and execution documentation.

The Value Engineering study is described within ER 11-1-321 Change 1 and refers to the guidance within the adopted ASTM standards and the value standard of the SAVE International body of knowledge. SAVE International defines a VE study as comprising six distinct steps: information gathering, function analysis, creative idea generation, evaluation of ideas, alternative development, and alternative presentation. The scope and scale of a VE workshop should be carefully matched to the project under study. The workshop itself should be a minimum of three days to accomplish the job plan described above. Large or complex projects require a correspondingly longer workshop to address the expanded work scope. In addition to the workshop, a VE study includes pre- and post-workshop tasks. Pre-workshop tasks include determining the study scope, schedule, team size and composition, and retrieving pre-study project data and documents for team review including project scope, cost, schedule, and risk management plans. Post-workshop tasks include report review and comment, scheduling and holding implementation meetings, resolution of outstanding technical issues, and preparation and distribution of the final report.

An effective VE study will result in:

- Validating key project decisions
- Keeping the project within budget
- Reducing operation and maintenance activities and their costs
- Improving project performance, function, and quality

- Reducing design and construction problems
- Insuring that client needs are given top priority throughout the project

<u>ER 11-1-321 Change 1</u> includes a discussion of baseline cost and functions for a Value Engineering study. The estimate was generated by averaging overall costs and durations of studies completed around the publication date of Change 1. The rough cost average was \$65,000 for a 3-5 day Value Engineering study. This average should be used as a baseline or as a starting point. The budget and duration should be adjusted depending on the complexity, schedule, and other project aspects to ensure adequate funding to support compliance with the VE standard. Of equal importance, the study must be properly resourced to achieve the desired return on investment.

Type I IEPR Schedule and Cost.

Due to the more rigorous and independent nature of this type of review, the schedule should allocate 3 months at a minimum.

A reasonable cost estimate (in all likelihood to be negotiated in a contract) would be in the range of \$150,000 - \$200,000

Model Certification/Approval Schedule and Cost.

All planning models used will be corporate "certified" models that do not require certification. The corporate models, however, have to undergo ATR, that typically range from \$5,000 to \$10,000. Should any models be needed that must be vetted by a PCX, a schedule of at least 4 to 7 months should be anticipated. An estimated budget of \$30,000 - \$45,000 for the model review plan and model certification would typically cover costs of coordination with HQUSACE by the PCX personnel, as well as pay for the necessary reviewers.

PUBLIC PARTICIPATION

The primary opportunities for public participation of the GRR will be when various NEPA documents are released for public comment. Otherwise, public meetings will be conducted soon after the various "F" Milestones in conjunction with Contra Costa County and/or the Port of Stockton. Public comments will be addressed during the study process. All NEPA comments--whether or not environmental/ecological in nature--will be provided to PDT members most qualified to respond. All Final Decision documents will be published on USACE and non-Federal sponsor websites. All requests for hard copies will be provided to interested parties.

REVIEW PLAN APPROVAL AND UPDATES

The South Pacific Division Commander is responsible for approving this Review Plan. The Commander's approval reflects vertical team input (involving district, MSC, RMO, and HQUSACE members) as to the appropriate scope and level of review for the decision document. Like the PMP, the Review Plan is a living document and may change as the study progresses. The home district is responsible for keeping the Review Plan up to date. Minor changes to the review plan since the last MSC Commander approval are documented in Attachment 3. Significant changes to the Review Plan (such as changes to the scope and/or level of review) should be re-approved by the MSC Commander following the process used for initially approving the plan. The latest version of the Review Plan, along with the Commanders' approval memorandum, should be posted on the Home District's webpage. The latest Review Plan should also be provided to the RMO and home MSC.

REVIEW PLAN POINTS OF CONTACT

Public questions and/or comments on this review plan can be directed to the following points of contact:

Arden Sansom, Planning/Regional Economist, San Francisco District, (415) 503-6748 Leigh Skaggs, Division Plan Formulator, South Pacific Division, (415) 503-6588 Johnny Grandison, DDNPCX Review Manager, Mobile District, (251) 694-3804

ATTACHMENT 1: USACE PROJECT DELIVERY TEAM ROSTER

Glen Mitchell	USACE	Project Manager	Glen.L.Mitchell@usace.army.mil	(415) 503-6731
Fari Tabatabai	USACE	Environmental Manager	Fari. Tabatabai@usace.army.mil	(415) 503-6860
Cynthia Jo Fowler	USACE	Environmental Manager	Cynthia.J.Fowler@usace.army.mil	(415) 503-6870
Frank Wu	USACE	Hydrologist	Frank.Wu@usace.army.mil	(415) 503-6902
Ricardo Galdamez	USACE	Civil Engineer	Ricardo.A.Galdamez@usace.army.mil	(415) 503-6885
Patrick Sing	USACE	Water Resources	Patrick.F.Sing@usace.army.mil	(415) 503-6950
Arden Sansom	USACE	Econ/Plan Form	Arden.K.Sansom@usace.army.mil	(415) 503-6748
James Zoulas	USACE	GIS	James.G.Zoulas@usace.army.mil	(415) 503-0536
Laurie Suda	USACE	Cultural Re- sources/HTRW	Laurie.H.Suda@usace.army.mil	(415) 503-6840
Carmen Cheung	USACE	Geo-technical En- gineer	Camen.Cheung@usace.army.mil	(415) 503-6924
Bonievee Delapaz	USACE	Realty Specialist	Bonievee.A.Delapaz@usace.army.mil	(415) 503-6745
Paul Mason	USACE	Cost Engineer	Paul.J.Mason@usace.army.mil	(415) 503-6880

ATTACHMENT 2: SAMPLE STATEMENT OF TECHNICAL REVIEW FOR DECSION DOCUMENTS

COMPLETION OF AGENCY TECHNICAL REVIEW

The Agency Technical Review (ATR) has been completed for the General Reevaluation Report for the San Francisco Bay to Port of Stockton, John F. Baldwin Ship Channel Phase III Navigation Improvement Project. The ATR was conducted as defined in the project's Review Plan to comply with the requirements of EC 1165-2-209. During the ATR, compliance with established policy principles and procedures, utilizing justified and valid assumptions, was verified. This included review of: assumptions, methods, procedures, and material used in analyses, alternatives evaluated, the appropriateness of data used and level obtained, and reasonableness of the results, including whether the product meets the customer's needs consistent with law and existing US Army Corps of Engineers policy. The ATR also assessed the District Quality Control (DQC) documentation and made the determination that the DQC activities employed appear to be appropriate and effective. All comments resulting from the ATR have been resolved and the comments have been closed in DrCheckssm.

X_____

To Be Determined by DDNPCX

ATR Team Leader

CESAM-PD-FE

Х				

Glen Mitchell

Project Manager

CESPN-PM-A

X_____

Johnny Grandison

Date

Review Management Office

Date

Date

Representative

CESAM-PD-FP

CERTIFICATION OF AGENCY TECHNICAL REVIEW

Significant concerns and the explanation of the resolution are as follows: TBD by actual reviews.

As noted above, all concerns resulting from the ATR of the project have been fully resolved.

Х	
	-

Lyn Gillespie

Date

Acting Chief, Engineering Division

CESPN-ET-E

Х			
Х			

Thomas Kendall

Date

Chief, Planning Branch

CESPN-ET-P

ATTACHMENT 3: REVIEW PLAN REVISIONS

Revision Date	Description of Change	Page / Paragraph Number
	-	

ATTACHMENT 4: ACRONYMS AND ABBREVIATIONS

<u>Term</u>	Definition	<u>Term</u>	<u>Definition</u>
AFB	Alternative Formulation	NED	National Economic
	Briefing		Development
ASA(CW)	Assistant Secretary of the	NER	National Ecosystem
	Army for Civil Works		Restoration
ATR	Agency Technical Review	NEPA	National Environmental
			Policy Act
CSDR	Coastal Storm Damage	0&M	Operation and
	Reduction		maintenance
DPR	Detailed Project Report	ОМВ	Office and Management
			and Budget
DQC	District Quality	OMRR&R	Operation, Maintenance,
	Control/Quality		Repair, Replacement and
	Assurance		Rehabilitation
DX	Directory of Expertise	OEO	Outside Eligible
			Organization
EA	Environmental	OSE	Other Social Effects
	Assessment		
EC	Engineer Circular	РСХ	Planning Center of
			Expertise
	·		
EIS	Environmental Impact	PDT	Project Delivery Team
	Statement		
EO	Executive Order	PAC	Post Authorization
			Change
L	1		1
ER	Ecosystem Restoration	PMP	Project Management Plan
L			
FDR	Flood Damage Reduction	PL	Public Law

FEMA	Federal Emergency	QMP	Quality Management Plan
	Management Agency		

FRM	Flood Risk Management	QA	Quality Assurance
FSM	Feasibility Scoping	QC	Quality Control
	Meeting		

GRR	General Reevaluation	RED	Regional Economic
	Report		Development

Home District/MSC	The District or MSC	RMC	Risk Management Center
	responsible for the		
	preparation of the		
	decision document		

HQUSACE	Headquarters, U.S. Army	RMO	Review Management
	Corps of Engineers		Organization

IEPR	Independent External	RTS	Regional Technical
	Peer Review		Specialist

ITR	Independent Technical	SAR	Safety Assurance Review
	Review		

LRR	Limited Reevaluation	USACE	U.S. Army Corps of
	Report		Engineers

MSC	Major Subordinate	WRDA	Water Resources
	Command		Development Act