

California Map of U.S. Army Corps of Engineers Regulatory Boundaries

Figure 1. California U.S. Army Corps of Engineers District Regulatory Boundaries. Specifically depicting the San Francisco District as it pertains to coverage of RGP-12.

Attachment A

The Following figures are from the California Salmonid Stream Restoration Manual (<u>http://www.dfg.ca.gov/fish/Resources/HabitatManual.asp</u>)

Figure VII-17. Divide log.

Figure VII-18. Digger log.

Figure VII-19. Spider logs.

Figure VII-20. Log, root wad, and boulder combination.

Figure VII-21. Downstream-V boulder weir.

Figure VII-22. Vortex boulder weir, cross section view (Rosgen, 1993).

Figure VII-23. Vortex boulder weir, plan view (Rosgen, 1993).

Figure VII-24. Vortex boulder weir, profile view (Rosgen, 1993).

Figure VII-25. Boulder cluster.

Figure VII-26. Single and opposing boulder wing-deflectors.

Figure VII-27. Straight log weir with low-flow notch.

Figure VII-28. Downstream-V log weir.

Figure VII-29. Diagonal log weir.

Figure VII-30. Upstream-V log weir.

Figure VII-31. Upstream-V log weir with a low-flow notch.

Figure VII-33. Log constrictors over planks.

Figure VII-34. Upsurge weir.

Figure VII-35. Opposing log wing-deflector.

Figure VII-36. Hewitt ramp.

Figure VII-39. Step-and-pool fishway.

Figure VII-40. Denil fishway.

Figure VII-41. Alaskan steep-pass.

Figure VII-42. Back-flooding weirs.

Figure VII-43. Washington baffles with a separator wall. (*Stream Enhancement Guide*, British Columbia Ministry of Environment, 1980, p. 42).

Figure VII-44. Washington baffles. (Stream Enhancement Guide, British Columbia Ministry of Environment, 1980, p.42).

Figure VII-47. Corrugated metal pipe steel ramp baffles.

Figure VII-48. Riprap.

Figure VII-49. Boulder wing-deflector.

Figure VII-50. Log cribbing.

FigureVII-51. Live Vegetated Crib Wall (Schiechtl and Stern, 1996)

Figure VII-52. Log bank armor.

Figure VII-53. Log wing-deflector.

Figure VII-54. Tree revetment.

Figure VII-56. Native material revetment (Rosgen, 1993).

Figure VII-57. Willow sprigging. (Prunuske, 1987).

Figure VII-58. Willow Wall Revetment (L. Prunuske, 1997)

Figure VII-60. Brusch Mattress Cross Section (L. Prunuske, 1997)

Figure VII-67. Checkdam placement. (Prunuske, 1987).

Figure VII-69. Brush and Rock Checkdam (Kraebel and Pillsbury, 1934)

Figure VII-68. Redwood board checkdam. (Prunuske, 1987)

Figure VII-70. Post Checkdam (Kraebel and Pillsbury, 1934)

Figure VII-71. Tree Checkdam (Kraebel and Pillsbury, 1934)

Figure VII-72. Brush and Rock Mattress (Kraebel and Pillsbury, 1934)

Figure VII-73. Waterbar.

Figure IX-A-1. Active channel design option.

Figure IX-A-2 Stream simulation design option.

Figure X- 10. Techniques for dispersing road runoff.

Figure X-11. Partial outsloping for road decommissioning.

Figure X-12. Typical stream crossing excavation on a decommissioned road.

Common Problems

- A Diversion potential
- B Road surface and ditch flows drain to stream
- C Undersized culvert high in fill with outlet erosion

A - Road surface and

from stream

C - 100 year culvert

set at base of till

Figure X-13. Typical upgraded stream crossing.

Figure X-14. Typical culvert installation on non fish-bearing streams.

Figure X-15. Typical armored fill stream crossing.

Figure X-16. Design elements of a typical armored fill crossing.

Figure X- 17. Removal of unstable sidecast materials.

Figure X- 18. Utilizing road shape to reduce surface runoff rates.

Figure X19. Berm removal for improved drainage on outsloped and crowned roads.

Figure X- 20. Typical ditch relief culvert installation.

Figure X-21. Use of rolling dips to reduce ditch erosion and surface runoff.